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Pull-in instability was an important phenomenon in microelectromechanical systems

(MEMS). In the past, MEMS were usually assumed to work in an ideal environment.

But in the real circumstances, MEMS often work in dust-filled air, which is equivalent to

working in porous media, that’s mean fractal space. In this paper, we studied MEMS in

fractal space and established the corresponding model. At the same time, we can control

the occurrence time and stable time of pull-in by adjusting the value of the fractal index,

and obtain a stable pull-in phenomenon.
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INTRODUCTION

In recent years, Microelectromechanical systems (MEMS) has received extensive attention from
scientific researchers. In the operation of MEMS, a pull-in effect will occur. The pull-in voltage
analysis of the electrostatic drive device is of great significance to the efficient operation and
reliability of the device. Many literatures have conducted a lot of analysis on the dynamic pull-in
of MEMS models of linear materials [1–5]. There are many materials used to prepare electrostatic
MEMS devices, and among many materials, graphene is considered an excellent material for these
devices [6].

Under normal circumstances, the MEMS we consider are in a smooth medium, which can also
be called a continuous space. However, with the pollution of the environment, these electronic
devices have to work in a porous medium full of particles. Under such conditions, it will inevitably
affect the work of electronic devices, and thus also affect the pull-in. So, in this case, we need
to analyze MEMS in fractal space. Fractal theory is an excellent tool for dealing with various
mathematical problems and some physical phenomena in porous media [7–9]. Because of the
diversity application of fractal, it is widely used in various fields [10–22].

In this paper, we analyzed MEMS in the fractal space and established the corresponding fractal
model. After that, we explored its impact on pull-in by selecting different fractional derivatives, and
realized the effective control of timing for pull-in occurrence, and obtain a stable pull-in condition.

FRACTAL MEMS MODEL

Consider a dual parallel plate model driven by electrostatic forces.
The graphene ribbon with a cross-sectional area of A′ is connected
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to the movable and fixed base components, and the initial
distance is h. The movable part is a plate with area A and mass

FIGURE 1 | Graphene MEMS in the porous medium.

FIGURE 2 | Pull-in instability for different values of α and k = 0.1252.

m, as shown in Figure 1. Graphene materials follow the Equation
(1) [23, 24],

σ = Eε + Dε
2. (1)

where σ , ε,E represent the axial stress, axial strain, Young’s
modulus, and elastic stiffness constant, respectively. The moving
part is affected by the restoring force Frproduced by the axial
displacement of the graphene belt and the electrostatic force Fe
produced by the applied voltageV . According to Equation (1), Fr
and Fe can be write as [1, 6],
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Where ε0 is electric emissivity. Using Newton’s second law of
motion, the equation of motion of the moving part can be
expressed as,
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FIGURE 3 | Pull-in stability for α = 0.2.

Equation (4) can be transformed as Equation (5),

u′′ + u− au|u| =
k

(1− u)2
. (5)

Where u = ũ
h
, t = t̃

√

A′E
mL , a = hD

LE , k =
ε0ALV

2

2A′Eh3
.

In the fractal space, the fractal derivative is defined as [25–29],

Dα

Fh(θ) =
dg(v)

dv
|v=j(θ) (6)

If the Micro-electromechanical system work in the porous
medium as shown in Figure 1, we should consider it in fractal
place. So, based on Equation (5), the fractal MEMS can be
written as,

d2u

dt2α
+ u− au |u| =

k

(1− u)2
. (7)

We assume the initial conditions are u(0) = 0, u′(0) = 0.

RESULTS AND DISCUSSION

In Equation (7), when a and k take different values, it will
correspond to different equations. It is worth noting that only in

the presence of electrostatic force, that is a = 0, under steady-
state conditions, our model is simplified to the well-known
Nathan model or parallel plate capacitor model [6].

d2u

dt2α
+ u =

k

(1− u)2
. (8)

The initial conditions are u(0) = 0, u′(0) = 0.
As shown in Figure 2, the numerical solution corresponding

to different α in Equation (7) is given. We can see that when
k exceeds the critical value, a pull-in phenomenon occurs [1].
Figure 2 shows the Pull-in curve calculated under the three cases
of α > 1, α = 1, and α < 1. It can be seen that whenα > 1, Pull-in
will happen very soon. From the enlarged picture, it can also be
seen that there is a short platform.When α < 1, the occurrence of
pull-in will become slower and slower as a decreases. When α =

0.4, a very long platform appears. At this time, relatively speaking,
the occurrence of pull-in at α = 1.5 is almost instantaneously. It
can be seen that the fractal model of MEMS we have established
can control the occurrence time of pull-in and the stable time by
adjusting the value of the fractional index.

Figure 3 shows the pull-in curve when α = 0.2. It can be seen
that the platform at this time has become quite long, which also
means that the pull-in is infinitely delayed, which means that we
have obtained a stable pull-in. And when it is smaller, the pull-in
will be more stable.
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CONCLUSION

In this paper, we studied MEMS which prepared via graphene in
fractal space and established a corresponding fractal model. In
the fractal space, by discussing different fractional index α, we
found that we can control the occurrence and stable time of pull-
in by adjusting the fractional index. The fractal model of MEMS
we established can broaden the application range of it, which can
be used in any discontinuous media. Pull in stability can guide
MEMS to work more efficiently.
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