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The response of the scientific community to the global health emergency caused by the

COVID-19 pandemic has produced an unprecedented number of manuscripts in a short

period of time, the vast majority of which have been shared in the form of preprints posted

on online preprint repositories before peer review. This surge in preprint publications has

in itself attracted considerable attention, although mostly in the bibliometrics literature.

In the present study we apply a mathematical growth model, known as the generalized

Richards model, to describe the time evolution of the cumulative number of COVID-19

related preprints. This mathematical approach allows us to infer several important

aspects concerning the underlying growth dynamics, such as its current stage and its

possible evolution in the near future. We also analyze the rank-frequency distribution

of preprints servers, ordered by the number of COVID-19 preprints they host, and find

that it follows a power law in the low rank (high frequency) region, with the high rank (low

frequency) tail being better described by a q-exponential function. The Zipf-like law in the

high frequency regime indicates the presence of a cumulative advantage effect, whereby

servers that already have more preprints receive more submissions.

Keywords: COVID-19, growth models, logistic (Verhulst) growth model, rank-frequency curve, Zipf’s law

1. INTRODUCTION

As of this writing, more than 110 millions of cases of infection by the novel coronavirus (SARS-
CoV-2) have been identified worldwide and nearly 2.5 millions of deaths have been attributed to the
ensuing disease (COVID-19) [1, 2]. In its wake, the COVID-19 pandemic has seemingly touched,
in one way or another, every aspect of our daily lives. Not surprisingly, given the health risks
represented by the SARS-CoV-2 virus and the many scientific challenges involved, the COVID-19
pandemic has had a huge impact on the scientific community. On the downside, social isolation
and lockdown measures, for example, have caused disruption (if only temporary) of research
projects that were being undertaken before the onset of the crisis and made it nearly impossible
for researchers to collaborate and discuss their work in person. But on the up side, the scientific
community responded quickly to the challenges posed by the unprecedented crisis by producing
an unprecedented number of scholarly works in a short period of time.

A considerable proportion of this scientific output has been disseminated in the form of
preprints posted before peer review on open and publicly available online platforms. Despite some
concerns regarding the quality of preprints [3–7], in comparison to peer-reviewed articles, there
seems to be a growing consensus that the benefits of the rapid sharing of information allowed by
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preprints “far outweigh the disadvantages” [4]; see also [8]
for a recent discussion (before the onset of COVID-19) of
the advantages of and problems with preprints in medicine
and the biological sciences—two areas that were slower in
adopting preprint practices. Many studies about both peer-
reviewed papers and unreferred preprints related to COVID-19
research have recently been conducted, but mostly with emphasis
on the bibliometrics aspects of the topic [see, e.g., [9–15] and
references therein].

In the present paper we take a different approach from
these previous studies. Here we seek to understand the growth
dynamics underlying the rapid surge of preprints related to
COVID-19 research. To this end, we employ a generalized
logistic growth model to describe the time evolution of
the cumulative number of preprints deposited on preprint
repositories. Since the pioneering work by Verhulst on the
standard logistic model [16], phenomenological growth models
have been successfully applied tomany growth processes, ranging
from human [16] and animal [17] population dynamics to
epidemics [18], including the COVID-19 epidemic itself [19, 20].
It is thus natural to expect that growth models should also be
applicable to this “epidemic in an epidemic,” as the rapid surge
of preprints on COVID-19 has been referred to in [13]. We shall
also use the shorter term “scidemic” for this phenomenon.

More specifically, here we apply the generalized Richards
model (GRM) to describe the cumulative curve of COVID-19
preprints. We show that the GRM does give a very good fit
to the empirical curve. Furthermore, the model allows us to
extract relevant information about the social dynamics driving
this quick growth of preprints. We show, for instance, that the
early growth in the number of COVID-19 preprints follows a
subexponential regime—rather than an exponential behavior, as
was initially thought [9, 15, 21]. The model also predicts that
after reaching a maximum growth rate (i.e., zero acceleration)
in late May, 2020, the growth dynamics entered a decelerated
phase that reached its maximum deceleration by late July, 2020,
after which it moved into a regime of decreasing deceleration.
We remark, parenthetically, that in October, 2020, there was a
small increase in the rate of submissions of COVID-19 preprints,
which might be an indication of a possible “second wave” in
the scidemic, mimicking perhaps what happened in the actual
COVID-19 epidemic [22]. As it is necessary to wait for more data
to accrue to test this hypothesis, possible second wave effects will
not be pursued here.

We also analyze the distribution of the COVID-19
preprints among the many available servers. We find that
the corresponding rank-frequency distribution follows a power
law (at least for the first few largest servers), similar to the Zipf
law found in many preferential attachment processes, such as the
frequency of words in a text [23], the size distribution of cities
[24], the wealth distribution of individuals [24], the number of
scientific citations [25], the number of joint publications [26],
and the distribution of nodes in social networks [27], among
others. We thus argue that the distribution of manuscripts
among repositories also seems to follow a similar preferential
attachment dynamics, whereby servers that already have more
preprints tend to get more submissions. At the high rank (low

frequency) tail of the distribution, a q-exponential function
appears to give a better description to the data; which is an
interesting result in view of the fact q-exponential distributions
have been found in many complex systems [see e.g., [28]
and references therein], including in the context of scientific
citations [29].

Our results show that the rapid multiplication of preprints on
COVID-19 is a direct manifestation of a complex social dynamics
that stems from a sort of “contagion process,” whereby existing
preprints tend to spur more preprints, and so on. Modeling the
underlying “microscopic” dynamics of this process is of course
an interesting but daunting task, because the complex interaction
between the agents, namely the scientific authors, is mediated by
the appearance of the preprints themselves, rather than by the
direct contact among authors. The alternative approach we adopt
here, in terms of amathematical growthmodel, has the advantage
that, by avoiding the description of social mechanisms that may
be difficult to identify, it allows us to make predictions about the
resulting dynamics in a quantified manner. Our study thus helps
to shed new light on the complex growth dynamics of COVID-19
preprints and related problems.

2. MATERIALS AND METHODS

2.1. Data Source
The data used in this study were obtained from the GitHub site
maintained by Fraser and Kramer [30]. As explained in their
site, preprints are considered to be related to COVID-19 on the
basis of keywords matches in their titles or abstracts, according
to the following search string: coronavirus OR covid-19 OR sars-
cov OR ncov-2019 OR 2019-ncov OR hcov-19 OR sars-2. Their
dataset is not meant to be exhaustive, but it collates information
from an impressive list of 38 preprint servers [30]. As explained
in [30], “only the earliest posted version” of a preprint is included
in the dataset. Furthermore, in cases where a preprint is deposited
in multiple repositories, “all preprint records are included.”

The first preprint included in their collection was posted
on bioRxiv on January 15, 2020 [31]. The dataset used in the
present study was updated up until September 30, 2020, and
contains a total number of 28,757 preprints, distributed among
38 preprint servers, as already mentioned. We considered data
only up to this date, to avoid possible second wave effects, as the
model is designed to describe only one-wave growth profiles (i.e.,
sigmoidal curves). For the list of the twenty-one largest servers
(as per the number of COVID-19 preprints), see section 3. A
complete list of the preprint repositories in the dataset can be
found in [30].

It is important to recall that manuscripts deposited in preprint
repositories are not certified by peer review. Nonetheless, they
are subjected to a screening process by the respective servers
administrators to ensure a minimum quality control. Preprint
servers differ somewhat in their screening procedures, but they
all seek to enforce guidelines against “poor science,” especially in
the context of an emergency health crisis such as the COVID-
19 pandemic [6]. Many manuscripts are first posted on a
preprint server before (or simultaneously as) being submitted to a
regular peer-reviewed journal. Other submissions are supposedly
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intended only as preprints and are never submitted for formal
publication [32]. Here we make no distinction between these
two cases, as this would require a much more extended research,
which would be made even more challenging by the often
long delay between submission of a manuscript to a peer-
reviewed journal and its final publication. There are also articles
that appear only in peer-reviewed journals and are not posted
previously as preprints—hence they are not detected by searches
in preprint repositories—, but these are admittedly becoming
less frequent today [6]. As already noted, duplicated preprints
(i.e., deposited in more than one server) are all included in the
database, and so they are counted more than once, but arguably
they appear in small numbers so as not to significantly affect the
total statistics. Notwithstanding these small imperfections in the
database, the growth dynamics of research preprints related to
COVID-19 is a very good proxy for the response by scientific
community to the crisis posed by the novel coronavirus.

2.2. Mathematical Growth Model
We model the growth dynamics by means of the generalized
Richards growthmodel (GRM), which is defined by the following
ordinary differential equation (ODE):

dN

dt
= r

[

N(t)
]q

[

1−

(

N(t)

K

)α]

, (1)

where N(t) is the growing quantity at time t; r is the growth rate
at the early growth stage; q controls the initial growth regime
and allows to interpolate from linear growth (q = 0) to sub-
exponential growth (q < 1) to purely exponential growth (q =

1); α is the asymmetry parameter that controls the asymmetry of
the growth profile with respect to the symmetric S-shaped curve
of the logistic model, which is recovered for q = α = 1; and K
represents the total quantity at the end of the growth process [i.e.,
N(t) = K for t → ∞]. Equation (1) must be supplemented with
the initial condition N(0) = N0, for some given value of N0.

Here we shall apply the GRM to the growing number of
COVID-19 related preprints, so that N(t) will represent the
cumulative number of preprints in our dataset up to the time
t, where t is measured in days since the first preprint (hence
N0 = 1). In adjusting the GRM to the empirical data we need to
determine four free parameters, namely (r, q,α,K); the numerical
fit is made easier by the existence of an analytical solution for the
GRM, as discussed next.

Equation (1) admits an exact solution in implicit form given
by [20]

t = f (N; r, q,α,N0), (2)

where

f (N; r, q,α,N0)

= N1−q

r(1−q) 2F1

(

1,
1−q
α

; 1+
1−q
α

;
(

C
K

)α
)

− ti, (3)

with 2F1(a, b; c; x) denoting the Gauss hypergeometric function
[33] and

ti = N0
1−q

2F1

(

1,
1− q

α
; 1+

1− q

α
;

(

N0

K

)α)

. (4)

The fact that the solution of the GRM is given implicitly as
t(N), rather than as an explicit function N(t), does not represent
any hurdle to its practical use. Indeed, the above solution can
be directly applied for curve-fitting purposes by viewing the
empirical data in the same “implicit” form, namely tk as a
function of Nk, where Nk are the data points at times tk. The
availability of an exact solution also has the advantage that
it allows us to compute explicitly the location of certain key
characteristic points of the growth profile, as indicated below.

For example, the inflection point tc of the curve N(t), where
N̈(tc) = 0, is given by [20]

tc =
K1−q

r(1− q)

(

q

q+ α

)(1−q)/α

2F1

(

1,
1−q
α

; 1+
1−q
α

;
q

q+α

)

− ti. (5)

Knowledge of the inflection point tc is important because it
divides the growth process into two main phases according to its
acceleration, as follows: i) an accelerating phase, for t < tc, when
N̈(t) > 0; and ii) a decelerating phase, for t > tc, during which
N̈(t) < 0. Each of these two main phases can be further divided
into two subphases, according to whether the corresponding
acceleration/deceleration is increasing or decreasing. More
specifically, recalling that the rate of acceleration is known as the

jerk, let us denote the points of zero jerk by t±j , with
...
N(t±j ) =

0, where t−j and t+j correspond to the points of maximum

acceleration and maximum deceleration, respectively, so that
t+j > t−j . After some tedious algebra one finds that t±j = f (Ky±),

where f (x) is as given in (3) and

y± =





















α2 + 2q(−1+ 2q)− α
(

1− 4q±

√

4q(−1+ 2q)+ 1− 2α + α2 + 8αq

)

4α2 + 2q(−1+ 2q)+ 2α(−1+ 4q)





















1/α

(6)

Now, comparing the time, tf , of the last empirical datapoint
(corresponding to the “current time”) with the characteristic
points (t−j , tc, t

+
j ) of the theoretical curve allows us to classify the

current stage of the growth process. More specifically, we can
define four growth stages, as follows: (i) increasing acceleration,
if tf < t−j ; (ii) decreasing acceleration, if t−j < tf < tc; (iii)

increasing deceleration, if tc < tf < t+j ; and (iv) decreasing

deceleration, if tf > t+j . Having such a finer “diagnosis” of the

growth process is useful not only because it provides valuable
information about the stage of the underlying dynamics at a given
time, but also because it allows us to make predictions about its
likely evolution within the near future. For instance, depending
on how close the last time tf is in comparison to the nearest
phase-separation point, we may have an idea of how recently the
growth curve has entered its current stage or how soon it may
transition to the next one (if it is not in the final stage).
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In particular, we note that in the first subphase, i.e., for t < t−j ,

the GRM predicts a polynomial growth of the form [20]

N(t) ≈ Atµ, (7)

where A = [r(1 − q)]1/(1−q) and µ = 1/(1 − q), for q < 1.
In contradistinction, early exponential growth is obtained only
for q = 1, in which case one has N(t) ≈ N0 exp(rt). Similarly,
in the late-time dynamics, i.e., for t > t+j , the GRM predicts

an exponential rise to the plateau of the form [20]: N(t) − K ∝

exp(−γ t), where γ = rα/K1−q.

2.3. Rank-Frequency Distribution
To analyze the size distribution of the preprint repositories, we
first order the repositories according to the number of COVID-
19 preprints they hold, where n = 1 is attributed to the repository
with the highest number of preprints, n = 2 for the second
largest repository, and so on. The relative frequency of preprints
in the n-th repository will be denoted by P(n), where P(n) =

NP(n)/
∑

j NP(j), with NP(j) denoting the number of preprints

in the j-th largest repository.
Preprint servers operate largely under similar principles.

They aim to provide a publicly and freely accessible platform
for rapid dissemination and sharing of scientific manuscripts
that were not yet certified by peer review. There are preprint
repositories that specialize in certain areas, such as: arXiv for
physics and mathematics; bioRxiv and medRxiv for biomedical
sciences; SSRN for the social sciences; and RePEc for economics
research. There are also multidisciplinary preprint platforms,
such as Research Square, OSF Preprints, and others. As already
mentioned, there are 38 preprint servers in our dataset, with 21
of them hosting more than 40 COVID-19 manuscripts.

Authors thus have a substantial array of preprint servers
to choose from when submitting a manuscript on COVID-
19 related research. This is in quite contrast to non-COVID-
19 preprints, where authors often prefer to use servers that
specialize in their disciplines. It is therefore interesting to
investigate how authors decide to which server to submit their
COVID-19 preprints. For instance, preprint repositories may
differ somewhat in their screening procedures and other policy
requirements [3, 6], but it is fair to argue that these eventual
differences do not represent a significant decision factor. In other
words, the “cost” of submission (say, in terms of time and extra
work involved in the submission process) and the eventual “risk”
of rejection (if the manuscript is deemed not appropriate for
the chosen server) are roughly the same among the different
platforms. It is therefore reasonable to expect that authors will
preferentially seek those platforms that may provide greater
visibility for their work.

A reasonable decision strategy in such situation is of course
to favor those repositories that already have a substantial
number of preprints. In the context of the COVID-19
emergency, this strategy makes particular sense for authors
whose principal areas of expertise are not directly related to, say,
epidemiology, infectious diseases, virology, etc. This selection
dynamics naturally leads to the so-called cumulative advantage
[34] or preferential attachment processes [27], whereby those

repositories that already have more preprints receive more.
Preferential attachment processes usually lead to rank-frequency
distributions, P(n), that exhibit power-law decay or the so-called
Zipf law [23, 24, 34, 35]:

P(n) ∝
1

nρ
, (8)

for n ≥ 1 and ρ > 0.
Zipf-like laws are particularly ubiquitous in linguistics and

social processes, such as the frequency of words in a text [23],
the size distribution of cities [24], the wealth distribution of
individuals [24], the number of scientific citations [29], the
distribution of degree of nodes in social networks [26, 36, 37],
and the distributions of the tags in collaborative tagging networks
[38], among others. The exponential function has also been
applied to rank-size distributions, such as for urban and rural
settlements [see e.g., [39] and references therein]. Below we
discuss a general formalism that yields both power-law and
exponential rank-size distributions as particular cases.

We formulate the rank-size distribution as a growth model
described by the following ODE:

dP

(−dn)
= rPq, q > 1, (9)

where r is positive constant. As written in the more unusual form
above (with the negative sign on the left hand side), Equation (9)
can be viewed as describing the growth of the relative size,
P(n), of the class of rank n, as n decreases (i.e., for dn < 0).
Seeing the emergence of the rank-size distribution as a growth
dynamics is not only in keeping with the general approach of
the present work, but it also provides an effective model to
derive the distribution P(n) (this innovative approach will be
explored in a broader context in a forthcoming publication). In
this perspective, the exponent q in (9) can be interpreted as a
measure of the “degree” of preferential attachment, in the sense
that q = 1 implies a standard exponential decay for increasing
n (or, alternatively, an exponential growth toward smaller n);
whereas q > 1 corresponds to a slower than exponential decay
for increasing n. Hence the larger the value of q, the greater
the deviation from exponential behavior and thus the larger
the degree of preferential attachment (strictly speaking, n is an
integer variable, but if the number of ranks is large the continuous
limit adopted in (9) is a valid approximation).

The general solution of (9) is

P(n) =
1

[A+ (q− 1)rn]1/(q−1)
= A1/(1−q) expq

(

−
rn

A

)

, (10)

where expq(x) = [1 + (1 − q)x]1/(1−q) is the q-exponential
function [28, 29] and A is a constant of integration that can be
fixed with a suitable initial condition. Here there are two cases of
interest: i) P(0) → ∞, which yields A = 0, in which case the
distribution P(n) reduces to a pure power law: P(n) = Cn−ρ ,
where C = 1/[(q − 1)r]1/(q−1) and ρ = 1/(q − 1); and ii)
P(0) < ∞, which impliesA > 0, thus leading to power-law decay
only for large n, that is, P(n) ∝ n−ρ , for n ≫ 1, whereas P(n)
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approaches a constant for small n: P(n) ∝ n0, for n → 0. Clearly,
the case q = 1 yields an exponential rank-size distribution:
P(n) = A exp (−rn). One may also accommodate the possibility
of two regimes in the ranked data [40] by allowing the small and
large n regimes to be described by different exponents, namely,
q1 (with A1 = 0) and q2 (with A2 > 0), for the low and high
rank regions, respectively. In section 3, we shall investigate the
frequency distribution of COVID-19 preprints by repositories in
light of the preceding discussion.

2.4. Statistical Fits
To perform the statistical fit for the GRM, we employed the
Levenberg-Marquardt algorithm to solve the non-linear least
square optimization problem, as implemented in the lmfit
package for Python [41], which provides the parameter estimates
and their respective errors. Here we have set N(0) = N0 = 1, so
that according to (2) we are left with four parameters, namely
(r, q,α,K), to determine numerically. In the case of the rank-
frequency distribution, we fitted the selected data with power-
law, exponential, and q-exponential functions, and also used the
lmfit package to determine the free parameters in each case. The
computer codes for the statistical fits were written in the Python
language, and the plots were produced with the data visualization
libraryMatplotlib.

3. RESULTS

In Figure 1, we show the cumulative number (red circles) of
preprints on Covid-19 in our dataset, which we recall covers
from January 15, 2020, to September 30, 2020, together with
the GRM best fit (black solid curve). One sees from this figure
that the theoretical curve describes very well the empirical data.
Also shown in Figure 1 are the point of maximum acceleration
(orange vertical line), the inflection point (yellow vertical line),
and the point of maximum deceleration (green vertical line), as
obtained from the theoretical fit. The legend box in the figure
shows the parameter estimates from the best fit, along with their
respective errors.

In Figure 2, we show the daily number of preprints (green
curve) and the theoretical daily curve, which corresponds to the
time derivative of the model cumulative curve shown in Figure 1.
Although the daily curve is quite noisy, as expected for a random-
like process such as preprint submissions, we clearly see that the
theoretical curve captures rather well the general trend of the
daily data. In particular, the theoretical estimate for the “peak”
of the daily curve (corresponding to the inflection point tc of the
cumulative curve) matches quite well the location of the region
of largest values in the empirical curve.

In the main plot of Figure 3, we show the rank-frequency
distribution for the preprint repositories that have at least 40
preprints; there are twenty-one of them, which account for the
near totality (99.2%) of all COVID-19 related preprints. We
note furthermore that the first ranked server (medRxiv) alone
contributes with over one quarter (25.1%) of all submissions,
which is twice the frequency of the second ranked repository
(SSRN, with 12.6%). In the inset of Figure 3, we show the
complete rank-size distribution in log-log scale, together with the

FIGURE 1 | Cumulative number (red circles) of COVID-19 related preprints

deposited on online preprint repositories up to September, 30, 2020. The solid

black curve is the fit to the empirical data by the generalized Richards model,

with the parameters shown in the legend box. The vertical lines indicate the

location of some key characteristic points of the theoretical curve, as follows:

(i) point of maximum acceleration t−j = 62 (orange line); (ii) inflection point

tc = 135 (yellow line); and (iii) point of maximum deceleration t+j = 207

(green line).

FIGURE 2 | Daily number (green line) of COVID-19 preprints posted on online

preprint repositories up to September, 30, 2020. The solid black line is the

derivative of the theoretical cumulative curve shown in Figure 1.

respective fits by an exponential function (red dotted line) and a
q-exponential with q = 1.05 (black dashed line). One sees from
the figure that the exponential function does not seem to provide
a good description of the data at the high rank (low frequency)
tail, in which case the q-exponential followsmore closely the data.
In the low rank (high frequency) end, say, for n ≤ 10, there is
no distinction between the exponential and the q-exponential;
but in this region the data points are slightly better described by
a power law, as indicated by the green straight line, which is a
power-law fit to the first seven data points. Taken together, these
seven largest preprint servers (as per the number of preprints on
COVID-19) account for nearly 80% of all COVID-19 preprints.
Moreover, one sees in Figure 3 that there is a noticeable “gap” in
size between the seventh (ResearchGate) and the eighth (JMIR)
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FIGURE 3 | The main plot shows the ranking of the largest preprint

repositories by number of COVID-19 related preprints, including all repositories

with at least 40 preprints, up to September, 30, 2020. The inset shows the

complete rank-frequency distribution in log-log scale, where the red dotted line

is an exponential fit, P(n) ∝ exp(−αn), with α = 0.25± 0.02; the black dashed

line is a fit with the q-exponential function, P(n) ∝ expq(−βn), where q = 1.05

and β = 0.27± 0.02. The solid green line is a power-law fit, P(n) ∝ n−ρ , to the

first seventh largest repositories, which yields the exponent ρ = 0.73± 0.06.

largest repositories, which suggests that there is indeed a change
in dynamics at this point. These evidences appear to indicate
that the seven largest preprint servers dominate (at least, up to
the time of the present analysis) the “preferential attachment”
submission process. Evidence of two regimes in the ranked data,
namely at the low and high rank regions, has also been found,
for example, in the ranking of cities by size [40]. Of course, the
number of COVID-19 preprints and the corresponding rank-size
distribution of the repositories are evolving in time. As more data
is accumulated, it will be interesting to see whether the above
trend continues or whether the points in the low-to-intermediate
rank region will get closer to the q-exponential curve, in which
case the entire rank-size distribution might be described by a
single function.

4. DISCUSSION

We have seen above that the time evolution of the number of
COVID-19 related preprints is well-described by the generalized
Richards growth model. The application of such growth model
allows us to infer several interesting aspects of the dynamics
underlying the epidemic-like growth of COVID-19 preprints.
First, we saw that early in the epidemic the number of preprints
increased in a subexponential manner, as indicated by the value
q = 0.76 obtained from the GRM fit; see Figure 1. This means,
more concretely, that initially the number of preprints grows
polynomially in time according to (7), with an exponent µ =

4.2, rather than exponentially fast as was claimed in some early
bibliometric studies on the subject [9, 15, 21] (we recall that pure
exponential growth occurs only for q = 1). This subexponential

(power law) spreading is also found in many real epidemics [42],
including COVID-19 itself [43, 44]. Polynomial epidemic growth
is usually attributed to heterogeneous mixing [42, 45], where
clustering effects in the underlying propagation network can lead
to polynomial spreading [46, 47]. So it is quite likely that such
complex dynamics also takes place in the early rapid growth of
COVID-19 publications, leading to a subexponential regime.

Another interesting result obtained from Figure 1 is the fact
that the inflection point of the growth profile was reached
slightly over 4 months after the first preprint in our dataset,
i.e., tc = 135 days, corresponding to May 28, 2020, after which
the curve has entered a deceleration phase. This deceleration
regime can be explained by a combination of factors. First, after
a few months of an exceedingly rapid growth in the number of
preprints, it becomes naturally more difficult for researchers to
obtain novel results at the same pace. Second, it is also possible
that after a few months of intensive work on COVID-19, some
researchers (especially those whose main areas of expertise are
not directly related to epidemics and infectious diseases) may
have shifted their focus back to previous research problems or
moved on to new ones. Third, starting in late April and early
May, repository administrators began to screen more closely
COVID-19 preprints against “poor science” [6], and this more
stringent vetting processes may have had an impact (however
modest) on the rate of accepted submissions. Furthermore, it
may also have discouraged authors from submitting manuscripts
that they feared would not pass the stricter screening. In other
words, enhancing the screening procedures was the equivalent, to
some extent, of a “mitigation” intervention in epidemic outbreaks
[19]. These factors combined (and possibly others) have lead
to a slowing down in the rate of new preprints—an effect that
is effectively captured by the saturation term in the GRM, as
represented by the term in square brackets in Equation (1).

We have found that the point of maximum growth rate (i.e.,
zero acceleration) of the theoretical growth curve happened on
May, 28, 2020, as indicated by the yellow vertical line in Figure 1.
After this, the growth dynamics entered a decelerated phase
that reached its maximum deceleration on July 23, 2020, as
shown by the green vertical line in Figure 1. After the point
of maximum deceleration, the dynamics enters a regime of
decreasing deceleration and increasing jerk. From the GRM fit,
we have also computed the point of maximum jerk (not shown
in Figure 1) and obtained that it is predicted for September 11,
2020. This implies that after that date the growth curve entered
a regime of decreasing deceleration and increasing jerk. One
important effect of this increasing jerk is that it contributes
to “bend the curve” away from the near-linear growth that is
typical of intermediate region around the inflection point tc; see
Figure 1. The growth curve would thenceforth develop a more
curved profile and possibly approach a near plateau (assuming
that the trend were to continue).

After completion of the first version of the present paper,
there happened a slight increase in the number of preprint
submissions for the month of October, 2020, in comparison
to the previous month. This effect is illustrated in Figure 4,
where we show the monthly numbers of COVID-19 preprints
posted on online repositories up to December, 31, 2020, where
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FIGURE 4 | Monthly number of COVID-19 preprints posted on online preprint

repositories up to December, 31, 2020. The arrows indicate the main and

secondary “peaks” in the graph.

a secondary small peak in October is clearly visible. This second
peak, albeit small, can perhaps be interpreted as a sort of second
wave effect, in the sense it might have been a result of the actual
second wave of COVID-19 infections that occurred in many
countries after August, 2020. In other words, the widespread
occurrence of second waves of SARS-CoV-2 infections might
have rekindled the interest of the scientific community in the
pandemic dynamics, leading to an increase in the rate of COVID-
19 preprint submissions. Recently, a generalized logistic model
with time-dependent parameters has been shown to describe well
the COVID-19 epidemic curves that exhibit secondary waves
[22]. It is, therefore, quite possible that a growth model with time
dependent parameters may also capture second wave effects in
the preprint growth dynamics. An analysis of such a problem is
however beyond the scope of the present study.

We have also analyzed the size distribution of preprint
repositories, as ordered by the number of COVID-19 related
manuscripts they host up to September 30, 2020. We have found,
in particular, that this distribution is highly peaked at the front-
runner (medRxiv)—a property that is typical of the so-called
cumulative advantage processes. Such processes often exhibit
power-law distributions, and we have indeed verified that the
rank-size distribution of preprint servers does appear to have
a power-law decay for the first few largest repositories, with
a q-exponential function describing better the high rank (low
size) tail of the distribution. This seems to indicate that a sort
of preferential attachment dynamics takes place when authors
are considering to which platform to send their manuscripts,
as servers that already have more preprints tend to receive
more submissions.

It should be emphasized that the problem studied here,
namely the growth dynamics of COVID-19 preprints, is a direct
manifestation of an underlying complex social process akin to
other systems in Sociophysics [26, 36–38]. It may therefore be

possible to develop a microscopic dynamical model, say, at the
level of agents, as there is for other social dynamical systems,
where the statistical and dynamical trends reported here could
be studied in more detail. This is an interesting open problem to
be addressed in the future.

In conclusion, it is fair to say that, alongside the public
health crisis, the COVID-19 pandemic also triggered a scientific
emergency. The scientific community has met this challenge by
producing an unprecedented number of scholarly works in a
very short period of time, so much so that the phenomenon
has been dubbed “an epidemic in an epidemic” [13]. To better
understand this scidemic, we have applied a generalized logistic
growth model to describe the time evolution of the cumulative
number of unrefereed preprints on COVID-19 and SARS-CoV2.
Our analysis shows that the quick surge in COVID-19 related
preprints can be seen as a sort of contagion process, where
existing preprints tend to spur more preprints, and so on, in
a cascade-like effect. Eventually this rapid growth is tamed by
the system’s own dynamics, as it takes more time and effort for
researchers to obtain new results, leading to a deceleration in the
growth of the preprint “epidemic curve” (Other factors, such as
closer screening of preprints by the repositories and the return of
researchers to pre-epidemic projects, may also contribute to the
slowing down in the rate of publication of COVID-19 preprints).
Recently, a possible small second-wave effect on the preprint
growth pattern has been observed. This possibility of multiple
waves within the COVID-19 scidemic is an interesting question
that deserves further examination.
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