
Characteristics of Principal
Components in Stock Price
Correlation
Wataru Souma*

College of Science and Technology, Nihon University, Funabashi, Japan

The following methods are used to analyze correlations among stock returns. 1) The
meaningful part of the correlation is obtained by applying random matrix theory to the
equal-time cross-correlation matrix of assets returns. 2) Null-model randomness is
implemented via rotational random shuffling. 3) Principal component analysis and
Helmholtz-Hodge decomposition are used to extract leading and lagging relationships
among assets from the complex correlation matrix constructed from the Hilbert-
transformed data set of asset returns. These methods are applied to price data for
445 assets from the S&P 500 from 2010 to 2019 (2,510 business days). Additional analysis
and discussion clarify key aspects of leading and lagging relationships among business
sectors in the market. Numerical investigation of these dataset reveals the possibility that
leading and lagging relationships among business sectors may depend on gross market
conditions.
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1 INTRODUCTION

The analysis of big data can reveal novel aspects of nature and society. However, data often contain
noise, making it necessary to distinguish the signal from the noise. Principal component analysis
(PCA), independent component analysis, machine learning, and other techniques have been applied
to extract the meaningful components of various datasets. About 20 years ago, randommatrix theory
(RMT) was introduced to distinguish the components of a dataset from the noise. [1, 2] developed a
“null-hypothesis” test based on RMT. In paticular, they compared the properties of empirical equal-
time cross-correlation matrix to those of a random matrix and considered deviations from the
random matrix case to suggest the presence of meaningful information. They compared the
distribution of eigenvalues of this empirical cross-correlation matrix with the Marčenko-Pastur
distribution [3], which is theoretically derived from so-called random Wishart matrices. They
considered the eigenvector corresponding to the largest eigenvalue to represent the “market” itself.
They also compared the distributions of the components of eigenvectors with the Porter-Thomas
distribution [4], finding that the eigenvector corresponding to the largest eigenvalue differed
remarkably from the Porter-Thomas distribution.

[5] confirmed the findings by [1, 2]; the meaningful part represents a market mode and group
structures, such as industry categories and stocks with large market capitalization. [6] applied RMT
to the equal-time cross-correlation matrix of assets listed on the first division of the Tokyo Stock
Exchange (TSE). [7] clarified the structure of the meaningful part of the equal-time cross-correlation
matrix of assets listed on the New York Stock Exchange (NYSE). [8] investigated the empirical
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equal-time cross-correlation matrix of stock price fluctuations on
the National Stock Exchange of India, finding that this emerging
market exhibited strong correlations in the movements of stock
prices compared to developed markets such as the NYSE. [9]
analyzed the empirical equal-time cross-correlation matrix of
stock price fluctuations on the Tehran stock exchange and in the
Dow Jones Industrial Average (DJIA), showing that the DJIA is
more sensitive to global perturbations. [10] investigated the
structures of networks constructed from principal components
of the empirical equal-time cross-correlation matrices of stock
price fluctuations on the Tehran stock exchange and in the DJIA.
[11] constructed an autocorrelation matrix of a time series and
analyzed it based on the random-matrix theory approach and
fractional Gaussian noises.

[5] constructed a “filtered” cross-correlation matrix, from
eigenvalues and eigenvectors outside the random matrix
bound and applied this cross-correlation matrix to portfolio
optimization [12]. The result they obtained shows that
predicted risk was much closer to the realized risk than the
traditional portofolio optimaization. [13] applied the portfolio
optimization method to the stocks listed on the first division of
the TSE and showed that the performance of the portfolio
constructed by this method was usually better than that of
market index such as TOPIX. [14] extended this portfolio
optimization method to a case involving a short sale of stocks.

RMT is a powerful method for distinguishing meaningful
components and noise in financial time-series data. The null
hypothesis of randomness in this method assumes randomness in
cross-correlation and autocorrelation. However, the
autocorrelation of stock returns cannot be considered random
(for example, see [15]. Thus, a new method is needed that
preserves autocorrelation but randomizes cross-correlation.
[16, 17] developed a method referred to as rotational random
shuffling (RRS). In RRS, empirical time-series data are shuffled
rotationally in the time direction with a periodic boundary
condition imposed. Therefore, equal-time cross-correlation
matrices constructed from RRS time series preserve almost all
the autocorrelation information of each time series while
randomizing cross-correlation. By comparing the distribution
of eigenvalues of this RSS cross-correlationmatrix with that of the
empirical cross-correlation matrix, meaningful components and
noise can be successfully distinguished.

It is natural to consider the application of RMT to different-time
cross-correlation matrix. [18] introduced so-called complex Hilbert
principal component analysis (CHPCA), in which the cross-
correlation matrix is defined in the complex space. The
components of eigenvectors of the complex cross-correlation
matrix distribute in the complex plane, allowing the recognition
of lead-lag relationships between components based on the
difference in angle between them. [19] applied CHPCA to time-
series data set for 483 assets representing the S&P 500 from 2008 to
2011 (1,009 business days) and constructed a correlation network in
which pairs of assets with phase differences below a certain threshold
were weighted based on correlation strength. [20] explored data
from 1990 to 2012 for foreign exchanges and stock markets in 48
countries using CHPCA and extracted a significant lead-lag
relationship between the markets. [21] applied CHPCA to a

time-series data for assets listed on the NYSE from 2005 to 2014
and clarified lead-lag relationships among stocks, investment trusts,
real estate investment trusts (REITs), and exchange traded funds
(ETFs). [22, 23] applied CHPCA to the early warning indicators of
financial crizes proposed by the Bank of Japan and explored changes
in lead-lag relationships between indices before and after financial
crizes.

When applying CHPCA to time series data, we need to
explicitly extract the lead-lag relationship between the time
series. [24, 25]; and [26] applied the Helmholtz-Hodge
decomposition (HHD) to extract circular and gradient flows in
a complex network. [27] applied CHPCA and HHD to monthly
time series of 57 US macroeconomic indicators and five trade/
money indexes, confirming statistically significant co-movements
among these time series and identifying noteworthy economic
events. [28] summarized CHPCA, RRS, and HHD and applied
these methods to economic time-series data.

The purpose of the present paper is twofold. The first is to
introduce a recently developed method to analyze stock return
correlations. The second is to highlight a novel aspect of leading
and lagging relations of business sectors in the market. In Section 2,
log returns of stock prices are defined, and an empirical equal-time
cross-correlation matrix is constructed for 445 assets from the S&P
500 from 2010 to 2019 (2,510 business days). A method is also
presented for calculating the eigenvalues and eigenvectors of this
cross-correlation matrix and applies RMT and RRS to distinguish
themeaningful part from the noise. Furthermore, it is shown that the
eigenvector corresponding to the largest eigenvalue represents the
market mode and meaning components without the principal
component represent group mode. In Section 3, the dataset is
investigated using CHPCA, RRS, and HHD and lead-lag
relationships among assets are discussed. In Section 4, an
application of CHPCA to portfolio theory is sketched. Section 5
is devoted to summary and discussion.

2 APPLICATION OF RMT AND RRS

In this section, the equal-time cross-correlation matrix is defined.
RMT is then applied to distinguish the meaningful components
from the noise components. After that, RRS is introduced to
distinguish the meaning components from the noise components.

2.1 Equal-Time Cross-Correlation Matrix
This paper investigates data for 445 assets from the S&P 500 for
dates obtained 2010–2019 (2,510 business days). By denoting an
opening price of stock n on day t as on(t) and a closing price of
stock n on day t as cn(t), the daily log return of stock n on day t is
defined as

rn(t) � ln[cn(t)
on(t)] (1)

where ln represents the natural logarithm. Here,
n � 1, 2, . . . ,N � 445, and t � 1, 2, . . . ,T � 2510. For each
stock n, the time-average of rn(t) is denoted as 〈rn〉, and the
standard deviation of rn(t) is denoted as σn. These are defined by
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〈rn〉 � 1
T
∑T
t�1

rn(t), σn �

�����������������
1
T

∑T
t�1

[rn(t) − 〈rn〉]2
√√

(2)

A normalized log return of asset n is denoted as wn(t), and
define it by

wn(t) � rn(t) − 〈rn〉
σn

(3)

Thus, a component of equal-time cross-correlation matrix is
defined by

Cmn � 1
T

∑T
t�1

wm(t)wn(t) (4)

The left panel of Figure 1 depicts an equal-time cross-
correlation matrix. In this figure, shade indicates the strength
of the positive correlation. White color corresponds to Cnn � 1,
with darker shades representing weaker correlations, and yet
darker shades representing negative correlations. The darkest
shade corresponds to Cmn � −0.515641. Because the stocks are
arranged in industry codes orders, the block pattern seen in the
figure roughly corresponds to a grouping by industry. The right
panel of Figure 1 shows the distribution of components of the
equal time cross-correlation matrix. This figure shows that nearly
all correlations are positive. Furthermore, the right tail of the
distribution is thicker than the left tail.

2.2 Application of RMT
Calculation of eigenvalues λR for this cross-correlation matrix
produces Figure 2. Here, subscript R represents the eigenvalue
rankings. The left panel of Figure 2 shows the distribution of

eigenvalues. The largest eigenvalue is λ1 � 143.516, and the
smallest eigenvalue is λ445 � 0.0638128. The right panel of
Figure 2 shows the distribution in the range of small
eigenvalues. The solid line is the probability distribution
function of the so-called Marčenko-Pastur distribution, which
is derived from RMT in the limit N→∞ and T→∞ by
fixing Q � N/T :

p(λ) � (1 − 1
Q
)+

δ(λ) + 1
2πQ

���������������(λ − λ−)+(λ+ − λ)+√
λ

(5)

where (x)+ � max(0, x); δ(x) denotes Dirac’s delta function; and
λ± is defined by

λ± � (1 ±
��
Q

√ )2 (6)

In this paper, λ+ � 2.01941 denotes the upper bound of
eigenvalue λ, and λ− � 0.335172 denotes the lower bound of λ.

In RMT extraction of the meaningful part of the correlation
structure, empirical eigenvalues larger than λ+ signify the
meaningful part. In particular, in the cross-correlation matrix
of stock returns, the largest eigenvalue corresponds to the market
mode, and the remaining meaningful part correspond to group
modes, such as, industry sectors. In this analysis, it was found that
λ1 > λ2 > . . . > λ17 > λ+, so, 17 meaningful components were
retained.

In traditional PCA, Monte Carlo simulations and so-called
scree graphs are used to extract meaningful components. In the
present method, the time series of each stock is randomly shuffled
to generate an equal-time cross-correlation matrix. This
manipulation breaks both the autocorrelation and the cross-
correlation. It is derived from a similar concept as the
application of RMT. If we construct the equal-time

FIGURE 1 | (Left) Visualization of the equal-time cross-correlation matrix for the data for 445 assets from S&P 500 from 2010 to 2019 (2,510 business days). The
shade is proportional to correlation strength, with white color corresponding to Cnn � 1 and the color becoming dark as the correlation becomes large-magnitude
negative. (Right) The distribution p(Cmn) of components of the equal-time cross-correlation matrix. The components are almost all positive. The right tail of the
distribution is thicker than the left tail.
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cross-correlation matrix from those randomly shuffled time
series, we can obtain the histogram shown in the left panel of
Figure 3. The solid line in this figure corresponds to the
Marčenko-Pastur distribution given by Eq. 5. From this figure,
we can recognize the equivalence between the traditional PCA
and the application of RMT.

The right panel of Figure 3 shows the scree graph. In this
figure, the abscissa corresponds to the eigenvalue rankings and
the ordinate corresponds to the magnitude of eigenvalues. The
curve with error bars in this figure depicts the eigenvalue
distribution of the randomly shuffled cross-correlation matrix.
The thin line with filled circles in this figure depicts the
distribution of eigenvalues of the empirical equal-time cross-
correlation matrix. If we denote the upper bound of eigenvalue
derived from the randomly shuffled cross-correlation matrix as

λmax, we obtain λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, there
are 19 meaningful components in the dataset.

2.3 Application of the RRS
As stated above, when we make a randomly shuffled cross-
correlation matrix, we break both the autocorrelation and the
cross-correlation conditions. However, it has been reported that
the stock price has an autocorrelation tendency. Thus, we need to
develop a method that preserves autocorrelation but randomizes
the crosscorrelation. [16, 17] developed a method referred to as
RRS. In RRS, we shuffle the empirical time-series data rotationally
in the time direction and impose the periodic boundary
condition:

wn(t)→wn(Mod[t + τ,T]) (7)

FIGURE 2 | (Left) Distribution p(λ) of eigenvalues λ of the empirical equal-time cross-correlation matrix. (Right) Empirically obtained distribution p(λ) of
eigenvalues λ in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution under RMT as the theoretical curve given by Eq. 5.

FIGURE 3 | (Left) Distribution p(λ) of eigenvalues λ of the equal-time cross-correlation matrix constructed from randomly shuffled time series. The solid line
represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues λR. The curve with error bars depicts the simulated distribution of eigenvalues using
random shuffling (RS). To obtain this curve, we repeated this manipulation 20 times and calculated the mean value and standard deviation. Each error bar
represents three times the standard deviation. The thin line with filled circles depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix.
The meaningful part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the randomly shuffled cross-correlation
matrix is denoted as λmax, then λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, 19 meaningful components should be retained for this data set.
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Here, τ ∈ [0,T − 1] is a (pseudo-) random integer that
is different for each n. For example, if τ � 1537 for stock 1,
τ � 2128 for stock 2, . . ., τ � 138 for stock N, the time series of
normalized log returns is given by

w1 � {w1(1538),w1(1539), . . . ,w1(2510),w1(1),w1(2), . . . ,w1(1537)}
w2 � {w2(2129),w2(2130), . . . ,w2(2510),w2(1),w2(2), . . . ,w2(2128)}
« «

wN � {wN(139),wN(140), . . . ,wN(2510),wN(1),wN(2), . . . ,wN(138)}

Such a rotationally randomly shuffled time series allows the
cross-correlation matrix to be constructed and eigenvalues to be
calculated. An example is shown in the histogram in the left panel
of Figure 4. The solid line in this figure corresponds to the
Marčenko-Pastur distribution given by Eq. 5. This figure shows
that the distribution of eigenvalues is almost the same as the
Marčenko-Pastur distribution based on RMT except for the large
eigenvalue range.

The right panel of Figure 4 shows the scree graph. In this
figure, the abscissa corresponds to eigenvalue rankings, and the
ordinate corresponds to eigenvalue magnitude. The curve with
error bars in this figure depicts the eigenvalue distribution of the
RRS cross-correlation matrix. The thin line with filled circles in
this figure depicts the distribution of eigenvalues of the empirical
equal-time cross-correlation matrix. Again, if the upper bound of
eigenvalues derived from the RRS cross-correlation matrix is
denoted as λmax, then λ1 > λ2 > . . . > λ19 > λmax � 1.7947 is
obtained. Hence, 19 meaningful components are retained.
Although the numbers of meaningful components in RMT
and RRS are equal, this result is a coincidence specific to the
data set at hand.

Figure 5 shows the distribution of components of the top 20
eigenvectors, v1, . . . , v20. The thin vertical lines in these figures
separate business sectors. RMT suggests that the distribution of

the components of each eigenvector is given by the Poter-Thomas
distribution:

p(v) � N
2π

exp(−Nv2
2

) (8)

The first eigenvector v1 consists of components of similar
magnitude and is referred to as the market mode. In the second
eigenvector, there is a negative peak in the rightmost sector,
which corresponds to the utility sector. In the third eigenvector,
there is a negative peak in the left sector, which corresponds to the
bank sector. In the fourth eigenvector, there is a positive peak in
the middle sector, which corresponds to the oil and gas
equipment and service sector. In the fifth eigenvector, there is
a negative peak in the right middle sector, which corresponds to
the REIT sector. The panels from the sixth eigenvector to the 20th
eigenvector have peaks in some sectors containing a small
number of assets. However, sometimes it is difficult to extract
the meaning of each principal component. Thus, the correlation
matrix was split into three parts:

C � ∑N
R�1

λRvRv
T
R

� λ1v1v
T
1 + ∑19

R�2
λRvRv

T
R + ∑N

R�20
λRvRv

T
R

� CMarket + CGroup + CNoise

(9)

It is important to understand why the largest eigenvalue and
the corresponding eigenvector are referred to as representing the
market mode. The market index on day t is denoted aswM(t) and
defines it by the scalar product ofw(t) and the first eigenvector v1:

wM(t) � w(t) · v1 (10)

FIGURE 4 | (Left) Distribution p(λ) of eigenvalues λ of the equal-time cross-correlation matrix constructed by rotational random shuffling (RRS). The solid line
represents the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5. (Right) Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, and the ordinate represents empirically obtained eigenvalues λR. The thin line with filled circles depicts the empirically obtained distribution of
eigenvalues of the empirical equal-time cross-correlation matrix. The curve with error bars depicts the simulated distribution of eigenvalues using RRS. To obtain
this curve, this manipulation was repeated 20 times, after which the mean value and standard deviation were calculated. Each error bar represents three times the
standard deviation. The thin line with filled circles in this figure depicts the distribution of eigenvalues of the empirical equal-time cross-correlation matrix. The meaningful
part can be obtained by comparing these two distributions. If the upper bound for eigenvalues derived from the RRS cross-correlation matrix is denoted as λmax, then
λ1 > λ2 > . . . > λ19 > λmax � 1.7947. Hence, 19 meaningful components should be retained for this data set.
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i.e., weighting the average return with the weight given by the first
eigenvector. On the other hand, the S&P 500 is used to
characterize the entire market. The normalized log return on
day t from open to close of the S&P 500 is denoted as wSP(t).
Figure 6 shows the scatter plot of wM(t) vs. wSP(t). This figure
shows that wM(t) and wSP(t) exhibit a strong, positive
correlation. The dashed line in this figure shows a
linear function with the slope given by Pearson’s correlation
index ρ � 0.852 and with the intercept equal to 0. This correlation
coefficient is almost the same as that obtained by [5].

3 APPLICATION OF CHPCA AND HHD

In this section, the complex correlation matrix is defined. RRT is
then applied to distinguish the meaning components from the noise
components, and CHPCA is introduced. After that, HHD is
presented in order to clarify the lead-lag relationships among assets.

3.1 Complex Correlation Matrix
A simple definition of different-time correlation is given by
Corr[wm(t),wn(t + Δt)], (Δt � 1, . . . ,T − 1). However, if N
and T are extremely large, a huge number of combinations
must be investigated. Therefore, a complex correlation matrix
is introduced to overcome this problem.

We consider the Fourier transform of the daily log returns of
asset n as represented by

rn(t) � ∑T
k�0

[an(ωk)cos(ωkt) + bn(ωk)sin(ωkt)] (11)

where ωk � 2πk/T ≥ 0. The Hilbert transform of rn(t) is given by

r̂n(t) � ∑T
k�0

[bn(ωk)cos(ωkt) − an(ωk)sin(ωkt)] (12)

We define a complex log return ~rn(t) as

FIGURE 5 | Distribution of components of the top 20 eigenvectors, v1 , . . . , v20. The abscissa represents n, and the ordinate represents to the components vR,n of
eigenvector vR. Here, R is the eigenvalue rankings. The thin vertical lines in these figures separate business sectors.
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~rn(t) � rn(t) + i r̂n(t) � ∑T
k�0

cn(ωk)e−iωkt (13)

where i denotes an imaginary unit defined by i2 � −1. For each asset n,
we define a time average 〈~rn〉 and a standard deviation ~σn as follows.

〈~rn〉 � 1
T

∑T
t

~rn(t), ~σn �

����������������
1
T
∑T
t�1

|~rn(t) − 〈~rn〉|2
√√

(14)

We define the normalized complex log return ~wn(t) as

~wn(t) � ~rn(t) − 〈~rn〉
~σn

(15)

Thus, the time-average of ~wn(t) is zero, and its standarddeviation is
one. Each component of the complex correlation matrix is defined by

~Cmn � 1
T

∑T
t�1

~wm(t)~w†
n(t) (16)

Herein, † represents the transposed complex conjugate.
The elements of the complex correlation matrix distribute on

the complex plane, as shown in the upper left panel of Figure 7.
The lower left panel of Figure 7 shows the distribution of the real
parts of the elements of the complex correlation matrix. This
distribution is almost the same as for the case of the equal-time
cross-correlationmatrix shown in the right panel of Figure 1. The
upper right panel of Figure 7 shows the distribution of the
imaginary parts of the elements of the complex correlation
matrix. This panel shows a symmetrical distribution.

3.2 Complex Hilbert Principal Component
Analysis
Figure 8 is obtained by calculating the eigenvalues λR for the
cross-correlation matrix. As in Section 2.2, here the subscript R

again represents the eigenvalue rankings. The left panel of
Figure 8 shows the distribution of the logarithms of
eigenvalues. The largest eigenvalue is λ1 � 143.71, and the
smallest eigenvalue is λ445 � 0.0442842. The right panel of
Figure 8 shows the distribution in the small eigenvalue region.
The solid line is the Marčenko-Pastur distribution given by Eq. 5
with Q � 2N/T .

Figure 9 shows the scree graph. In this figure, the abscissa
corresponds to the eigenvalue rankings and the ordinate
corresponds to eigenvalue magnitudes. The curve with error
bars in this figure shows the eigenvalue distribution of the
RRS complex correlation matrix. The thin line with filled
circles in this figure depicts the distribution of eigenvalues of
the empirical complex cross-correlation matrix. If we again
denote the upper bound for eigenvalues derived from the RRS
cross-correlation matrix as λmax we again obtain
λ1 > λ2 > . . . > λ16 > λmax � 2.18894. Hence, 16 meaningful
components are retained for this dataset.

Figure 10 shows the distribution of each component for the
top 16 eigenvectors v1, . . . , v16 in the complex plane. In this case,
the Poter-Thomas distribution, which is the null hypothesis of
randomness, is given by

p(v) � N
π
exp(−N|v|2) (17)

In the complex plane, we regard the clockwise direction
from the positive real axis as corresponding to leading
components, whereas the counterclockwise direction from
the positive real axis corresponds to the lagging
components. Components of the first eigenvector v1
distribute along the positive real axis. This means that the
phase difference, i.e., the difference between leading and
lagging, is small for the first eigenvector. Thus, we refer to
the first eigenmode as the market mode. On the other hand,
components of the 2nd to 16th eigenvectors distribute over a
wide region in the complex plane. This behavior suggests
group structure.

3.3 Helmholtz-Hodge Decomposition
We decompose the complex correlation matrix into the
meaningful part and the noise part as

~C � ∑N
R�1

λRvRv
†
R

� ∑16
R�1

λRvRv
†
R + ∑N

R�17
λRvRv

†
R

� ~CPrincipal + ~CNoise

(18)

where † represents taking the complex conjugate of a vector. The
left panel of Figure 11 shows the meaningful part of the complex
correlation matrix. The introduction of a lower bound for the
magnitudes of elements of the principal part of the complex
correlation matrix produces, the right panel of Figure 11. The
components of the real matrix F are the absolute values of the
components of this constrained meaningful correlation matrix.
Here, F is considered the weighted adjacency matrix. The
components of this matrix can then be written as

FIGURE 6 | Scatter plot of the normalized S&P 500 indexwSP(t) and the
normalized market indexwM(t). The dashed line is linear function with slope ρ,
which is Pearson’s correlation index, equal to 0.852, and intercept equal to 0.

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 9 | Article 6029447

Souma Characteristics of Principal Components

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Fmn � F(c)
mn + F(p)mn (19)

where F(c)
mn corresponds to the circular flow in the network

defined by

∑N
n�1

F(c)
mn � 0 (20)

On the other hand, F(p)
mn corresponds to the gradient flow in the

network defined by

F(p)mn � cmn(ϕm − ϕn) (21)

Here, ϕm is the Helmholtz-Hodge potential. By using Eqs 16,
17 can be rewritten as

∑N
n�1

[Fmn − cmn(ϕm − ϕn)] � 0 (22)

By solving Eq. 18, we obtain the Helmholtz-Hodge potential
shown in Figure 12. In this figure, the leading components show a

FIGURE 7 | (Upper left) Distribution of the elements ~Cmn of the complex correlation matrix ~C in the complex plane [R(~Cmn),I(~Cmn)]. (Upper right) Distribution
p[I(~Cmn)] of the elements of the imaginal partI(~Cmn) of the complex correlation matrix. (Lower left)Distribution p[R(~Cmn)] of the elements of the real partR(~Cmn) of
the complex correlation matrix.
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small value of the Helmholtz-Hodge potential, while the lagging
components show a large value.

The average values 〈ϕ〉 of the Helmholtz-Hodge potential
for some major sectors are shown in Table 1. This table shows
that the semiconductors industry is the most strongly leading,
while the drug manufacturing industry is the most strongly
lagging. On the other hand, [28] explored 483 assets from the
S&P 500 for 4-years from 2008 to 2011 (1,009 business days).
He obtained the result that the financial sector is the most
strongly leading, while the telecommunications and service
sector is the most strongly lagging. Therefore, we suspect that
the lead-lag structure depends on the gross market conditions
of the period investigated. However, clarifying this suspicion
is a problem for future study.

4 APPLICATION OF CHPCA TO THE
PORTFOLIO THEORY: A SKETCH

As a problem for future study, we consider the application of
CHPCA to construct a portfolio by following Markowitz’s
portfolio theory [12]. We represent the fraction of wealth
invested in asset n as ξn. If we denote the number of assets as
K, ξn is normalized by

∑K
n�1

ξn � 1 (23)

By using the complex log return of each asset ~rn defined by Eq.
9, we define the complex log return of the portfolio ~rP as

~rP � ∑K
n�1

ξn~rn � ∑K
n�1

ξnrn + i∑K
n�1

ξnr̂n (24)

However, the portfolio return must be a real number, so we
need to impose the following constraint:

∑K
n�1

ξnr̂n � 0 (25)

The risk of the portfolio is defined by the variance:

~σ2
P � ∑K

m�1
∑K
n�1

ξmξn~Cmn~σm~σn

� ∑K
m�1

∑K
n�1

ξmξnR(~Cmn)~σm~σn + ∑K
m�1

∑K
n�1

ξmξnI(~Cmn)~σm~σn

(26)

Here again, the risk must be a real number, so we need to
impose the following constraint:

∑K
m�1

∑K
n�1

ξmξnI(~Cmn)~σm~σn � 0 (27)

FIGURE 8 | (Left)Distribution p(λ) of eigenvalues λ of the empirical equal-time cross-correlationmatrix. (Right)Empirically obtained distributionp(λ) of eigenvalues λ
in the range of small eigenvalues. The solid line is the Marčenko-Pastur distribution derived under RMT as the theoretical curve given by Eq. 5 with Q � 2N/T .

FIGURE 9 | Scree graph of eigenvalues. The abscissa represents
eigenvalue rankings R, while the ordinate represents empirically obtained
eigenvalues λR. The curve with error bars in this figure shows the eigenvalue
distribution of the RRS complex correlation matrix. To obtain this curve,
this manipulation was repeated 20 times, after which the mean value and
standard deviation were calculated. Each error bar represents three times the
standard deviation. The thin line with filled circles in this figure depicts the
distribution of eigenvalues of the empirical equal-time cross-correlation matrix.
The meaningful part can be obtained by comparing these two distributions. If
the upper bound for eigenvalues derived from the RRS cross-correlation
matrix is denoted as λmax, then λ1 > λ2 > . . . > λ16 > λmax � 2.18894. Hence,
16 meaningful components should be retained for this data.
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Therefore, under the conditions given in Eqs 19, 21, 23, a
portfolio can be created that minimizes risk under the assumed
returns.

5 CONCLUSION

An analysis of price data for 445 assets from the S&P 500
from 2010 to 2019 (2,510 business days) provided the basis

for an exploration of recent developments in distinguishing
the meaningful part from the noise part in correlation
structures in big data. Application of RMT to the equal-
time cross-correlation matrix was found to be a useful
method for obtaining the meaningful components of the
correlation structure. However, the null hypothesis of
randomness underlying RMT destroyed both real
autocorrelation and real cross-correlation in the data. In
order to preserve autocorrelation, we introduce RRS. In

FIGURE 10 | Distribution of components of the top 16 eigenvectors, v1 , . . . , v16. In each figure, the abscissa represents R(vR,n), and the ordinate represents
I(vR,n). Here, R is the eigenvalue rankings.
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the case of this paper, the number of meaningful components
for RMT and for RRS happened to be. We also introduced
CHPCA for investigating the various different-time
cross-correlations. By using both CHPCA and HHD, we
clarified the lead-lag relationships for some major business
sectors.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://en.wikipedia.org/wiki/List_of_S%26P_500_
companies, https://github.com/datasets/s-and-p-500-companies.

AUTHOR CONTRIBUTIONS

WS wrote this paper by himself.

FUNDING

This work was supported by JSPS KAKENHI Grant No.
JP20228860 and National Bank Academic Research Promotion
Foundation in 2019.

ACKNOWLEDGMENTS

The author would like to thank Hiroshi Iyetomi, Hideaki
Aoyama, Yoshi Fujiwara, Yuichi Ikeda, Hiroshi Yoshikawa,
and Irena Vodenska for useful discussions.

FIGURE 11 | (Left) Distribution of the components of the meaningful part of the complex correlation matrix. (Right) Distribution of the components of the
constrained meaningful part of the complex correlation matrix.

FIGURE 12 | Distribution of Helmholtz-Hodge potential for each asset.
The abscissa represents n, while the ordinate represents Helmholtz-Hodge
potential ϕn. The thin vertical lines in this figure separate business sectors.

TABLE 1 | Helmholtz-Hodge potentials 〈ϕ〉 for some major business sectors.

Sector # Assets 〈ϕ〉

Semiconductors 12 −0.03334
REIT 29 −0.02810
Software 15 −0.00789
Insurance 18 0.00042
Pharmaceutical retai 17 0.00106
Banks 16 0.00562
Diagnostics and research 10 0.01490
Utilities 28 0.01529
Information technology services 10 0.01661
Drug manufacture 11 0.02270
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