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This article discusses a limiting behavior of breather solutions of the focusing nonlinear
Schrödinger equation. These breathers belong to the family of solitons on a non-vanishing
and constant background, where the continuous-wave envelope serves as a pedestal.
The rational Peregrine soliton acts as a limiting behavior of the other two breather solitons,
i.e., the Kuznetsov-Ma breather and Akhmediev soliton. Albeit with a phase shift, the latter
becomes a nonlinear extension of the homoclinic orbit waveform corresponding to an
unstable mode in the modulational instability phenomenon. All breathers are prototypes for
rogue waves in nonlinear and dispersive media. We present a rigorous proof using the ϵ-δ
argument and show the corresponding visualization for this limiting behavior.
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1 INTRODUCTION

Although the study of wave phenomena traces its history back to the time of Pythagoras, research on
nonlinear and rogue waves has attracted great scientific interest recently, both theoretically and
experimentally. In particular, the focusing nonlinear Schrödinger (NLS) equation and its exact
analytical solutions that belong to the family of soliton on constant background have been adopted
asmodels and prototypes for roguewave phenomena. The purpose of this article is to provide an overview
of the relationship between these soliton solutions in this context. It also fills the gap in the details of
limiting behavior. While the connection is well-known, the rigorous proof seems to be absent, and the
visualizations found in the literature are incomplete. We will present this connection of the limiting
behavior both analytically and visually. This introduction section covers a brief history of the NLS
equation, exact solutions of the NLS equation, and a literature review on rogue waves.

1.1 A Brief Historical Background of the Nonlinear Schrödinger
Equation
The NLS equation is a nonlinear evolution equation that models slowly varying envelope dynamics
of a weakly nonlinear quasi-monochromatic wave packet in dispersive media. The model has an
infinite set of conservation laws and belongs to a completely integrable system of nonlinear partial
differential equations. It has a wide range of applications in various physical settings, such as surface
water waves, nonlinear optics, plasma physics, superconductivity, and Bose-Einstein condensates
(BEC) [1–8].

Among early derivations of the NLS equation were found in nonlinear optics [9, 10], plasma
physics [11–15], and hydrodynamics [16–18]. In BEC, the NLS equation with the non-zero potential
term is known as the Gross-Pitaevskii equation [19, 20]. In superconductivity, the time-independent
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NLS equation resembles some similarities with a simplified
(1 + 1)-D form of the Ginzburg-Landau equation [21]. A
further overview and extensive discussion of the NLS equation
can be found in [7, 22–26].

1.2 Exact Solutions of the Nonlinear
Schrödinger Equation
There are various techniques to derive analytical solutions of the
NLS equation, among others, are the phase-amplitude algebraic
ansatz [27–30], the Hirota method [31–34], nonlinear Fourier
transform of inverse scattering transform (IST) [6, 35–40],
symmetry reduction methods [41], variational formulation and
displaced phase-amplitude equations [42–44]. Another
derivation using IST with asymmetric boundary conditions is
given in [45].

Throughout this article, we adopt the following (1 + 1)D,
focusing-type of the NLS equation in a standard form:

iqt + qxx + 2
∣∣∣∣q∣∣∣∣2q � 0, q(x, t) ∈ C. (1)

Usually, the variables x and t denote the space and time
variables, respectively. The simplest-solution is called the
“plane-wave” or “continuous-wave” solution:
q(x, t) � q0(t) � e2it . Another simple solution with a vanishing
background is known as the “bright soliton” or “one-soliton
solution”, given as follows:

q(x, t) � qS(x, t) � a sech (ax − 2abt + θ0)ei(bx+(a2−b2)t+ϕ0),
a, b, θ0, ϕ0 ∈ R.

(2)

We focus our discussion on the family of exact solutions with
constant and non-vanishing background, also called “breather
soliton solutions” [46]. There are three types of breather, and all
of them are considered as weakly nonlinear prototypes for freak
waves. Other solutions of the NLS equation include cnoidal wave
envelopes that can be expressed in terms of the Jacobi elliptic
functions and can be derived using the Hirota bilinear
transformation, theta functions, or with some clever algebraic
ansatz [30, 47].

In this subsection, the coverage follows the historical order of
the time when the breathers were found. Furthermore, the term
“breather” and “soliton” can be used interchangeably in this
article, and they can also appear as a single term “breather
soliton”. All of them refer to the same object, i.e., the exact
analytical solutions of the NLS equation with a non-vanishing,
constant pedestal, or background of continuous-wave solution.

1.2.1 The Kuznetsov-Ma Breather
The first found solution is called the “Kuznetsov-Ma breather”,
where Kuznetsov derived it for the first time in the 1970s [48].
The original Russian version of his paper was published as a
preprint in 1976 by the Institute of Automation and Electrometry
of the Siberian Branch of the USSR (now Russian) Academy of
Sciences in Novosibirsk. This preprint was then reproduced in
English and appeared in the Proceedings of the 13th International
Conference on Phenomena in ionized Gases and Plasma, held in

East Berlin, German Democratic Republic, on 12–17 September
1977 [49].

Although some authors stated that Kawata and Inoue, as well
as Ma, also derived this solution independently, understanding
the history behind its development might change our perspective
[50, 51]. Between 1976 and 1977, Evgenii A. Kuznetsov met
Tutomu Kawata (also spelled Tsutomu, 川田 勉) many times
because the latter was a postdoctoral researcher in the Landau
Institute for Theoretical Physics in Chernogolovka, near Moscow,
under the mentorship of Professor Vladimir E. Zakharov.
Kuznetsov personally gave Kawata his preprint on the soliton
solution of the NLS equation. Furthermore, although Yan-Chow
Ma has never really met with Kuznetsov, Ma was surely aware of
Kuznetsov’s paper. In his work [51], Ma has cited another
Kuznetsov’s paper that was written together with Alexander V.
Mikhailov on the stability of stationary waves using the
Korteweg-de Vries (KdV) equation [49, 52].

Although the term “Kuznetsov-Ma soliton” has been
introduced earlier [53], we will adopt and use the terminology
“Kuznetsov-Ma breather” throughout this article. When the
breather dynamics were observed experimentally for the first
time in optical fibers by Kibler and collaborators, this term is
getting popular since then [54]. We denote it as qM, and it is
explicitly given by

q(x, t) � qM(x, t) � e2it(μ3 cos(ρt) + iμρ sin(ρt)
2μ cos(ρt) − ρ cosh(μx) + 1), (3)

where ρ � μ
�����
4 + μ2

√
. The Kuznetsov-Ma breather does not

represent a traveling wave. It is localized in the spatial variable x
and periodic in the temporal variable t, and hence some authors also
called it as the “temporal periodic breather” [55].

A minor typographical error found in Kawata and Inoue’s
paper [50] has been corrected by Gagnon [56]. Kawata and Inoue
[50], as well as Ma [51], derived the Kuznetsov-Ma breather
solution using the IST for finite boundary conditions at
x → ± ∞. The derivation using a direct method of Bäcklund
transformation can be found in [57, 58], where the former
analyzed solitary waves in the context of an optical bistable
ring cavity.

Defining the amplitude amplification factor (AF) as the
quotient of the maximum breather amplitude and the value of
its background [43], we obtain that the amplitude amplification
for the Kuznetsov-Ma breather is always larger than the factor of
three, and it is explicitly given by

AFM(μ) � 1 +
�����
4 + μ2

√
, μ> 0. (4)

The function is bounded below and is increasing as the parameter
μ also increases. The plot of this AF can be found in [43, 44], and
different expressions of the AF for this breather also appear in
[59–62].

The Kuznetsov-Ma breather finds applications as a rogue wave
prototype in nonlinear optics [30, 54, 63] and deep-water gravity
waves [38, 39, 61, 64]. A numerical comparison of the Kuznetsov-
Ma breather indicated that a qualitative agreement was reached in
the central part of the corresponding wave packet and on the real
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face of the modulation [59]. The stability analysis of the
Kuznetsov-Ma breather using a perturbation theory based on
the IST verified that although the soliton is rather robust with
respect to dispersive perturbations, damping terms strongly
influence its dynamics [65].

The dynamics of the Kuznetsov-Ma breather in a
microfabricated optomechanical array showed an excellent
agreement between theory and numerical calculations [66].
The spectral stability analysis of this breather has been
considered using the Floquet theory [67]. The mechanism
of the Kuznetsov-Ma breather has been discussed and two
distinctive mechanisms are paramount: modulational
instability and the interference effects between the
continuous-wave background and bright soliton [68]. New
scenarios of rogue wave formation for artificially prepared
initial conditions using the Kuznetsov-Ma and superregular
breathers in small localized condensate perturbations are
demonstrated numerically by solving the Zakharov-Shabat
eigenvalue problem [69].

A higher-order Kuznetsov-Ma breather can be derived using
the Hirota method and utilized in studying soliton propagation
with an influence of small plane-wave background [70, 71]; or
using the bilinear method [72].

1.2.2 The Akhmediev Soliton
The second one is called the Akhmediev-Eleonskiĭ-Kulagin
breather and was found in the 1980s [27–29]. In short, we
simply call it the “Akhmediev soliton” and denote it as qA.
This breather is localized in the temporal variable t and is
periodic in the spatial variable x, and it can be written
explicitly as follows:

q(x, t) � qA(x, t) � e2it(]3 cosh(σt) + i]σ sinh(σt)
2] cosh(σt) − σ cos(]x) − 1). (5)

Here, the parameter ν, 0≤ ]< 2 denotes a modulation frequency
(or wavenumber) and σ(]) � ]

�����
4 − ]2

√
is the modulation growth

rate. The colleagues from nonlinear optics prefer calling this
soliton “instanton” [73, 74] instead of “breather” since it breathes
only once [75]. Other names for this solution include
“modulational instability” [30], “homoclinic orbit” [34, 76],
“spatial periodic breather” [55], and “rogue wave solution” [39].

The amplitude amplification for the Akhmediev soliton is at
most of the factor of three, and it is explicitly given by

AFA(]) � 1 + �����
4 − ]2

√
, 0< ]< 2. (6)

This function is bounded above and below, 1<AFA < 3, and is
decreasing for an increasing value of the modulation parameter ].
Although the maximum growth rate occurs for ] � �

2
√

, the
maximum AF occurs when ]→ 0, when the Akhmediev
breather becomes the Peregrine soliton. To the best of our
knowledge, this expression was introduced by Onorato et al.
in their study on freak wave generation in random ocean waves
where this AF depends on the wave steepness and number of
waves under the envelope [77]. The plot for this AF can be found
in [43, 78, 79]. Some variations in the AF expression for this
soliton also appear in [59–62, 80, 81].

The Akhmediev soliton is rather well-known due to its
characteristics being a nonlinear extension of linear
modulational instability. This instability is also known as
sideband (or Bespalov-Talanov) instability in nonlinear optics
[82–84], or Benjamin-Feir instability in water waves [17, 85].
Some authors studied the modulational instability in plasma
physics [11, 86–88] and in BEC [89–94]. Modulational
instability is defined as the temporal growth of the
continuous-wave NLS solution due to a small, side-band
modulation, in a monochromatic wave train. A geometric
condition for wave instability in deep water waves is given in
[95] and for a historical review of modulational instability,
see [96].

It has been shown numerically and experimentally that the
modulated unstable wave trains grow to a maximum limit and
then subside. In the spectral domain, the wave energy is
transferred from the central frequency to its sidebands during
the wave propagation for a certain period, and then it is
recollected back to the primary frequency mode [97–101]. It
turns out that the long-time evolution of these unstable wave
trains leads to a sequence of modulation and demodulation
cycles, known as the Fermi-Pasta-Ulam-Tsingou (FPUT)
recurrence phenomenon [102, 103]. Although the FPUT
recurrence using the NLS model has been observed
experimentally in surface gravity waves in the late 1970s [98],
it took more than 2 decades for the phenomenon to be
successfully recovered in nonlinear optics [104].

Since the modulational instability extends nonlinearly to the
Akhmediev soliton, it is no surprise that the former is considered
as a possible mechanism for the generation of rogue waves while
the latter acts as one prototype [105–107]. For wave trains with
amplitude and phase modulation, there is a competition between
the nonlinearity and dispersive factors. After the modulational
instability occurs, the growth predicted by linear theory is
exponential, and the nonlinear effect in the form of the
Akhmediev soliton takes over before the wave trains return to
the stage similar to the initial profiles with a phase-shift difference
[64, 108]. On the other hand, Biondini and Fagerstrom argued
that the major cause of modulational instability in the NLS
equation is not the breather soliton solutions per se, but the
existence of perturbations where discrete spectra are
absence [109].

Experimental attempts on deterministic rogue wave
generation using the Akhmediev solitons suggested that the
symmetric structure is not preserved and the wave spectrum
experiences frequency downshift even though wavefront
dislocation and phase singularity are visible [43, 110–114]. A
numerical calculation of rogue wave composition can be
described in the form of the collision of Akhmediev breathers
[115]. Another comparison of the Akhmediev breathers with the
North Sea Draupner New Year and the Sea of Japan Yura wave
signals also show some qualitative agreement [116]. The
characteristics of the Akhmediev solitons have also been
observed experimentally in nonlinear optics [117].

A theoretical, numerical, and experimental report of higher-
order modulational instability indicates that a relatively low-
frequency modulation on a plane-wave induces pulse splitting
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at different phases of evolution [118]. Second-order breathers
composed of nonlinear combinations of the Kuznetsov-Ma
breather and Akhmediev soliton reveal the dependence of the
wave envelope on the degenerate eigenvalues and differential
shifts [119]. Similar higher-order Akhmediev solitons visualized
in [118, 119] have been featured earlier in [43, 120] and similar
illustrations can also be found in [60, 121–127].

1.2.3 The Peregrine Soliton
The third one is called the “Peregrine soliton”, also known as the
“rational solution” [128]. This soliton is localized in both spatial
and temporal variables (x, t) and is written as follows (denoted
as qP):

q(x, t) � qP(x, t) � e2it( 4(1 + 4it)
1 + 16t2 + 4x2

− 1). (7)

This solution is neither a traveling wave nor contains free
parameters. Johnson called it a “rational-cum-oscillatory
solution” [129]. Others referred to it as the “isolated Ma
soliton” [130], an “explode-decay solitary wave” [131], the
“rational growing-and-decaying mode” [71], the “algebraic
breather” [132], or the “fundamental rogue wave
solution” [124].

The amplitude amplification for the Peregrine soliton is
exactly of factor three, and this can be obtained by taking the
limit of the parameters toward zero in the previous two breathers:

AFP � lim
μ→ 0

AFM(μ) � 3 � lim
]→ 0

AFA(]). (8)

Although the other two breather solitons are also proposed as
rogue wave prototypes, some authors argued that the Peregrine
soliton is the most likely freak wave event due to its appearance
from nowhere and disappearance without a trace [79] as well as
its closeness to all initial supercritical humps of small uniform
envelope amplitude [133]. Some numerical and experimental
studies may support this reasoning.

Henderson et al. studied numerically unsteady surface
gravity wave modulations by comparing the fully nonlinear
and NLS equations [130]. For steep-waves, their computations
produced striking similarities with the Peregrine soliton. On the
other hand, Voronovich et al. confirmed numerically that the
bottom friction effect, even when it is small in comparison to
the nonlinear term, could hamper the formation of a breather
freak wave at the nonlinear stage of instability [134].
Investigations on linear stability demonstrated that the
Peregrine soliton is unstable against all standard
perturbations, where the analytical study is supported by
numerical evidence [135–138].

An important breakthrough in the study of rogue waves is the
observation of the Peregrine soliton in nonlinearmedia. In nonlinear
optics, the existence of strongly localized temporal and spatial peaks
on a non-vanishing background, which indicates near-ideal
Peregrine soliton characteristics, was successfully implemented for
the first time in optical fiber generating femtosecond pulses in 2010
[139]. Not long after that, the Peregrine soliton was also observed
experimentally for the first time in a water wave tank [140]. A
comparison between the predictions from the theoretical model and

the measurement results exhibits an excellent qualitative agreement
in terms of wave signal pattern, its amplification factor, and its
symmetric structure. Another successful experimental observation of
the Peregrine solitons is reported in ion-acoustic waves of a
multicomponent plasma with negative ions when the density of
negative ions is equal to the critical value [141].

A sequence of related experimental studies using the Peregrine
soliton demonstrated reasonably good qualitative agreement with
the theoretical prediction. Some discrepancies occur in the
modulational gradients, spatiotemporal symmetries, and for larger
steepness values [142], as well as the frequency downshift [143].
Interestingly, Chabchoub et al. shown further experimentally that
the dynamics of the Peregrine soliton and its spectrum
characteristics persist even in the presence of wind forcing with
high velocity [144]. By selecting a target location and determining an
initial steepness, an experiment using the Peregrine soliton of wave
interaction with floating bodies during extreme ocean condition has
also been successfully implemented [145].

The Peregrine soliton also finds applications in the evolution
of the intrathermocline eddies, also known as the oceanic lenses
[146]. It appeared as a special case of stationary limit in the
solutions of the spinor BEC model [147], and it was observed
experimentally emerging from the stochastic background in
deep-water surface gravity waves [148].

Nonlinear spectral analysis using the finite gap theory showed
that the spectral portraits of the Peregrine soliton represent a
degenerate genus two of the NLS equation solution [149]. Higher-
order Peregrine solitons in terms of quasi-rational functions are
derived in [150]. Higher-order Peregrine solitons up to the
fourth-order using a modified Darboux transformation has
been presented with applications in rogue waves in the deep
ocean and high-intensity rogue light wave pulses in optical fibers
[151]. Super rogue waves modeled with higher-order Peregrine
soliton with an amplitude amplification factor of five times the
background value are observed experimentally in a water-wave
tank [122].

1.3 A Literature Review on Rogue Waves
There are various excellent reviews on rogue wave phenomena
based on the NLS equation as a mathematical model and its
corresponding breather solitons. Onorato et al. covered rogue
waves in several physical contexts including surface gravity
waves, photonic crystal fibers, laser fiber systems, and 2D
spatiotemporal systems [60]. Dudley et al. reviewed breathers
and rogue waves in optical fiber systems with an emphasis on the
underlying physical processes that drive the appearance of
extreme optical structures [125]. They reasoned that the
mechanisms driving rogue wave behavior depend very much
on the system. Residori et al. presented physical concepts and
mathematical tools for rogue wave description [62]. They
highlighted the most common features of the phenomenon
include large deviations of wave amplitude from the Gaussian
statistics and large-scale symmetry breaking. Chen et al. discussed
rogue waves in scalar, vector, and multidimensional systems
[152] while Malomed and Mihalache surveyed some
theoretical and experimental studies on nonlinear waves in
optical and matter-wave media [153].

Frontiers in Physics | www.frontiersin.org September 2021 | Volume 9 | Article 5997674

Karjanto Peregrine Soliton as a Limiting Behavior

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Rogue waves come from and are closely related to modulational
instability with resonance perturbation on continuous background
[154]. A comparison of breather solutions of the NLS equation
with emergent peaks in noise-seeded modulational instability
indicated that the latter clustered closely around the analytical
predictions [155]. “Superregular breathers” is the term coined
indicating creation and annihilation dynamics of modulational
instability, and the evidence of the broadest group of these
superregular breathers in hydrodynamics and optics has been
reported [156]. An interaction between breather and higher-
order rogue waves in a nonlinear optical fiber is characterized
by a trajectory of localized troughs and crests [157].

Breather soliton solutions find several applications, among
others in beam-plasma interactions [158], in the transmission
line analog of nonlinear left-handed metamaterials [159], in a
nonlinear model describing an electron moving along the axis of
deformable helical molecules [160], and in the mechanisms
underlying the formation and real-time prediction of extreme
events [161]. Additionally, optical rogue waves also successfully
simulated in the presence of nonlinear self-image phenomenon in
the near-field diffraction of plane waves from lightwave grating,
known as the Talbot effect [162].

Since the definitions of “rogue waves” and “extreme events”
are varied, a roadmap for unifying different perspectives could
stimulate further discussion [163]. Theoretical, numerical, and
experimental evidence of the dissipation effect on phase-shifted
FPUT dynamics in a super wave tank, which is related to
modulational instability, can be described by the breather
solutions of the NLS equation [164]. Since the behavior of a
large class of perturbations characterized by a continuous
spectrum is described by the identical asymptotic state, it
turns out that the asymptotic stage of modulational instability
is universal [165]. Surprisingly, the long-time asymptotic
behavior of modulationally unstable media is composed of an
ensemble of classical soliton solutions of the NLS equation
instead of the breather-type solutions [166].

GeneralN-solitonic solutions of theNLS equation in the presence
of a condensate derived using the dressing method describe the
nonlinear stage of the modulational instability of the condensate
[167]. Rogue waves on a periodic background in the form of cnoidal
functions that exhibit modulational instability not only generalize
the Peregrine’s soliton but also potentially stimulate further
discussion [168]. Recently, both theoretical description and
experimental observation of the nonlinear mutual interactions
between a pair of copropagative breathers are presented and it is
observed that the bound state of breathers exhibits a behavior similar
to a molecule with quasiperiodic oscillatory dynamics [169].

The paper will be presented as follows. After this
introduction, Section 2 discusses rigorous proof for the
limiting behavior of the breather wave solutions using the
ϵ-δ argument. The limiting behavior will continue in Section
3, where we cover it from the visual viewpoint. We present the
corresponding contour plots for various values of parameters
and the parameterization sketches of the non-rapid oscillating
complex-valued breather amplitudes. Finally, Section 4
concludes our discussion and provide remarks for potential
future research.

2 LIMITING BEHAVIOR

This section provides rigorous proof of the limiting behavior of
breather wave solutions using the ϵ-δ argument. We have the
following theorem:

Theorem 1. The Peregrine soliton is a limiting case
for both the Kuznetsov-Ma breather and Akhmediev
soliton:

lim
μ→ 0

qM(x, t) � qP(x, t) � lim
]→ 0

qA(x, t). (9)

We split the proof into four parts, and each limit consists of
two parts corresponding to the real and imaginary parts of the
solitons.

Proof. The following shows that the limit for the real parts
of the Kuznetsov-Ma breather and Peregrine soliton is
correct, i.e.,

lim
]→ 0

Re{qM(x, t)} � Re{qP(x, t)}.
For each ε> 0, there exists δ �

����������
(ε + 2)2 − 4

√
> 0 such that if

0< μ< δ, then
∣∣∣∣Re{qM} − Re{qP}

∣∣∣∣< ε. We know that since

cosh μ(x − x0)
cos ρ(t − t0) ≥ 1 for all(x, t) ∈ R2,

it then implies

ρ
cosh μ(x − x0)
cos ρ(t − t0) − 2μ≥ ρ − 2μ,

It follows that∣∣∣∣Re{qM}−Re{qP}∣∣∣∣� ∣∣∣∣∣∣∣∣∣∣ μ3

ρ
cosh](x−x0)
cosρ(t− t0) −2μ

− 4

1+16(t− t0)2 +4(x− x0)2
∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣ μ3

ρ−2μ−4
∣∣∣∣∣∣∣∣� ∣∣∣∣∣∣ �����

μ2 +4
√

−2
∣∣∣∣∣∣

≤
�����
δ2 +4

√
−2

�
����������������( ���������

(ε+2)2 −4
√ )2

+4
√

−2� ε.

The following verifies that the limit for the imaginary parts
of the Kuznetsov-Ma breather and Peregrine soliton is
accurate, i.e.,

lim
]→ 0

Im{qM(x, t)} � Im{qP(x, t)}.
For each ε> 0, there exists δ �

��������������������
−10 + 2

������������
25 + 4ε/|t − t0|

√√
> 0

such that if 0< μ< δ, then
∣∣∣∣Im{qM} − Im{qP}

∣∣∣∣< ε. We can write
the imaginary parts of qM and qP as follows

Im{qM}� μρ

ρ
coshμ(x−x0)
sinρ(t− t0) −2μcotρ(t−t0)

≤
μρ2|t−t0|
ρ−2μ ,

Im{qP}� 16(t− t0)
1+16(t− t0)2+4(x− x0)2≤16|t−t0|,
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It follows that

∣∣∣∣Im{qM}−Im{qP}∣∣∣∣�
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

μρ

ρ
coshμ(x−x0)
sinρ(t− t0) −2μcotρ(t− t0)

− 16(t− t0)
1+16(t− t0)2+4(x−x0)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ μρ2ρ−2μ−16

∣∣∣∣∣∣∣∣|t−t0|
�
∣∣∣∣∣∣∣(μ2+4)( �����

μ2+4
√

+2)−16∣∣∣∣∣∣∣|t− t0|
<
∣∣∣∣∣∣∣∣(δ2+4)(δ24 +4)−16

∣∣∣∣∣∣∣∣|t−t0|
�
∣∣∣∣∣∣∣∣δ44 +5δ2

∣∣∣∣∣∣∣∣|t− t0|�ε.
In what follows, we present the limit of the real part of the

Akhmediev soliton as ]→ 0 is indeed the real part of the
Peregrine soliton, i.e.,

lim
]→ 0

Re{qA(x, t)} � Re{qP(x, t)}.
For each ε> 0, there exists δ � ���

ε/3
√

> 0 such that if
0< ]< δ < 2, then

∣∣∣∣Re{qA} − Re{qP}
∣∣∣∣< ε. We know that since

−1≤ cos ](x − x0)
cosh σ(t − t0)≤ 1 for all (x, t) ∈ R2,

it then implies

2] − σ ≤ 2] − σ
cos](x − x0)
coshσ(t − t0).

Wealso have 1 + 16(t − t0)2 + 4(x − x0)2 ≥ 1 for all (x, t) ∈ R2.
Furthermore, since 0≤

�����
4 − ]2

√
≤ 2, 0≤ 2 − �����

4 − ]2
√

≤ 2,

1
4
≤
2 − �����

4 − ]2
√
]2

≤
1
2
,

1
2
≤
1
4
+ 2 − �����

4 − ]2
√
]2

≤
3
4
,

and
2 − �����

4 − ]2
√
4]2

≥
1

4δ2
,

it follows that

∣∣∣∣Re{qA} − Re{qP}∣∣∣∣ �
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

]3

2] − σ
cos ](x − x0)
cosh σ(t − t0)

− 4

1 + 16(t − t0)2 + 4(x − x0)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ]3

2] − σ
+ 4

∣∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(2 − �����
4 − ]2

√ )
]2

+ 1
1
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣∣∣∣14 + (2 − �����
4 − ]2

√ )
]2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(2 − �����
4 − ]2

√ )
4]2

∣∣∣∣∣∣∣∣ ≤
3
4
(4δ2) � 3( �

ε

3

√ )2

� ε.

In what follows, we demonstrate that the limit of the
imaginary part of the Akhmediev soliton becomes the
imaginary part of the Peregrine soliton, i.e.,

lim
]→ 0

Im{qA(x, t)} � Im{qP(x, t)}.
For each ε> 0, there exists δ � ���

ε/4
√

> 0 such that if
0< ]< δ < 2, then

∣∣∣∣Im{qA} − Im{qP}
∣∣∣∣< ε. We can write the

imaginary parts of qA and qP as follows

Im{qA} � ]σ tanh σ(t − t0)
2] − σ

cos ](x − x0)
cosh σ(t − t0)

≤
]σ2|t − t0|
2] − σ

,

Im{qP} � 16(t − t0)
1 + 16(t − t0)2 + 4(x − x0)2 ≤ 16|t − t0|.

Since 2 + �����
4 − ]2

√
≤ 4 and (4 − ]2)≤ 4 + δ2/|t − t0|, it follows

that ∣∣∣∣Im{qA} − Im{qP}∣∣∣∣ � ∣∣∣∣∣∣∣∣∣∣ ]σ tanh σ(t − t0)
2] − σ

cos ](x − x0)
cosh σ(t − t0)

− 16(t − t0)
1 + 16(t − t0)2 + 4(x − x0)2

∣∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣ ]σ2

2] − σ
− 16

∣∣∣∣∣∣∣∣|t − t0|

�
∣∣∣∣∣∣∣∣(4 − ]2)(2 + �����

4 − ]2
√ ) − 16

∣∣∣∣∣∣∣∣|t − t0|

<
∣∣∣∣∣∣∣∣4(4 + δ2

|t − t0|) − 16

∣∣∣∣∣∣∣∣|t − t0|

� 4δ2 � 4( �
ε

4

√ )2

� ε.

We have completed the proof.
In the following section, we will visualize the limiting behavior

of the breather solutions as they approach toward the Peregrine
soliton.

3 LIMITING BEHAVIOR VISUALIZED

In this section, we will visually confirm the limiting behavior of
the Kuznetsov-Ma and Akhmediev breathers toward the
Peregrine soliton as both parameter values approach zero.
Subsection 3.1 presents the contour plots of the amplitude
modulus, and Subsection 3.2 discusses the spatial and
temporal parameterizations of the breathers. We select several
parameter values in sketching the plots. Figure 1 displays the
chosen parametric values for both breather solutions, where they
can be visualized in the complex-plane for the parameter pair
(μ, ]).

3.1 Contour Plot
In this subsection, we observe the contour plots of the amplitude
modulus of the breather and how the changes in the parameter
values affect the envelope’s period and wavelength. Similar
contour plots have been presented in the context of
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electronegative plasmas with Maxwellian negative ions [170]. In
particular, the contour plot of the Peregrine soliton is also
displayed in [142].

Figures 2A-E display the contour plots of the Kuznetsov-Ma
breather for several values of parameters μ:

�
2

√
, 1, 1/2, and 1/5.

Figure 2E is a zoom-in version of the same contour plot given in
Figure 2D. Figure 2F is the final stop when we let the parameter
μ→ 0, for which the Kuznetsov-Ma breather turns into the
Peregrine soliton. It is interesting to note that for μ � 1/5, the
contour plot is nearly identical to the one from the Peregrine

soliton, as we can observe by qualitatively comparing panels (E)
and (F) of Figure 2.

Let TM denote the temporal envelope period for the
Kuznetsov-Ma breather, then we know that in general,
TM � 2π/ρ. For μ→∞, TM → 0 and vice versa, for μ→ 0,
TM →∞. For any given value of μ> 0, TM can be easily
calculated. Here are some examples. For μ � �

2
√

, TM �
π/

�
3

√
≈ 1.814 and we display five periods in Figure 2A along the

temporal axis t. For μ � 1,TM � 2π/
�
5

√
≈ 2.81 and for the same time

interval as in panel (A), we can only capture three periods along the

FIGURE 1 | Selected parametric values ] and μ � i] displayed in the complex plane for the Kuznetsov-Ma breather and Akhmediev soliton visualized in this section.

FIGURE 2 |Contour plots for the moduli of the Kuznetsov-Ma breather for (A) μ � ��
2

√
, (B) μ � 1, (C) μ � 0.5, (D) μ � 0.2, (E) also μ � 0.2 but a zoom-in version, and

(F) μ � 0, which gives the Peregrine soliton. Notice that the contour plots (e) and (f) are qualitatively nearly identical.
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temporal axis t, as shown in Figure 2B. Furthermore, for μ � 1/2,
TM � 8π/

��
17

√
≈ 6.1 and we need to extend almost twice the length

in the time interval in order to capture at least three periods.
Figure 2C shows this contour plot. Finally, for μ � 1/5,
TM � 50π/

���
101

√
≈ 15.63. As we can observe in Figure 2D,

extending the length of time interval to around 40 units is
sufficient to capture at least three periods, albeit the detail around
maximum and minimum is hardly visible. Table 1 displays selected
parameter values of the Kuznetsov-Ma breather and their
corresponding temporal envelope periods TM.

Figures 3A–C display the contour plot of the Akhmediev
soliton for selected values of its parameters ν: 1, 1/2, and 1/4.
Figure 3D shows the contour plot of the Peregrine soliton, which
occurs as the final destination when letting the parameter ]→ 0.
Figure 3D is identical to Figure 2F, the only difference lies in the

length-scale of both horizontal and vertical axes. Similar to the
previous case, zooming-in the contour plot for ] � 1/4 in
Figure 3C will yield a qualitatively nearly identical contour
plot with the Peregrine soliton shown in the panel (D). (It is
not shown in the figure.)

Let LA denote the spatial envelopewavelength for the Akhmediev
soliton, then for 0< ]< 2, LA � 2π/], which gives LA > π. For ]→ 2,
LA → π, and as ]→ 0, LA →∞. Table 2 displays selected values of
the parameter ] and their corresponding spatial envelope
wavelength LA for the Akhmediev soliton. For ] � 1, LA � 2π
and the spatial length of 20 units in Figure 3A is sufficient to
capture three envelope wavelength. For ] � 1/2, LA � 4π and the
spatial length of 40 units in Figure 3B is required to capture at least
three envelope wavelength. For ] � 1/4, LA � 8π and the spatial
length of 60 units in Figure 3C is needed to capture at least three

TABLE 1 | Exact values of the temporal envelope period TM and their approximate values for selected parameter values μ corresponding to the Kuznetsov-Ma breather.

Parameter values Temporal envelope period

μ (exact) μ (decimal) ρ (exact) ρ (approximation) TM (Exact) TM (Approximation)

1/5 0.2
����
101

√
/25 0.402 50π/

����
101

√
15.630

1/2 0.5
���
17

√
/4 1.031 8π/

���
17

√
6.096

1 1.0
��
5

√
2.236 2π/

��
5

√
2.810��

2
√

1.414 2
��
3

√
3.464 π/

��
3

√
1.814

FIGURE 3 | Contour plots for the moduli of the Akhmediev breather for (A) ] � 1, (B) ] � 0.5, and (C) ] � 0.25, as well as (D) the Peregrine soliton.

TABLE 2 | Exact values of the spatial envelope wavelength LA and their approximate values for selected parameter values ] corresponding to the Akhmediev soliton.

Parameter values Spatial envelope wavelength

ν (exact) ν (decimal) σ (exact) σ (approximation) LA (Exact) LA (Approximation)

1/4 0.25 3
��
7

√
/16 0.496 8π 25.133

1/2 0.5
���
15

√
/4 0.968 4π 12.566

1 1.0
��
3

√
1.732 2π 6.283
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envelope wavelength. The details around maxima and minima are
hardly visible for the latter.

3.2 Parameterization in Spatial and
Temporal Variables
In this subsection, we write the breather solutions as
qX(x, t) � q0(t) ~qX(x, t), where q0(t) is the plane-wave solution
and X � {M,A,P}. Since the plane-wave solution gives a fast-
oscillating effect, we only consider the non-rapid oscillating part
of the breathers ~qX for the parameterization visualization. In the
subsequent figures, we present both spatial and temporal
parameterizations of the Kuznetsov-Ma breather, Akhmediev, and
Peregrine solitons. A similar description has been briefly covered and
discussed in [30, 61, 63, 164]. This article does not only complements
and supplements but also provides detailed explanations to those
references. Additionally, note that the unit circle centered at the
origin appeared in each panel of Figures 4–7 (dotted black circle)
corresponds to the phase of the continuous-wave pedestal, i.e., the
manifold of the breathers for x→ ± ∞ or t→ ± ∞ [30].

Figure 4 displays the parameterization of the non-rapid oscillating
Kuznetsov-Ma breather ~qM in the spatial variable x for different values
of the temporal variable t and parameter μ. Different panels indicate
different parameter values μ and for each panel, different curves, for
which in this particular case, they are merely straight lines, indicate
different time t. For all cases, we consider x ≥ 0 due to the symmetry
nature of the breathers. The straight-line trajectories move inwardly
focused from the dotted blue circle at x � 0 toward (−1, 0) as x→∞.
The situation is simply reversed for x < 0: the path of trajectoriesmove
outwardly defocused as x progresses from (−1, 0) at x→ −∞
toward the dotted blue circle at x � 0. At the bottom of these four
panels, we also present the t-axis and corresponding values of the
selected values of t for −TM/2< − π/4≤ t ≤ π/4<TM/2. The
trajectories in the upper-part and lower-part of the complex-plane
correspond to the positive and negative values of t, respectively. We
observe that the trajectories shift faster in space around t � 0 than
around t � ± TM/2 � ± π/ρ.

In particular, for t � nπ/ρ, n ∈ Z, ~qM reduces to a real-valued
function, i.e., Im(~qM) � 0 for all μ> 0.Hence, the parameterized curve
is a straight line at the real-axis. For t � 2nπ/ρ, n ∈ Z, this is shown by

A B

C D

FIGURE 4 | Parameterization of the non-rapid-oscillating complex-valued amplitude of the Kuznetsov-Ma breather ~qM in the spatial variable x, x ≥0, for different
values of temporal variable t and different values of the parameter μ: (A) μ � ��

2
√

, (B) μ � 1, (C) μ � 1/2, and (D) μ � 1/5. The selected values of t are t � 0 (solid red),
t � ± π/64 (dashed green), t � ± π/32 (solid purple), t � ± π/16 (dash-dotted magenta), t � ± π/8 (solid cyan), and t � ± π/4 (dashed orange).
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the horizontal solid red line lying on the real axis moving from a point
larger than Re(~qM) � 3 to Re (~qM) � −1 for x > 0. The represented
case t � 0 is displayed in Figure 4while the case t � π/ρ is not shown
in the figure. Indeed, from (3), we obtain the following limiting values
for n ∈ Z:

lim
x→ 0

qM(x, 2nπ/ρ) � 1 +
�����
μ2 + 4

√
,

and lim
x→ 0

qM(x, (2n + 1)π/ρ) � 1 −
�����
μ2 + 4

√
.

(10)

Additionally, lim
x→ ± ∞

qM(x, nπ/ρ) � −1. Using a similar analysis,

vertical straight lines at Re (~qM) � −1 can be obtained by taking
the values of t � (n + 1/2)π/ρ, for n ∈ Z. The line direction from
the positive and negative regions of Im(~qM) is downward and
upward toward (−1, 0) for even and odd values of n ∈ Z,
respectively.

Figure 5 displays the sketch of the non-rapid-oscillating
Kuznetsov-Ma breather ~qM in the complex-plane parameterized
in the temporal variable t for different values of the spatial variable x
and parameter μ. For each case, t is taken for one temporal envelope
period, i.e., −TM/2 � −π/ρ< t < π/ρ � TM/2. Instead of a set of
straight lines, the trajectories form the shape of elliptical curves. For
each x � x0 ∈ R, the ellipse is centered at (c(x0), 0) with semi-
minor axis a(x0) and semi-major axis b(x0), where

a(x0) � μρ cosh(μx0)
d(x0) (11)

b (x0) � ρ cosh(μx0)�����
d(x0)

√ (12)

c(x0) � 2μ2

d(x0) − 1 (13)

d (x0) � 2 cosh(2μx0) + μ2 − 2. (14)

FIGURE 5 | Parameterization of the non-rapid oscillating complex-valued amplitude of the Kuznetsov-Ma breather ~qM in the temporal variable t (−π/ρ< t< π/ρ) for
different values of spatial variable x: x � 0 (solid blue), x � 1/8 (long-dashed red), x � 1/4 (dash-dotted green), x � 1/2 (dashed purple), x � 1 (dash-dotted cyan), and
x � 2 (solid magenta) and different values of the parameter μ: (A) μ � ��

2
√

, (B) μ � 1, (C) μ � 1/2, and (D) μ � 1/5.
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The special case of a circle is obtained for x0 � 0 with the radius
r � �����

μ2 + 4
√

centered at (1, 0). All curves move in
the counterclockwise direction for increasing t. For x > 0, the
larger the values of x, the smaller the ellipses become. The
situation is the opposite for x < 0: smaller values of x (but largely
negatives in its absolute value sense) correspond to smaller ellipses
in the complex plane. Due to its spatial symmetry, only the plots for
positive values of x are displayed. The axis below the figure panels
shows the selected x values for a better overview of the variable
scaling: x � 0, 1/8, 1/4, 1/2, 1, and x � 2.

In Figure 4, the starting points of the trajectories for x � 0
are shrinking as μ decreases, as indicated by the dotted blue
exterior circles. For the same interval of time t, these initial
points also tend to be absorbed toward the right-hand side of
the exterior circles while they focus toward (−1, 0). As we can
observe in panels (A) and (B), the trajectories at t � ± π/4
originate from the left-hand side of the exterior circles for
μ≥ 1. A similar pattern was no longer observed as the values of
μ get smaller, as we can see in panels (C) and (D). Meanwhile,
the circles and ellipses are getting smaller in Figure 5 for
decreasing values of μ. Except for the circles that are always
centered at (1, 0), the centers of the ellipses shift toward the
left-hand side of the blue exterior circle near (−1, 0) as μ
decreases.

Figure 6 displays the sketch in the complex-plane of the non-
rapid-oscillating Akhmediev soliton ~qA [panels (A)-(C)] and
Peregrine soliton ~qP [panel (D)] parameterized in the spatial
variable x for different values of the temporal variable t and
parameter ]. We only display the trajectories corresponding to
the positive values of t, the trajectories for the negative values of t
are simply the reflection over the horizontal axis Re (~qP) � 0. The
t-axis below the panels indicate the chosen values of t displayed in
the figure. Similar to the trajectories for the Kuznetsov-Ma
breather when they are parameterized in the spatial variable x,
the trajectories for the Akhmediev soliton parameterized in x are
also collections of straight lines shifting in the counterclockwise
direction for increasing values of t. Different from the previous
case, these straight lines are periodic in x. The experimental
results of deterministic freak wave generation using the spatial
NLS equation showed that instead of straight lines, we obtained
non-degenerate Wessel curves, suggesting that the periodic lines
might be perturbed during the downstream evolution [43, 113].

For each panel, we only sketch the trajectories for an interval of
half the spatial envelope wavelength, i.e., 0≤ x ≤ LA/2 � π/]. For
this limited space interval, the direction of the lines is moving
inwardly focused, from the dotted-blue exterior circle for x � 0 to
some values in the left-part of the complex-plane near
Re(~qA) � −1. As the value of x progresses,

A B

DC

FIGURE 6 | Parameterization of the non-rapid oscillating complex-valued amplitude ~q in the spatial variable x for different values of temporal variable t: t � 0 (solid red),
t � 1/16 (long-dashed green), t � 1/8 (dash-dotted purple), t � 1/4 (dash magenta), t � 1/2 (dash-dotted cyan), t � 1 (dashed orange), t � 2 (solid black), and t � 4 (solid
red), and modulation frequencies of the Akhmediev solitons (A) ] � 1 (0≤ x ≤ π), (B) ] � 1/2 (0≤ x ≤2π), (C) ] � 1/4 (0≤ x ≤4π), and (D) ] � 0, x ≥0 (Peregrine soliton).
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LA/2 � π/]≤ x ≤ LA � 2π/], the trajectories bounce back toward
the initial points by following the identical paths. They then travel
in the same manner periodically as x→ ± ∞. For a decreasing
value of the parameter ν, the endpoint of these lines tends to focus
around the region near (−1, 0), as we can observe in Figures
6A–C. For the Peregrine soliton, the trajectories are not periodic
as LA →∞, and they tend to (−1, 0) for x→ ± ∞, as can be seen
in Figure 6D.

In Figure 6, a prominent difference in the trajectories for
different values of the parameter ] is its lengths. The length of the
trajectories is increasing for decreasing values of ]. While the
starting points for the Kuznetsov-Ma breathers are shrinking, for
this family of Akhmediev solitons, they are expanding as ]→ 0
until the dotted blue exterior circle reaches a radius of 2 unit
length. Moreover, the endpoints for larger values of ] stop at some
points where their real values become negative but still larger than
−1. These endpoints eventually approach (−1, 0) as ]→ 0.

Figure 7 displays the sketch of the non-rapid-oscillating part
of the Akhmediev soliton ~qA [panels (A)-(C)] and Peregrine
soliton ~qP [panel (D)] in the complex-plane parameterized in the
temporal variable t for different values of the spatial variable x and
parameter ]. The values of t run from t→ −∞ to t→ +∞, and
we only sketch the positive values of x. The plots for the negative

values of x are identical and are not shown due to the symmetry
property of the soliton. The x-axis below the panels shows the
selected values of x ranging from x � 0 to x � π. For ~qA, the
trajectories are composed of circular sectors, elliptical sectors, and
straight lines instead of closed curves like circles or ellipses. Since
this soliton is a nonlinear extension of the modulational
instability, the trajectories for each value of the parameter ],
0< ]< 2, are the corresponding homoclinic orbit for an unstable
mode, and the presence of a phase shift prevents closed-path
trajectories [30, 34, 76, 164].

The circular sectors are attained for x � 0 and the straight
lines occur at x � (n + 1/2)π/], n ∈ Z, n ∈ Z. Trajectories at
other locations yield the elliptical sectors. The initial and final
points are not identical, and this indicates a phase shift in the
soliton. Let ϕ+∞ and ϕ−∞ be the phases for x→ ± ∞,
respectively. Let also Δϕ � ϕ+∞ − ϕ−∞ be the difference
between the phases at x � +∞ and x � −∞, then we have
the following phase relationships:

tanϕ ± ∞ � ± σ

]2 − 1
, (15)

and Δϕ � 2 arctan( σ

]2 − 1
). (16)

A B

DC

FIGURE 7 | Parameterization of the non-rapid oscillating complex-valued amplitude ~q in the temporal variable t (−∞< t<∞) for different values of spatial variable
x: x � 0 (solid blue), x � π/8 (long-dashed red), x � π/6 (dash-dotted green), x � π/4 (dashed purple), x � π/2 (dash-dotted cyan), and x � π (solid magenta), and
modulation frequencies of the Akhmediev solitons (A) ] � 1, (B) ] � 0.5, (C) ] � 0.25, and (D) ]→ 0 (the Peregrine soliton).
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For the Peregrine soliton, the trajectories of time
parameterization in the complex-plane are either a circle (for
x � 0) or ellipses (for other values of x ≠ 0). The circle is centered
at (1, 0) with radius r � 2. Let x � x0 ∈ R be the position for the
Peregrine soliton, then the ellipse has the length of semi-minor
axis a(x0), the length of semi-major axis b(x0), and is centered at
(c(x0), 0), where

a(x0) � 2
1 + 4x20

, (17)

b(x0) � 2������
1 + 4x20

√ , (18)

and c(x0) � a(x0) − 1. (19)

Nearly all trajectories in Figure 7 follow the right-hand
side paths instead of the left-hand side. For decreasing values of
], the trajectories are generally expanding in size, except for the
curve at x � π that becomes a straight line when the parameter
value changes from ] � 1 to ] � 1/2. When the values of ] is
further decreased, the trajectories at x � π become an elliptical
sector and an ellipse for ] � 1/4 and ] � 0, respectively.

Figure 8 should be viewed in connection to Figures 6D, 7D. It
displays the plots of the real and imaginary parts of the non-rapid-
oscillating complex-valued amplitude for the Peregrine soliton ~qP
with respect to x and t, which are presented in the upper and lower

panels, respectively. For the former, different curves correspond to
selected values of time t ∈ {0, 1/16, 1/8, 1/4, 1/2, 1, 2}. For the latter,
different curves correspond to selected values of position
x ∈ {0, π/8, π/6, π/4, π/2, π}. The phase difference in the time
parameterization of ~qP is discernible from the behavior of
Im(~qP) as t→ ± ∞. While lim

x→ ± ∞
Re(~qP) � −1, the quantity for

lim
x→ ± ∞

Im(~qP) takes positive and negative values, respectively.

4 CONCLUSION

We have considered the exact analytical breather solutions of the
focusing NLS equation, where the wave envelopes at infinity have a
nonzero but constant background. These solutions have been
adopted as weakly nonlinear prototypes for freak waves in
dispersive media due to their fine agreement with various
experimental results. We have provided not only a brief historical
review of the breathers but also covered some recent progress in the
field of rogue wave modeling in the context of the NLS equation.

In particular, we have discussed the Peregrine soliton as a limiting
case of the Kuznetsov-Ma breather andAkhmediev soliton.We have
verified rigorously using the ε-δ argument that as each of the
parameter values from these two breathers is approaching zero,
they reduce to the Peregrine soliton. We have also presented this
limiting behavior visually by depicting the contour plots of the

A

C D

B

FIGURE 8 | Plots of the real and imaginary parts of the non-rapid oscillating complex-valued amplitude for the Peregrine soliton with respect to the spatial and
temporal variables, x (upper panels) and t (lower panels), respectively. For upper panels (A) and (B), various curves indicates different time: t � 0 (solid red), t � 1/16 (long-
dashed green), t � 1/8 (dash-dotted purple), t � 1/4 (dash magenta), t � 1/2 (dash-dotted cyan), t � 1 (dashed orange), and t � 2 (solid black). For lower panels (C) and
(D), different curves indicates different positions: x � 0 (solid blue), x � π/8 (long-dashed red), x � π/6 (dash-dotted green), x � π/4 (dashed purple), x � π/2 (dash-
dotted cyan), and x � π (solid magenta).
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breather amplitude modulus for selected parameter values. We
displayed the parameterization plots of the non-rapid-oscillating
complex-valued breather amplitudes both spatially and temporally.

The trajectories for the spatial parameterization in the
complex-plane exhibit a set of straight lines for all the
breathers. From x→ −∞ to x→ +∞, the paths are
passed twice for the Kuznetsov-Ma breather and are elapsed
many times infinitely for the Akhmediev soliton due to its spatial
periodic characteristics. The trajectories in the complex plane for
the parameterization in the temporal variable of the Kuznetsov-
Ma breather and Peregrine soliton feature a periodic circle and a
set of periodic ellipses due to its temporal symmetry. For the
Akhmediev soliton, on the other hand, the path does not only
turn into circle and ellipse sectors but also becomes straight lines
as it travels from t→ −∞ to t→ +∞, featuring homoclinic
orbits with a phase shift.
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