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The Autoprogressive Method (AutoP) is a fundamentally different approach to solving the
inverse problem in quasi-static ultrasonic elastography (QUSE). By exploiting the nonlinear
adaptability of artificial neural networks and physical constraints imposed through finite
element analysis, AutoP is able to build patient specific soft-computational material models
from a relatively sparse set of force-displacement measurement data. Physics-guided,
data-driven models offer a new path to the discovery of mechanical properties most
effective for diagnostic imaging. AutoP was originally applied to modeling mechanical
properties of materials in geotechnical and civil engineering applications. The method was
later adapted to reconstructing maps of linear-elastic material properties for cancer
imaging applications. Previous articles describing AutoP focused on high-level
concepts to explain the mechanisms driving the training process. In this review, we
focus on AutoP as applied to QUSE to present a more thorough explanation of the ways in
which the method fundamentally differs from classic model-based and other machine
learning approaches. We build intuition for the method through analogy to conventional
optimization methods and explore how maps of stresses and strains are extracted from
force-displacement measurements in a model-free way. In addition, we discuss a physics-
based regularization term unique to AutoP that illuminates the comparison to typical
optimization procedures. The insights gained from our hybrid inverse method will hopefully
inspire others to explore combinations of rigorous mathematical techniques and
conservation principles with the power of machine learning to solve difficult inverse
problems.
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1 INTRODUCTION

Soft tissues are complex structures that exhibit non-linear, time-dependent elastic properties.
Variations in mechanical properties can provide information pertaining to tissue health,
including detecting and diagnosing lesions of the breast [6, 34], liver [26, 47, 56], and thyroid
[9, 10, 54], monitoring thermal lesions during ablation therapy [41, 53], and characterizing
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atherosclerotic plaques [2, 3, 11]. Conventional medical imaging
modalities are insensitive to this mechanical contrast. Elasticity
imaging methods have been developed to fill this niche and
directly evaluate the mechanical properties of soft tissue.

Elasticity imaging can be largely grouped into quasi-static or
dynamic methods based on the type of mechanical stimulus
applied to induce tissue motion. Comprehensive reviews of the
various techniques can be found in several articles [33, 35, 38, 39,
46, 52]. We focus our discussion on quasi-static ultrasound
elastography (QUSE), wherein local tissue displacements are
estimated from RF echo frames acquired as an ultrasound
probe is slowly pressed into the tissue surface. Quasi-static
loading allows time for the force stimulus to propagate
through the entire tissue section. The resulting force-
displacement measurements at points provide an enormous
amount of information pertaining to tissue material properties
throughout the contiguous volume and at boundaries.

Estimating material properties from force-displacement
measurements constitutes the inverse problem in QUSE. The
majority of quantitative QUSE approaches are built upon
model-based optimization methods. While effective, model-
based methods are prone to modeling errors that can lead to
artifacts in reconstructed images of pre-selected material property
distributions. More importantly, mathematically defined
constitutive models are inherently limited in their ability to
capture material behavior. This limitation could preclude
discovery of clinically relevant soft tissue material properties.

Data-driven inverse methods circumvent modeling errors by
removing the constitutive model assumption and building a soft-
computational model of material behavior frommeasurement data.
The Autoprogressive Method (AutoP) is one such method. Unlike
other data-driven approaches, AutoP combines physical modeling
through finite element analysis (FEA)with artificial neural networks
(ANNs) to extract the stress-strain relationship embedded within
force-displacement measurements. In the context of elasticity
imaging, ANNs characterizing the stress-strain behavior of soft
tissues can be interrogated to infer material parameters that best
summarize the learned mechanical properties.

Many of the research articles that employed AutoP have
described the training process, but none have directly compared
and contrasted its operation with the more typical model-based
approaches. In this review, we aim tomore thoroughly examine the
operating principles behind AutoP to better highlight the
fundamental differences when compared to model-based inverse
methods. Of particular importance is themanner in which physical
principles are directly exploited in AutoP to generate increasingly
accurate estimates of stress and strain distributions from force-
displacement measurements under arbitrary geometry and
loading. We believe the working principles of AutoP can be
applied as a data-driven, physics-guided alternative to other
difficult boundary value inverse problems.

Section 2 reviews model-based inverse methods in QUSE to
establish a basis for comparison. We focus on iterative methods
utilizing FEA as the forward solver to keep the discussion concise
and comparable to AutoP. Section 3 reviews AutoP and builds
intuition of its operation by drawing parallels to typical
optimization methods. We also cover a novel neural network

architecture developed for QUSE and a regularization term
uniquely suited for AutoP. Challenges with non-linear viscoelasticity
imaging and potential approaches with alternative ANN structures are
briefly discussed in Section 4. Data acquisition and displacement
estimation details are omitted from our discussions, but are available in
[24, 25]. Even though such details are important in practice and will
affect the efficacy ofQUSEmethods, wewish to compare the operation
of AutoP and model-based methods at a more conceptual level.

2 MODEL-BASED INVERSE METHODS

Reconstructing a map of material properties from force-displacement
measurements is an ill-posed inverse problem.1 By combining a prior
assumption of the underlying mechanical behavior with a system
model incorporating physical principles, model-based inverse
methods reduce the solution space and estimate parameter values
of a pre-selected constitutive model. The goal of QUSE methods is to
find the set of spatially distributed material parameters θ(x) that
minimize the difference between displacements U(x) computed in a
forward problem and measured displacements ~U(x),

θ̂ � argmin
θ ∈R

∫
Ω
C(U , ~U)dΩ, (1)

whereΩ denotes domain of the scan plane(s). The dependence of
variables on position x is assumed and not explicitly stated to
simplify notation. The cost function C in Eq. 1 is often defined as
the L2-norm of the difference between computed and measured
displacements, augmented by a regularization term R(θ) acting
on the set of parameters,

C(U , ~U) � 1
2
(U − ~U)2 + αR(θ), (2)

where α is a hyperparameter that controls how strongly the
regularization term affects the solution.

2.1 Finite Element Analysis
In modern methods, the forward problem is usually solved through
finite element analysis (FEA). A brief description of the FEA
formulation for solid mechanics follows; more thorough treatments
can be found in [12, 18]. The strong form of the governing equations
for a solid continuum under quasi-static loading is

∇ · σ � 0 inΩ, (3)

u � ~u on ΓD, (4)

σ · n � ~p on ΓN , (5)

where σ denotes the stress tensor and u are displacements
throughout the continuum Ω. Displacement boundary
conditions (BCs) are represented by ~u whereas surface traction
BCs are denoted by ~p. In the latter two equations, ΓD represents
the set of boundary points over which displacements are
measured, ΓN is the set of boundary points corresponding to

1Inverse problems and image science are expansive fields of study. Some
foundational textbooks with comprehensive coverage of these topics are [7, 8].

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 6007182

Hoerig et al. Elasticity Imaging with AutoP

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


measurements of surface tractions with surface normal n, and
ΓD∩ΓN � ∅.

The finite element formulation expresses the boundary-value
problem as a system of equations,

[K(θ)]U � P, (6)

K(θ) � ∑
Ne ∫

Ωe

BT
e De(θ)BedΩe, (7)

P � ∑
Ne ∫

Ωe

BT
e σedΩe. (8)

where Ne is the number of elements in the mesh, Be is the strain-
displacement matrix for a given element, and the summation symbols
represent the assembly operation. The matrix K(θ) is determined
directly from the material property matrix D(θ). Any displacement
BCs are imposed in global displacement vector U . Likewise, force
BCs are included in the global force vector P.2 We chose to
express P in Eq. 8 as a function of stress, instead of as a function
of the surface traction BCs, to emphasize the relationship
between stress and force. Generally, the solution for a
mechanical system is found through FEA by discretizing the
domain (i.e., “meshing”), applying load BCs in the global node
force and displacement vectors, and solving for the remaining
“free” nodal displacements and reaction forces.

FEA solutions of a mechanical system must satisfy both
equilibrium and compatibility requirements. The former is
specified by Eq. 8 and relates stresses to forces. Compatibility,
on the other hand, relates displacements to strains and, in simple
terms, precludes elements in the mesh from overlapping or
separating during deformation. These physical principles
combined with object geometry and a valid constitutive model
determine the set of admissible deformations under loading
(Figure 1A). The importance of these principles in solving the
inverse problem will be made clear in the following sections.

2.2 QUSE as an Optimization Problem
Gradient or Hessian-based optimization techniques are typically
applied to solveEq. 1, wherein the parameter estimates are iteratively
updated through the gradient of the error computed in Eq. 2. The
solution process for QUSE can be generalized to five steps:

The diagram in Figure 1A provides a simplified illustration of
the role of FEA within an optimization-based solution method
while simultaneously highlighting the fact that the cost function

FIGURE 1 | (A) Summary of model-based inverse methods. Deformations computed in the forward problem are dependent on the estimated material properties
and physical principles. Existing model-based QUSE methods that utilize force measurements use the data as input directly to the cost function or to calibrate the
magnitude of the modulus estimates after the optimization procedure. (B) Illustration of AutoP training process. Applying force and displacement measurements in
separate FEAs exploits equilibrium and compatibility requirements to generate physically consistent stresses and strains.

Algorithm 1 | Optimization-based QUSE Inverse Method.

[1] Apply displacement BCs at the mesh boundary
[2] Compute the displacements over the whole scan plane through FEA
[3] Compare the computed displacements to the measured values

(i.e., evaluate Eq. 2)
[4] Update the parameter estimates based on the error
[5] If solution converges, exit, otherwise return to [1].

2Only the linear form of the FEA is expressed in Eq. 6 for clarity. When the system
includes non-linear materials or deformation, a Taylor expansion of Eq. 6
reformulates the problem in an iterative, incremental form.
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directly affects estimated parameter values. Optimization
methods often have intuitive geometric interpretations that aid
in understanding the solution procedure. For example, consider
the method proposed by Kallel and Bertrand [29]. Define the
operator T (E) � U as the solution of a FEA where the material is
assumed to be linear-elastic with spatial distribution of Young’s
modulus E(x). The goal is to find E(x) that minimizes the cost
function

C(E) � 1
2

����~U − T (E)����22 (9)

Ê � argmin
E ∈R+

[C(E)], (10)

where || · ||2 is the L2-norm and R+ represents the set of positive-
valued real numbers.

Adopting an iterative, Hessian-based solution procedure with
k indicating the current iteration, the Young’s modulus values can
be found,

Ek+1 � Ek + ΔEk (11)

ΔEk �
︷(JTk Jk)−1

H

JTk ΔUk (12)

ΔUk � ~U − T (Ek) (13)

Jk � zT (E)
zE

(14)

Geometrically, the curvature of the forward operator (the
Hessian H), guides the Young’s modulus update in Eq. 12. A
perhaps more intuitive geometric interpretation is achieved by
setting the Hessian equal to the negative identity matrix H � −I,
changing the update Eq. 11 to

Ek+1 � Ek − JTkΔU k. (15)

In this form, the operator gradient forming the sensitivity
matrix Jk coupled with the displacement error directs the
iterative parameter updates. Iterative QUSE methods typically
follow a Hessian or gradient-based optimization procedure.
A review of relevant methods can be found in [13, 36]
Algorithm 1. We will show in Section 3 how displacement
errors also influence the material properties learned by ANNs
trained in AutoP, albeit indirectly.

QUSEmethods utilizing only displacement measurements can
provide quantitative parameter estimates up to a multiplicative
constant, unless the parameter value(s) is known for some
portion of the boundary or interior [4, 5]. That is, through
compatibility requirements embedded within FEA, at best the
distribution of relative parameter values can be inferred from
displacement BCs. Incorporating measurements of surface force
or boundary stresses can provide the additional information
necessary to estimate parameter values exactly [51]. This can
be seen directly from Eqs. 5, 8: if no values of reaction forces
corresponding to displacement BCs are known, there exists no
means to calibrate the magnitude of forces in P. In short, both
equilibrium and compatibility requirements affect the solution in
model-based QUSE but are not directly exploited.

Force and displacement measurements coupled with FEA are
insufficient for overcoming the ill-posed nature of the inverse

problem, hence the inclusion of a regularization term in Eq. 2.
The choice of regularization depends on some presumed property
of the solution; e.g., Tikhonov regularization is founded in energy
arguments, L1-norm to promote sparse solutions, or total
variation to encourage smooth solutions [43]. Although
effective and often necessary, the form of regularization will
significantly alter the solution in model-based methods and
requires skill in choosing appropriately. We will introduce a
regularization term in Section 3.1 that is unique to AutoP and
arises from physical principles, removing operator judgment
from its use.

Model-based QUSE methods are effective when the applied
load and true tissue material properties match the selected
constitutive model and loading geometry. Choosing the wrong
constitutive model can cause artifacts in the resulting elasticity
images that corrupts or discards clinically relevant diagnostic
information not described by the selected model parameters. The
limited flexibility of model-based methods makes them
ineffective at discovering material properties. Overcoming
limitations of model-based methods and inferring mechanical
behavior frommeasurement data without constraints imposed by
constitutive model assumptions may allow investigators to find
new clinically relevant material properties.

3 THE AUTOPROGRESSIVE METHOD

Contrary to model-based inverse methods, the goal of AutoP is to
describe the mechanical behavior of a material non-
parametrically. By replacing the classic mathematically defined
constitutive model with an artificial neural network, any arbitrary
stress-strain relationship can be captured. This formulation
replaces parameters in Eq. 1 with the connection weights of
one or more ANNs3. The resulting, trained ANN describing the
stress-strain behavior is referred to as a neural network
constitutive model (NNCM). One example of a NNCM
architecture is shown in Figure 2A (left). The NNCM
displayed is a feed-forward, fully connected ANN that accepts
a strain vector as input and returns a stress vector at the output.
Alternative network architectures have been proposed by other
investigators, but this form is the basis for most AutoP
applications thus far. Even considering the various NNCM
architectures utilized within AutoP, to the best of our
knowledge all have comprised at most two hidden layers with
up to a few dozen nodes each. Compared to deep-learning
methods, NNCMs are very small ANNs.

Existing efforts to build model-free descriptions of material
behavior typically rely on experimental test data acquired from a
sample in a well-defined loading scenario, such as strip
extensiometry, to obtain stress-strain data from force-
displacement measurements. Recent investigations in data-
driven mechanics use this type of measurement data directly
(i.e., no NNCM) to solve computational mechanics problems [31,

3Node biases would also comprise the set of parameters if included in the network
architecture.
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32, 37, 50]. Alternatively, stress-strain measurement data can be
used to train NNCMs for later use in computational problems
(see reviews [14, 15, 44, 55]). More recently, researchers have
developed physics-informed deep neural networks (PINNs) that
embed physical laws into the cost function used in
backpropagation-based training [40].

Some measure of success has been achieved with each of these
methods; however, the resulting soft-computational constitutive
model, in whichever applicable form, is fully defined by the
measurement data acquired from a homogeneous sample. That
is, the models are trained once and deployed. When used for
inference against input data not within the domain of the training
set, the solution becomes unreliable, analogous to modeling
errors in model-based inverse methods. Furthermore, these
methods rely on the existence of stress-strain training data.
Unfortunately, the complexity of soft tissues precludes excision
of geometrically precise, homogeneous samples for measurement
in well-defined loading scenarios. Nor do ex vivo load tests
provide a good measure of soft tissue properties in vivo. In
short, current data-driven methods fail to extract relevant
information from the available force-displacement
measurements acquired in a normal clinical setting.

The Autoprogressive Method [17] circumvents limitations
with model-based and other data-driven methods through a
tight coupling of NNCMs with FEA and knowledge of both
internal and external object geometry. It has been successfully
used to build soft-computational mechanical models of many
different materials in a multitude of loading scenarios, including
soils [19, 20], concrete [27, 28], steel [30, 57], red blood cells [48,
49], and the cornea [16]. AutoP has even been applied to thermal
constitutive models [1]. More recently, we have been developing
an adaptation of AutoP for QUSE using both boundary and
interior displacement measurements [22]. The caveat that
internal geometry must be known precludes most clinical
imaging applications and is addressed by introducing a new
type of NNCM, discussed in Section 3.1.

AutoP is a method for generating information from
measurements. When applied to inverse problems in
continuum mechanics, the goal is to recover the stress and

strain fields induced by measured forces and displacements in
a model-free way. Replacing the mathematical constitutive model
with an ANN is paramount to provide the flexibility inherent to
said networks, but alone is not a sufficient strategy. The two key
components that make AutoP work are 1) the application of force
and displacement BCs in separate FEAs—FEAσ and FEAε—to
obtain physically consistent estimates of stresses and strains
through known physical principles and 2) NNCMs participate
in the generation of their own training data by acting as the
material model in the assembly of the system of equations in Eq.
6. The former point is analogous to model-based inverse methods
wherein the parameter estimates in the current iteration affect the
displacements computed in the forward problem. For clarity, the
FEA equations can be rewritten as

σNN � NN(ε), (16)

DNN � zσNN

zε
, (17)

K(θ) � ∑
Ne ∫

Ωe

BT
e D

NN
e (θ)BedΩe, (18)

P � ∑
Ne ∫

Ωe

BT
e σ

NN
e dΩe. (19)

We introduce the operator NN(·) to represent inference by the
NNCM. The analytical expression for DNN is derived in [21].

Imposing measured forces and displacements in separate
FEAs exploits stress equilibrium and compatibility
requirements. In FEAσ, measured forces are applied as force
BCs (σ · n � ~p) 4. Stress equilibrium, defined in Eq. 3, relates
forces to stresses and we therefore claim the stresses σσ computed
in FEAσ are physically consistent approximations of the true
stress field. In a separate FEAε, corresponding displacement
measurements are applied as displacement BCs (u � ~u).
Because compatibility requirements relate displacements to

FIGURE 2 | (A) A material property network (left) is the basis for many NNCM architectures previously used in AutoP. The combination of a spatial network (right)
operating in tandem with a MPN is referred to as a CaNNCM. (B) Illustration of the self-learning property of AutoP.

4There exist certain geometric displacement BCs that are applied in all FEAs. For
our examples, such BCs are the bottom surface of the scanned object being
“pinned” and having zero displacement
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strain, we claim the strains εε computed in FEAε are physically
consistent approximations of the true strain field. The AutoP
training process is summarized in Figure 1B and can be broken
into the five steps listed in Algorithm 2.

Linear-elastic pretraining is used only to provide NNCMs with
a physically consistent starting state. Unlike model-based
reconstruction methods that can be sensitive to parameter
initialization [4], investigations with AutoP have demonstrated
that linear-elastic pretraining does not constrain the mechanical
properties learned by the NNCMs.

Convergence in AutoP is determined by comparing the
values of a cost function to predefined limits. In most AutoP
applications thus far, the cost function has assumed the
form [17].

Φ(θ) � ����U − ~U
����1. (20)

Aside from the use of the L1-norm to diminish the effects of
outliers, it is important to note that the magnitude of the cost
function has no direct effect on the backpropagation-based training
of the NNCMs. Even so, training the NNCMs with the stresses and
strains computed in FEAσ and FEAε, respectively, adjust the
connection weights so that the material properties described by
the NNCMsmore accurately resemble the true material properties.
We also note that the because the cost function does not directly
influence NNCM training, adjustments to Φ(θ) do not
significantly affect AutoP whereas altering the cost function in
model-based inverse methods can significantly change the
resulting parameter estimates.

It is not immediately clear why the combination of the stresses
and strains from FEAs solved under separate, but conjugate,
boundary conditions should lead the ANNs to the correct
material properties. We will demonstrate that it is in fact an
implicit displacement error that guides the learning process.
Define uσ to be the full set of displacements computed in the
solution of FEAσ, including any imposed BCs. Likewise, uε
represents the displacements computed in the solution of
FEAε. By definition of a NNCM, σNN � NN(ε) � NN[fu(u)],
where fu(·) is a function that receives a displacement vector as
input and returns the corresponding strain vector. Let
Δu � uσ − uε. Thus, uσ � uε + Δu and therefore
σσ � NN[fu(uε + Δu)]. What does this mean? Inference by the
NNCM using physically consistent strains εε as input results in
physically consistent stresses σσ only when the input is
augmented by the displacement error.

To better understand this interaction, assume the NNCM
describes a linear-elastic material so that σNN ≈ DNN · ε and
deformation is infinitesimal, leading to

fu(u + Δu) � fu(u) + fu(Δu). We also denote the strains
computed in FEAσ as εσ while σε � NN(εε) are the stresses
output by the NNCM when strains computed in FEAε are
supplied as input to the network. Training a NNCM with a
backpropagation-based method consists of minimizing a cost
function, in this case

R̂θm � argmin
Rθm∈R

1
2

������σσ − σε(εε;Rθm)
������
2

(21)

� argmin
Rθm∈R

1
2

������NN(εσ) − NN(εε;Rθm)
������
2

, (22)

where Rθm denotes the NNCM connection weights and the
overline is used to indicate a constant term. NN is the same
NNCM used to solve FEAσ and FEAε whereas NN(εε; θ) changes
each training iteration as the NNCM weights are updated.
Applying the aforementioned linear approximations, Eq. 22
can be expressed as

R̂θm � argmin
Rθm∈R

1
2

�������NN[f u(uε + Δu)] − NN[fu(uε;Rθm)]
�������
2

(23)

≈ argmin
Rθm∈R

1
2

��������DNN · [f u(uε + Δu)] − DNN(Rθm) · [f u(uε)]
��������
2

(24)

If we consider the first iteration of training when
DNN � DNN(Rθm), the cost function further reduces to

≈ argmin
Rθm∈R

1
2

�������DNN · f u(Δu)
�������
2

, (25)

and reverts back to Eq. 24 after the first training iteration and the
NNCM weights Rθm change.

The preceding argument does not imply NNCMs trained in
AutoP are limited to learning linear-elastic material properties.
Rather, the case of linear materials was chosen as an example to
best highlight the effect of displacement error in NNCM
training. We emphasize that, similar to model-based
methods, the displacement error is a driving force in the
solution of the inverse problem as approached through
AutoP. However, in the case of AutoP, the effect of
displacement error emerges from the inconsistency between
stresses and strains computed in FEAσ and FEAε. It is a
characteristic that arises out of the equilibrium and
compatibility requirements rather than an explicitly defined
error measure to direct the parameter search.

Much like optimization-based methods, the parameter
estimates in the current iteration—the weights of the
ANNs—affect the solution of the forward problem. Moreover,
the error when comparing the forward problem solution to
experimental measurements affects the parameter updates.
What sets AutoP apart from typical model-based and machine
learning techniques is its self-learning paradigm guided by
physical principles. When applied to QUSE, the result is a
patient-specific soft-computational material model. Figure 2B
aims to illustrate the self-learning property of AutoP. Imposing
measurement data as BCs in separate FEAs forces the material

Algorithm 2 | AutoP Training of NNCMs.

[0] Linear-elastic NNCM pretraining
[1] Apply force BCs in FEAσ, compute σσ
[2] Apply displacement BCs in FEAε, compute εε
[3] Train NNCM(s)
[4] If displacement error converged, exit, otherwise return to [1].
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properties learned by the ANNs to satisfy physical principles and
be self-consistent.

3.1 Cartesian NNCMs
The discussion of AutoP thus far has assumed that the finite
element mesh conformed to both internal and external object
geometry with a different NNCM assigned for each unique
material. Eq. 18 implies this fact in that DNN

e (θ) is constant
over the entire domain of an element. The FEA solution
procedure requires the appropriate NNCM to be selected for
the element when evaluating the integral. This formulation of
AutoP is not suitable for biomedical imaging applications because
the internal tissue structure is normally not known a priori nor
segmented into discrete regions with homogeneous material
properties. As a consequence, the goal of AutoP must be
adjusted to infer both material properties and geometry from
the set of force-displacement measurements.

Two significant changes were made toward this goal. First, the
structure of the NNCM was changed by adding a second network
that interacted with the existing NNCM and was responsible for
learning spatial information. We deemed these networks Cartesian
neural network constitutive models (CaNNCMs) [23–25]. The
CaNNCM architecture is illustrated in Figure 2A. To identify the
individual subnetworks, we refer to the one which learns the
“average” stress-strain relationship of the entire object as the
material property network (MPN, Figure 2A left) and the
network that maps a Cartesian coordinate input to a spatially
varying value as the spatial network (SN, Figure 2A right). A
thorough description of CaNNCM theory of operation can be
found in [23, 24]. Unlike NNCMs previously utilized with
AutoP, a single CaNNCM is capable of characterizing the
heterogeneous material properties of an entire object. The FEA
equations are adjusted slightly to accommodate this change:

K(θ) � ∑
Ne ∫

Ωe

BT
e D

NN(x, θ)BedΩe, (26)

P � ∑
Ne ∫

Ωe

BT
e σ

NN(x)dΩe. (27)

Spatial information is encoded within a set of spatial scaling
values Sεx . The SN is responsible for learning the mapping
SN : x→ Sεx . Given a spatial location and strain vector, the SN
provides the corresponding Sεx and the stress vector is then calculated
as σNN(ε, x) � NN(ε/Sεx), where the division is element-wize and
the operator NN(·) refers to the MPN. Determining the spatial
values is not trivial, although they can be readily computed from the

stresses and strains already available in AutoP in conjunction with
theMPN, as detailed in [23]. AutoP trainingmust also be adjusted to
accommodate CaNNCMs as described in Algorithm 3.

CaNNCMs work well in QUSE because information
pertaining to the interior geometry can be gleaned from
internal displacement measurements available through US
imaging. In unpublished work, we found that CaNNCMs
trained in AutoP using only boundary information were
unable to recover internal structure away from the surface.
Part of the shortcoming is due to the lack of surface force
distribution measurements. Rather, the force measured
experimentally is the sum of forces over the face of the US
transducer that provides information about the mean stress
distribution over the surface. Coupling these boundary data
with prior knowledge of internal geometry is sufficient for a
set of NNCMs to learn the heterogeneous material properties of
an object. Therefore, in order for CaNNCMs to learn both
material properties and geometry, some measurement data
containing spatial information must be provided.

Interestingly, we found that incorporating internal
displacements in FEAε was insufficient for accurately
estimating material property distributions, particularly when
measurements were acquired by loading from a single
direction [25]. The reason can be seen from Eq. 27. By
making the stress term explicitly dependent on spatial
position, additional force measurements populating P are
required to ensure the internal resisting forces computed
within the integral are correctly calibrated. Acquiring
measurements from multiple sides and loading angles provides
an immense amount of information for CaNNCMs at the cost of
significantly increased FE modeling complexity and
computational load.

An alternative strategy is to add a regularization term to
augment the available information. Our solution was to add
additional physical constraints during the calculation of Sεx in
Step 4a of AutoP. To understand the functionality of the
regularization term, we first summarize the detailed methods
in [23]. The spatial values are computed by minimizing a cost
function very similar to Eq. 21, with the primary difference being
the parameters over which the function is minimized changes
from the MPN connection weights to the spatial values,

Ŝεx � argmin
Sεx∈R

1
2

������σσ − σε(εε/Sεx;Rθm)
������
2

(28)

The purpose of the spatial values is to further reduce the error
in Eq. 21 by storing the information not captured by the spatially
independent MPN weights.

Implementing Eq. 28 in AutoP as defined will lead to
erroneous material property distribution estimates. Perhaps the
most intuitive explanation starts by noting the CaNNCM is
pretrained as a homogeneous, linear-elastic material. Then,
when computing spatial values in Step 4a, the Sεx found as the
solution of Eq. 28 map a heterogeneous strain field to a
homogeneous stress field because the surface force BCs
applied in FEAσ contain no spatial information.

Algorithm 3 | AutoP Training of CaNNCMs.

[0] Pretrain CaNNCM as homogeneous, linear-elastic material
[1] Apply force BCs in FEAσ, compute σσ
[2] Apply displacement BCs in FEAε, compute εε
[3] Train MPN
[4a] Update Sε

x

[4b] Train SN
[5] If displacement error converged, exit, otherwise back to [1].
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We introduced σ-matching regularization to inject spatial
information into Eq. 28 by imposing the physical constraint
that conjugate force-displacement BCs imposed in separate FEAs
should produce the same stress fields,

Rσ �
∣∣∣∣∣∣σσ − σε

∣∣∣∣∣∣ · sign(σσ). (29)

Note that the stress terms are constant, hence the
multiplication by sign(σσ) to account for the lack of gradient
information. We again chose the L1-norm to reduce the effects of
outliers. If the same linear approximations from Eq. 21 are
applied to the σ-matching term, we can show that the
displacement error is influencing the result:

Rσ �
∣∣∣∣NN(εσ) − NN(εε)

∣∣∣∣ · sign(σσ), (30)

≈
∣∣∣∣DNN · f u(uε + Δu) − DNN · fu(uε)

∣∣∣∣ · sign(σσ), (31)

≈
∣∣∣∣DNN · f u(Δu)

∣∣∣∣ · sign(σσ). (32)

Adding the regularization term to the cost function for
computing Sεx with free parameter βσ to control its influence
on the solution, Eq. 28 becomes

Ŝεx � argmin
Sεx∈R

1
2

������σσ − σε(εε/Sεx;Rθm) + βσRσ

������
2

. (33)

A significant difference between regularization terms typically
used in model-based inverse methods and 33) is the appearance
of σ-matching within the L2-norm. Because it is constant, simply
adding the σ-matching term to the existing cost function would
have no effect on the computed spatial values. Adding
σ-matching as we have in Eq. 33 can be interpreted as
adjusting the (constant) stresses σσ computed in FEAσ with
spatial information encoded within displacement
measurements through the displacement error.

We demonstrated in [25] the significant improvement in
material property estimates when σ-matching was incorporated
into AutoP training, even with a relatively sparse set of force-
displacement measurements. Contrary to typical forms of
regularization, σ-matching is based on a physical principle that
will always be true, not a prior assumption about the property the
solution should exhibit. Furthermore, it is uniquely suited to AutoP
because of the way equilibrium and compatibility requirements are
exploited by FEAσ and FEAε. Other constraints on physical
properties will likely be incorporated into AutoP as CaNNCMs
are further developed for imaging the non-linear and time-
dependent properties of soft tissues.

4 NON-LINEAR ELASTICITY IMAGINGWITH
AUTOP

The preceding discussion of NNCMS and AutoP was limited to
objects under loads inducing small deformation. Mathematically,
the strain tensor in the limit of infinitesimal deformation is
expressed as ε � 1

2 (∇u + ∇uT ). Under this linear kinematic
assumption, appropriate when induced strains are less than

5%, elastic solids can be adequately described by a linear-
elastic constitutive model.

Probing the non-linear mechanical properties of deep
structures in QUSE requires application of large loads to
sufficiently deform distal tissues. In these scenarios, a large
deformation framework must be invoked wherein the strain
tensor includes geometrically non-linear terms. As an example,
one potential definition of geometrically non-linear strain is
ε � 1

2 (∇u + ∇uT + ∇uT∇u). Application of large compressive
loads coupled with the non-linear and time-dependent
mechanical behavior of soft tissues implies that one or two
linear-elastic parameters are ineffective for clinical QUSE.
More importantly, the complex non-linear and viscoelastic
properties of soft tissues may provide a significant amount of
diagnostic information [42], reinforcing the value of
reconstructing elasticity images beyond shear modulus.

The problem then arises of selecting an appropriate non-
linear and/or viscoelastic constitutive model that describes
tissue behavior and maximizes the diagnostic information in
QUSE images. Complexity is further increased when
considering the likelihood that different tissues or tissue
states (i.e., healthy tissue, benign lesions, and malignant
tumors) are best described by different material models.
Current model-based approaches assume homogeneity of the
underlying constitutive model for the entire imaged tissue
section and estimate the spatial variation of the
corresponding model parameters. There exists no model-
based QUSE inverse method capable of discovering the set of
constitutive models—and estimating values of the
corresponding parameters—that adequately describes a
heterogeneous group of tissues. The combination of AutoP
with CaNNCMs can fill this void.

AutoP has been applied to build soft-computational models of
complex materials undergoing small and large deformation when
the total geometry was known (e.g. [19, 27, 28, 30, 45, 58]). To
achieve non-linear, time-dependent material property imaging
with AutoP, CaNNCMs must be modified to 1) accommodate
geometrically non-linear deformation to facilitate non-linear
elasticity imaging and 2) incorporate additional stress-strain
state information as network input to properly capture a
heterogeneous distribution of complex mechanical behaviors.
Prior successes with AutoP lead us to believe there exists an
adaptation to the CaNNCM architecture and/or AutoP that will
accomplish both tasks.

The difficulty of this problem can be understood by
comparing the information required for a NNCM to
compute a stress vector for materials of varying complexity.
For linear-elastic materials, the NNCM output is defined as
σNN � NN(ε). Non-linear, viscoelastic materials require time
information to fully define the stress-strain response,
σNN � NN(ε, t). It is further complicated for objects under
large deformation because of the need to account for
differences in Lagrangian and Eulerian descriptions of stress
and strain. It is clear the NNCM inputs must be changed. Our
current work is toward the goal of identifying a NNCM
architecture capable of learning the stress-strain response of
hyperelastic materials.
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Projecting further, adjustments to the CaNNCM architecture
will also be necessary to characterize a heterogeneous distribution
of non-linear, viscoelastic materials. If the operating principle of
linear-elastic CaNNCMs is retained, the stress-strain response
would take the form σNN � NN(ε/Sεx, t), where spatial
information is again encoded within the spatial scaling values
Sεx . Less obvious from this relationship is the necessity of stress-
strain state information at the spatial network input to account
for the non-linear and time-dependent stress responses. This
requirement can be understood by expanding on the explanation
provided in [24] for the operation of spatial scaling values. When
all materials are linear-elastic, the stiffness matrix DNN (recall its
use in Eq. 18) computed from the weights of theMPN is constant.
The role of Sεx is to vary the effective “stiffness” described by DNN

based on position. Because the materials considered were linear-
elastic, the modified stiffness matrix is independent of time and
state of deformation, meaning Sεx is constant at x. Conversely,
DNN computed from a non-linear MPN will not be constant, nor
will the rate at which it changes be the same at all points.
Therefore, values of Sεx will need to change based not only on
position, but also the current (or previous) stress-strain states.

5 DISCUSSION

Quantitative elasticity imaging is a challenging problem. Much of
the difficulty arises from the limited measurement data that can
be acquired during a clinical US imaging exam. Model-based
inverse methods address the ill-posed inverse problem by
constraining the solutions through geometric and constitutive
model assumptions, well-defined force loads, and application of
regularization to the solution. While effective, deviation of
measurement data from the model assumptions can introduce
large artifacts in the reconstructed material property images,
potentially corrupting diagnostic information, and the
regularization method is almost never grounded in physical
laws. Furthermore, parameters associated with the pre-selected
constitutive model may only capture a portion of the tissue
mechanical properties, missing information that could be
important to clinical decision making.

AutoP and NNCMs are a fundamentally different approach to
the inverse problem in elasticity imaging. Rather than
constraining the solution through model assumptions, AutoP
extracts material property information from force-displacement
measurements through a combination of physical modeling and
machine learning. In this review, we presented AutoP in a new
way to highlight similarities of the procedure with well-known
optimization methods. Specifically, we demonstrated how the
principles of stress equilibrium and strain compatibility are
exploited through application of measurement data as BCs in
separate FEAs, from which naturally arises an implicit
displacement error that drives NNCM training.

The primary benefit of AutoP over model-based inverse
methods is the potential to discover 3-D mechanical properties
of soft tissues in vivo. Full computational modeling of applied

force loads means measurements need not be acquired in a
constrained manner; e.g., uniaxial compression by a large
platen. Nor is 3-D displacement data necessary to reconstruct
material properties throughout a volume, as we demonstrated in
[25]. However, the use of arbitrary force-displacement
measurements as input to AutoP significantly increases the
computational load. Furthermore, we expect intelligent
sampling strategies will need to be developed in order to
maximize the information content of measurement data and
reduce the computational burden of AutoP. Good sampling
strategies will likely be essential for effectively imaging non-
linear, time-dependent material properties.

One particularly exciting prospect of CaNNCMs and AutoP
is the ability to identify mechanical properties from a
heterogeneous distribution of material types. Classic model-
based inverse methods must first assume the form of the
constitutive model for the entire tissue section. The solution
is the spatial variation of corresponding parameters that best fits
the measurement data. AutoP reverses this order to first build a
non-parametric, soft-computational model that describes the
spatially varying material properties encoded in force-
displacement data. Parameter estimation occurs after relevant
information has been extracted from measurements.
Successfully developing this capability would represent a
paradigm shift in not only QUSE, but inverse identification
of material properties in general.

AutoP is at its core a method to solve boundary value inverse
problems. It is naturally suited for elasticity imaging because the
physical principles of stress equilibrium and strain compatibility
are built into the forward model. These principles relate the
available force-displacement measurement data to the desired
stress and strain distributions. By combining the physical
principles through forward modeling with the flexibility of
ANNs, virtually any type of continuum material can be
described non-parametrically. AutoP could be applicable to
other inverse problems with well-defined physical laws relating
measurement data to the desired quantities. Nevertheless, AutoP
is just one example of integrating physical modeling with
machine learning to build powerful methods of solving inverse
problems.
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