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This contribution is not intended as a review but, by suggestion of the editors, as a glimpse
ahead into the realm of dually weighted tensor models for quantum gravity. This class of
models allows one to consider a wider class of quantum gravity models, in particular one
can formulate state sum models of spacetime with an intrinsic notion of foliation. The
simplest one of these models is the one proposed by Benedetti and Henson [1], which is a
matrix model formulation of two-dimensional Causal Dynamical Triangulations (CDT). In
this paper we apply the Functional Renormalization Group Equation (FRGE) to the
Benedetti-Henson model with the purpose of investigating the possible continuum
limits of this class of models. Possible continuum limits appear in this FRGE approach
as fixed points of the renormalization group flow where the size of the matrix acts as the
renormalization scale. Considering very small truncations, we find fixed points that are
compatible with analytically known results for CDT in two dimensions. By studying the
scheme dependence of our results we find that precision results require larger truncations
than the ones considered in the present work. We conclude that our work suggests that
the FRGE is a useful exploratory tool for dually weighted matrix models. We thus expect
that the FRGEwill be a useful exploratory tool for the investigation of dually weighted tensor
models for CDT in higher dimensions.
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1 INTRODUCTION

The construction of a unified theory that contains the two most successful branches of modern
physics, i.e. General Relativity (GR) and Quantum Field Theory (QFT) in a curved spacetime, as
appropriate limits has been ongoing for more than 80 years and sparked many approaches to the so-
called problem of quantum gravity. A complete list of these approaches goes beyond the scope of this
introduction. The approaches range from the very conservative application of QFT [2, 3] methods to
theories of gravity and the asymptotic safety conjecture [4–6] over refined applications of
quantization rules, such as loop quantum gravity [7], spin foams [8], group field theories [9]
and tensor models [10–13] to significantly less conservative approaches like emergent gravity [14],
holographic duality [15] and to searches for so-called theories of everything such as string theory
[16]. Despite the significant diversity, no approach has produced a completely satisfactory answer to
the problem of quantum gravity as of now. However, when comparing different approaches, one is
lead to the general observation that most of them possess some built-in features that one expects from
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quantum gravity, but all known approaches come with intrinsic
short-comings that have to be overcome before qualifying the
particular approach as a candidate theory of quantum gravity.
This observation suggests to combine formulations with different
built-in strengths with the goal of obtaining a new approach that
mixes the best of both.

The present contribution intends precisely this by combining
the systematic renormalization group investigation of tensor
models for quantum gravity with the success of CDT in
producing phases in which the partition function is dominated
by extended geometries [17]. This combination is most
straightforwardly possible when CDT is formulated as a dually
weighted tensor model. Before going into detail, let us take a step
back and describe the big picture schematically:

Tensor models of quantum gravity are based on the principles
of Euclidean lattice quantum gravity. Euclidean lattice quantum
gravity is a partition function approach, where the partition
function is obtained as a sum over Boltzmann factors for
spacetimes that are constructed from discrete building blocks.
The continuum limit of these partition functions is taken as the
limit in which the size of the building blocks approaches zero,
while the total volume of the spacetime is held fixed. This implies
that the number of building blocks has to diverge when taking the
continuum limit, thus indicating that one needs to consider the
renormalization group flow of these partition functions, such that
the possible continuum limits are identified as the classes of IR-
relevant deformations of UV-attractors (in most cases fixed
points) of the renormalization group flow. A particularly
useful tool for the systematic investigation of non-perturbative
renormalization group flow is the FRGE, which takes the form of
a simple one-loop equation that describes an interpolation
between a bare action and the quantum effective action [18].
To apply this powerful tool to Euclidean lattice gravity it is very
useful to exploit the duality between the Feynman-graphs of (un)-
colored1 tensor models and discrete geometries. This duality
allows one to identify the Feynman amplitude of the (un)-
colored tensor model with the Boltzmann factor of the
associated discrete gravity partition function and hence allows
a translation from the tensor model action to the discrete gravity
action, which takes the form of a Regge action [19]. Thus, the
duality relates the large N-limit of the tensor model with the
continuum limit of the discrete gravity partition function. Hence,
the investigation of continuum limits of lattice quantum gravity is
readily translated into the investigation of the possible large
N-limits of tensor models, which can be investigated
systematically using the FRGE.

This rigorous connection between the continuum limit of
Euclidean lattice quantum gravity and the large
N-renormalization group flow of tensor model actions is an
invaluable intrinsic feature of the tensor model approach to
quantum gravity; and the systematic investigation of these
continuum limits with the FRGE is particularly convenient.
Unfortunately, the extended geometries that are approximated
in the continuum limits that have been investigated so far possess

dimension two or less [20]. In other words, so far no state sum
model of discrete geometry is known to coarse grain to a model of
extended spacetime geometry in more than two dimensions.

There are however numerical indications that d-dimensional CDT
and its counter part Euclidean Dynamical Triangulations (EDT) do
coarse grain to extended higher dimensional geometries (for 2 ≤ d ≤
4) [21]. This can be heuristically understood as the fact that the
foliation in CDT and the volume term in EDT implement additional
terms in the Boltzmann factor for discrete geometrywhich change the
universality class of the model. Moreover, there exist tensor models
that implement critical of features of CDT and EDT partition
functions in the literature. The novelty in these models is that
they possess a nontrivial propagator, which implements a dual
weighting of the Feynman graphs of these tensor models. Hence,
one can use the FRGE to investigate the continuum limits of CDT
and EDT by studying the renormalization group flow of tensor
models with dual weights. This is the motivation for the work
presented in the present contribution.

As a first step, we consider a dually weighted matrix model
proposed by Benedetti and Henson whose partition function is
dual to two-dimensional CDT [22]. By doing this we follow a
strategy that was used when first applying the FRGE to tensor
models [23], where matrix models for two-dimensional Euclidean
quantum gravity were considered to introduce the setup, develop the
technique and to compare with the analytic results known from
constructive approaches to two-dimensional Euclidean quantum
gravity, which serve as a benchmark. This allows us to test a
setup (the systematic FRGE investigation to dually weighted
tensor models) that is readily available in higher dimensions, in
particular in 3 + 1 dimensions [22], but at the same time is
understood analytically, providing benchmark results for the
FRGE calculation which we can use to gauge this setup.

This contribution is organized as follows: In the following
section (Preliminaries) we provide the necessary background on
dually weighted tensor models, the particular model proposed by
Benedetti and Henson and the foundations of the application of
the FRGE to tensor models. We provide the derivation of the beta
functions in β-functions. We perform a fixed point analysis and
study of scheme dependence in Fixed Point Analysis and Scheme
Dependence. We summarize our results in Conclusion and briefly
discuss their implications for future investigations on dually
weighted tensor models for quantum gravity and provide a
short recipe for the calculation in the appendix.

2 PRELIMINARIES

Random tensor models are by now an established approach to
Euclidean quantum gravity [24, 25]. However, to fully appreciate
the way in which dually weighted matrix models provide an
approach to quantum gravity with a preferred time slicing one
needs to take a step back and consider the foundations of random
tensor models.

2.1 Tensor Models and Dual Weights
The random tensor model approach to quantum gravity is based
on the basic observation that the Feynman graphs of so-called1The term (un)-colored is explained in the next section.
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uncolored random tensor models possess a geometric
interpretation in terms of tessellations of piece-wise linear
pseudo-manifolds, as do some so-called colored tensor models.
The uncolored models are defined for tensors Ti1i2 ,/ik and their
complex conjugates Ti1i2i3...ik through the symmetry of the action
S[T ,T] under the Uk(N) transformations

Ti1 i2/ik → (U1)j1i1(U2)j2i2/(Uk)jkikTj1j2/jk. (1)

This symmetry implies that the action can be expanded in
terms of generalized trace invariants in which the first index i1 of
each tensor Tmust be contracted with the first index of a complex
conjugated tensor T , and similarly the second index i2 and all
further indices i1. These generalized traces can be represented as
colored graphs where each tensor T is represented by a white
vertex and each complex conjugate tensor T is represented by a
black vertex and each contraction of vertices by an index i1 is
represented by an edge of color l connecting the vertices
associated with the two contracted tensors. Such colored
graphs are then dual to piecewise linear pseudo-manifolds:
Each vertex is associated with a (k−1)-simplex and the
adjacent edges are associated with a gluing of the colored
(k−2)-simplices in the boundary of the two (k−1) simplices.
Moreover, closed two-colored sub-graphs are associated with
the gluing of (k−3)-simplices in the boundary of the associated
(k−2)-simplices. Analogously, closed three- and more-colored
subgraphs are associated with the gluing of simplices of even
lower dimension. The generalized trace-invariants of a rank k
tensor model can thus be interpreted as tessellations of piecewise
linear (k−1)-dimensional manifolds.

We can perform the analogous identification for the Feynman
graphs generated by the rank k random tensor model through
realizing that the Feynman graphs of a rank k tensor model
possess a graphical representation in terms of (k+1)-colored
graphs, where a new color is associated with the propagator.
This provides the desired geometric interpretation of the
Feynman graphs of an uncolored rank k tensor model with
tessellations Δ of piecewise linear pseudo-manifolds of
dimension k. It follows that the partition function of these
random tensor models possesses a geometric interpretation

Z � ∑
Δ
A(Δ) � ∑

Δ
e−(−ln(A(Δ))), (2)

Where A(Δ) denotes the Feynman amplitude associated with
the Feynman graph dual to Δ. This resembles the random lattice
partition function for Euclidean quantum gravity

Zgrav. � lim
a→ 0

∑
Δ
exp( − SE[Δ, a]), (3)

When the gravity action SE[Δ,a] is identified with −ln(A(Δ)).
The Feynman amplitude depends on the details of the random
tensor model, but one can generally say that they depend on the
number of Nk of k simplices and the number Nk−2 of k−2
simplices in Δ as well as the tensor size N and the coupling
constants λi. An example amplitude for k � 3 with one coupling is

A(Δ) � NN1−3N3/2(λλ)N3/2, (4)

Where the couplings N,λ possess a simple relation with the
couplings in the Regge-expression of General Relativity in three
dimensions SR[Δ] � κ3N3−κ1N1. Hence, κ1 � 1n(N) and κ3 �
3/2ln(N) − 1/2ln(λλ) establishes a relation with the discrete
General Relativity coupling constants.

The total volume is 〈V〉 � 〈Nd〉 ad Vo, where Vo is the filling
factor of the geometric building blocks. Hence, one can take the
lattice continuum limit a→0 at fixed total volume 〈V〉 by tuning
to a point where the expectation value of the total volume
diverges. This requires that 〈Nd〉 diverges. It turns out that
this in turn requires that N→∞. However, to obtain
simultaneously a finite value of the total volume and of
Newton’s constant, one needs to tune λ and N simultaneously.
Since Z diverges for N→∞ one can only obtain a finite result
when λ approaches a critical point λ* as N→∞ is approached.
Hence, we can write down the required behavior of λ(N) �
λ*+cN

−θ, where c is an arbitrary constant and θ the critical
exponent. In other words, the conjecture is that the
continuum limit of lattice quantum gravity can be investigated
by studying the critical points in the large N behavior of random
tensor models.

So far we have only considered a canonical quadratic term
Ti1i2/ikTi1i2/ik, as is implied by Uk(N) invariance. This kinetic
term leads to an index-independent propagator ∝ δi1j1/δikjk , so
each closed loop of indices will contribute with a factor ofN to the
amplitude, but can not depend on the number of vertices that are
crossed when going around this loop. However, we will see
shortly that such a dependence of the amplitude can be
motivated geometrically. To construct tensor models whose
amplitude depends non-trivially on the number of vertices
crossed by a closed index loop. Before motivating these so-
called “dually weighted” tensor models, we will consider the
general setup of the FRGE for tensor models [26].

2.2 Application of the FRGE to Tensor
Models
One of the most convenient tools to investigate critical behavior is
the functional renormalization group equation (FRGE). In the
usual setting the FRGE

zΓk[ϕ] � 1
2
Tr( _Rk

Γ(2)k [ϕ] + Rk

) (5)

Describes how the effective average action

Γk[ϕ] :� sup
J
{Jϕ − ln(Zk[J])} − 1

2
ϕRkϕ (6)

Changes when the IR suppression scale k is changed. This IR-
suppression scale is introduced through amodification of the bare
action by the scale dependent mass term ΔkS[ϕ] � 1/2ϕRkϕ, which
is designed to give a mass ofO(k) to modes in the IR of the scale k
while not significantly affecting modes in the UV of this scale.
Heuristically, one can argue as follows:ΔkS[ϕ] dominates the path
integral in the limit k→∞ and hence the saddle point
approximation of the path integral becomes exact in this limit
and shows that the effective average action coincides with the bare
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action when k→∞. Hence, one finds critical points as UV fixed
points of the FRGE and can study the critical behavior by
studying the linearized flow near the fixed points.

The usual FRGE arguments outlined above relies heavily on
the mass dimension and scaling with a scale k that possesses units
of mass. Such a mass scale is missing in the random tensor setup,
instead one wants to study the scaling of the couplings with the
dimensionless tensor size N. This requires one to identify 1) the
scaling of the IR-suppression termwithN and 2) the scaling of the
coupling constants with N. It turns out that the requirement that
the RHS of the FRGE admits a 1/N-expansion imposes significant
restrictions on the scaling withN, but it does not fix it completely.
To obtain a completely determined scaling with N one needs to
impose that the bare action possesses a geometric interpretation.
Essentially, the requirements are that (1) the bare propagator and
the modified propagator (after including the IR-suppression term
ΔNS[T]) possess the same scaling for large index values and 2)
that the interaction term possesses the scaling necessary for the
geometric interpretation. These two initial conditions, together
with the restrictions that result from the 1/N-expandability of the
RHS of the FRGE fix the setting that is sufficient to investigate the
large-N-critical behavior.

2.3 2D Causal Matrix Model
A matrix model that enforces a preferred time slicing in its
Feynman-graphs was proposed by Benedetti and Henson in
[1]. This model is constructed using two dynamical N × N
matrices, A and B, representing the spacelike and timelike
edges of a triangle, and a constant matrix C which implements
the dual weighting. The partition function is

Z � ∫ dAdB e−NTr(1
2A

2+12(C−1B)2−gA2B), (7)

Where in the large N limit the matrix C must satisfy the
condition

Tr(Cm) � Nδ2,m, (8)

With m ∈ N. The partition function (7) with a weighting
matrix C that implements (8) generates Feynman diagrams
that possess the geometric interpretation of polytopes with an
arbitrary number of space-like edges and only two time-like edges

(see Figure 1). This is clear by analyzing the free propagators (g �
0) of the model

〈AijAkl〉0 �
1
N
δilδkj, (9)

〈BijBkl〉0 �
1
N
CilCkj, (10)

〈AijBkl〉0 � 0. (11)

As we can see in Figure 1, this restriction implements a
foliation of the discrete geometries that appear in the
expansion of the partition function, thus introducing the
necessary structure for the implementation of CDT in tensor
models.

We proceed by integrating out matrix B since it is a gaussian
integral, obtaining

FIGURE 1 | Part of a dual triangulation to a Feynman graph. The solid colors red and blue indicate the time- and space-like boundaries of dual triangles, the light
colors the dual propagators in the Feynman graph and the green circles the vertices in the Feynman graph. The important fact to note is that having precisely two pink
propagators in each closed loop implies that the blue lines foliate the entire Feynman graph. Notice that we drew the propagators as single lines to not clutter the picture
too much; the usual depiction of the matrix model propagator would be though a double line, i.e. line one for each contacted index.

FIGURE 2 | Resulting vertex after the integration over matrix B. The
double pink lines indicate the propagator and the green circles indicate the
insertion of the matrix C in the interaction.
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Z � ∫ dA e−NTr(1
2A

2−g22(A2C)2). (12)

This partition function together with condition (8) determines
our starting point in this work.

One can understand the integration over matrix B as the
gluing of triangles along their spacelike edges. This gives rise to a
model of squares only with timelike edges (Figure 2). This
produces an anisotropic quadrangulation with rigidity
associated with condition (8).

We identify the matrix model action that implements CDT as

S � 1
2
Tr(AAu) − g2

2
Tr(AAuCAAuC), (13)

Which takes the form of the Euclidean action [25], except for
the presence of matrix C. The appearance of the dual weighting
matrix C changes the symmetry of the matrix model. Let us
consider an N × N orthogonal matrix, O, and the transformation

A→AO
Au →OuAu.

(14)

Since the combination AAT is invariant A→OAant (14) is a
symmetry of the Euclidean and the CDT action, however the
conjugate symmetry under and AT→ATOT is only a symmetry of
the Euclidean action and not of the CDT action. This shows an
explicit difference with the real Euclidean matrix model. In the
language of the renormalization group: the CDT action (13) lives
in a different theory space, which is governed by a different
symmetry.

Weighting Matrix
The matrix C implements the weighting of closed loops of
propagators in the Feynman graph expansion, i.e. the dual
weighting of the Feynman graphs. In principle one could
define this matrix abstractly only through the property (8) and
only use Eq. 8whenever the matrix occurs in a Feynman diagram.
However, in order to do practical calculations with the FRGE, it is
very useful to have an explicit representation ofC at ones disposal.

For a N × N diagonal matrix, X, with eigenvalues {xi} we can
write its characteristic polynomial as

PX(t) � ∑N
k�0

(−1)kektN−k, (15)

Where ek is

e0(x1, . . . , xN ) � 1,

e1(x1, . . . , xN) � ∑N
i�1

xi,

e2(x1, . . . , xN) � ∑
1≤ i≤ j≤N

xixj,

«
eN(x1, . . . , xN ) � x1x2 . . . xN ,

Then Newton identities allow us to write this coefficients in
terms of the kth power of the trace of X, pk, in the form

kek � ∑k
i�1

(−1)i− 1piek−i, (16)

So, C can be found by solving

PC(t) � tN − 1
2
NtN−2 + 1

8
N2tN−4 +/ � 0. (17)

These solutions exist by the fundamental theorem of algebra
and one can use ones preferred approximation scheme to obtain
these. One scheme that suggests itself in particular when one
wants to gain insights into the effects of dual weightings is to build
a matrix C from smaller blocks of matrices C0, so C �
diag(C0,...,C0). The matrix obtained in this way does not
implement the entire tower of Eq. 8, but permits traces
periodically. This approach is particularly interesting to study,
since it allows us to study howmany of the equations one needs to
enforce to attain the phase transition between the Euclidean
matrix model and the CDT matrix model. The first three
matrices CO are

·k � 2 :
Co � diag(−1, 1), (18)

·k � 4 :
Co � diag(−1.09 − 0.45i,−1.09 + 0.45i,
1.09 − 0.45i, 1.09 + 0.45i),

(19)

·k � 6 :
Co � diag(1.02 + 0.70i, 1.02 − 0.70i, 1.37,
−1.02 + 0.70i,−1.02 − 0.70i,−1.37).

(20)

Putting these together as blocks to build an N ×Nmatrix gives
for example for k � 2

Cjj � (−1)j, (21)

And for k � 4

Cjj � { ( − 1)kc − iξ, j � 2k − 1,
( − 1)kc + iξ, j � 2k,

(22)

That are N × Nmatrices formed by 2 × 2 and 4 × 4 blocks, and
where γ � 1.09 and ξ � 0.45.

Functional Renormalization Group for
Matrix Models
Let us briefly review the application of the FRGE to matrix and
tensor models. One can follow the fundamental presentation of
[18] and apply it to matrix models as done in [23]. The starting
point is the definition of the effective average action ΓN[φ] in the
presence of an IR-suppression term ΔSN[ϕ]:

ΓN[φ] � infJ{WN[J] + Jφ − ΔSN[φ]}, (23)

Where

exp(−WN[J]) � 1
NN

∫
Λ
Dϕe−S[ϕ]+Jϕ−ΔSN[ϕ], (24)
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And φ represents the expectation value of a quantum field ϕ,
while the term

ΔSN[ϕ] � 1
2
ϕabR

abcd
N ϕcd (25)

Represents an IR-suppression term in so far as it is designed to
give a mass term of order N to “IR” degrees of freedom of the
matrix. Since matrix and tensor models do not implement a
fundamental scale, there is no canonical identification of which
degrees of freedom are “IR”. Rather one needs to implement by
hand a division of theory space according to an RG scale k. The
simplest assignment is to identify the upper-left corner of the
matrix with index values below the scale k as “IR”. Once the IR-
suppression term is chosen, one can proceed as in [18]; one
arrives at the FRGE

ztΓN � 1
2
Tr( ztRN

RN + Γ(2)N

), (26)

Where t � 1nN. The solutions to (26) are functionals of theN ×
Nmatrix ϕ and hence of infinitely many degrees of freedom in the
large N-limit. Practically one resorts to finite truncations of the
effective average action, i.e. one performs an expansion of the
effective average action into monomials

Γk[φ] � ∑
i

gi(k)Oi[φ]. (27)

Then one truncates this expansion at a manageable set of
operatorsOi. In this way the computation is reduced to the study
of the projected flow in the space of coupling constants gi. The
quality of the FRGE results depends critically on the operators
that are included in the truncation. In matrix models it turned out
that surprisingly good approximations to the FRGE flow where
obtained in [23] by considering the flow of single trace operators.
The analogous truncation in the presence of the matrix C is

ΓN � Z
2
Tr(AAu) +∑P

n�2

g2n
2n

Tr((AAuC)2(AAu)n− 2), (28)

Which only includes operators with AAT, which is invariant
under (14), and two C matrices. In the present contribution we
will truncate this to the ansatz that contains the bare action and
the single trace operator that can directly contribute to the beta
functions of the bare action at one loop. This truncation is:

ΓN � Z
2
Tr(AAu) + g4

4
Tr(AAuCAAuC)

+g6
6
Tr(AAuCAAuCAAu).

(29)

We introduce the dimensionless couplings

g4 � Z2Nα4g4
g6 � Z3Nα6g6

(30)

Where α4 and α6 are as of yet undetermined, since the matrix
model does not include an intrinsic notion of scale. The scale is
later fixed by imposing that the beta functions admit a 1/N
expansion.

To make the calculation concrete, we choose the explicit form
of the IR-suppression term RN to take the form

Rabcd
N � Z( N

a + b
− 1)θ(1 − a + b

N
)δacδbd , (31)

Which has the advantage of being a diagonal and field
independent tensor, so we can readily invert the kinetic
term to obtain the propagator. It is practically useful to
split the second variation of the effective average action
into a field independent term G and a field dependent
term F:

RN + Γ(2)N � GN + g4F
(4)
N [A] + g6F

(6)
N [A], (32)

Which allows us to expand the RHS of the Wetterich equation
as a geometric series, using only the propagator P � G−1 and the
F-term:

1
2
Tr( _RN

RN + Γ(2)N

) � 1
2
∑
k�0

((− 1)kTr( _RP(FP)k))
� 1
2
Tr( _RP) − 1

2
Tr( _RPFP) + 1

2
Tr( _RPFPFP)

−1
2
Tr( _RPFPFPFP) +/

(33)

The upshot of this P−F expansion is that each F term
contributes more field operators. Hence a truncation that
contains polynomial operators with only a finite number of
fields terminates the geometric series at a finite number of
terms. With the proposed truncation (29), the first term in
(33) is of order zero in the Feynman diagrams expansion
since there is no field contribution, the second term gives rise
to 2-vertex and 4-vertex diagrams which contribute to η and β4,
the third one to 4-vertex and 6-vertex diagrams which contribute
to β4 and β6 and so on.

2.5 Benchmark Results
We use the FRGE to find fixed points of the RG flow and to
investigate the universality class associated with this fixed
point. This is done by calculating the critical exponents θ at
the fixed point, i.e. by considering the linearized FRGE-flow at
the fixed point, where the critical exponents appear as the
eigenvalues of the Hessian of the beta functions. We chose our
truncation in such a way that we can resolve the fixed point
that known as the double scaling limit in the matrix model
literature. This fixed point possesses a single positive critical
exponent, which is usually expressed in terms of the string
susceptibility cstr:

θ � 2
2 − cstr

. (34)

For Euclidean Matrix Models [27] cstr � −1/2, while for
CDT [28] cstr � +1/2, which leads to the following critical
exponents

θMM � 4
5
, θCDT � 4

3
. (35)
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3 β-FUNCTIONS

In this section we summarize the steps that we took to obtain the
beta functions of the matrix model for CDT.

3.1 Operator Products
The structure of the beta functions is determined by the operator
products of the F-terms that we showed in (33). The terms FN

(4)

and FN
(6) are the second variations of the operators whose

contribution to the effective average action is measured by the
coupling constants g4 and g6. The second variations take the form

F(4)
N � Cac(AuCA)db + (CA)ad(CA)cb + (CAAuC)acδdb (36)

And

F(6)
N � δac(AuCAAuCA)db + Aad(CAAuCA)cb

+(AAuC)ac(AuCA)db + (AAuCA)ad(CA)cb
+(AAuCAAuC)acδdb + Cac(AuCAAuA)db
+CA)ad(CAAuA)cb + (CAAuC)ac(AuA)db
+(CAAuCA)adAcb + (CAAuCAAu)acδdb
+Cac(AuAAuCA)db + (CA)ad(AAuCA)cb
+(CAAu)ac(AuCA)db + (CAAuA)ad(CA)cb
+(CAAuAAuC)acδdb

(37)

By looking at (33), we notice that traces of products of (36) and
37 give rise to a big range of operators which are not present in the
truncation ansatz (29), such as (Tr(CA))2, Tr(CAATC2)
Tr(ATCA), etc. However, a reasonable projection rule onto the
truncation should not project these operators onto the beta
functions of the truncation. We therefore analyze which
operators can contribute to the beta functions in the
truncation, i.e. to β4 and β6. Considering for example the trace

Tr(F(4)
N ) � Tr(C)Tr(AuCA) + Tr(CAAuC)Tr(δ), (38)

We see that each term contains the matrix C, while we know
from the structure of the P-F-expansion that these are the only
terms generated by the restriction of the FRGE to the truncation
that contain twomatricesA. Hence, the restriction of the FRGE to
the truncation does not generate terms ∼Tr(AAT) and hence does
not generate any term that contributes to the anomalous
dimension η. To generate a contribution to the anomalous
dimension, one needed to include a term with a single C
matrix in the truncation. This term would then be generated
at one loop by the first term in (38) and in turn contribute to η at
one loop. The investigation of this kind of secondary effect
however goes beyond the scope of this first investigation.

This analysis relies on the fact that our projection rule is able to
discern the structure in which the matrices A are contracted with
the constant weighting matrix C, so at first sight one might worry
that such a projection does not exist. However, one can consider
the appearance of the matrix C in the operators as a special case of
operators with index-dependence, i.e. operators whose variations
w.r.t. A can not be expressed in terms of A and δij, which can be
discerned by a suitable projection rule. Hence it is not only

possible, but even prudent to use a projection rule that discerns
the different ways in which the matrix C is contracted.

To make this distinction, we mark in the following the terms
that contribute to the beta functions in our truncation by putting
a box around them. Subsequently, we will impose the use of a
projection rule that only retains these operators and thus consider
only the contributions of the boxed terms.

Tr(F(6)
N ) � Tr(δ)Tr(AAuCAAuC)
+3Tr(AAuCAAuC)Tr(δ)
+2Tr(C)Tr(AuCAAuA),

(39)

Tr(F(4)
N F(4)

N ) � Tr(CC)Tr(AuCAAuCA)
+Tr(CAAuCCAAuC)Tr(δ), (40)

Tr(F(4)
N F(6)

N ) � 2Tr(CC)Tr(AuCAAuAAuCA)
+3Tr(CAAuCAAuCAAuC)Tr(δ)
+Tr(C)Tr(AuCAAuCAAuCA),

(41)

Tr(F(4)
N F(4)

N F(4)
N ) � Tr(C3)Tr(AuCAAuCAAuCA)

+Tr(CAAuCCAAuCCAAuC)Tr(δ). (42)

When considering Tr((FN
(4))n) with n > 2 we see that all

resulting operators contain at least three Cmatrices which are not
present in the original proposed action (29), this means that in
this truncation the β-functions do not possess contributions
coming from these traces.

3.2 General Form of the β-functions
Now that we have identified the terms that can contribute to the
β-functions, we can write down the general structure of the beta
functions. To do so, we introduce the constants Di, Ei and Fi,
which depend on the details of the projection rule. Repeating the
same argument as in the previous subsection for the single trace
truncation 28 we obtain

η � 0, (43)

For i odd

β2i � (iη − α2i)g2i + Dig2(i+1) + Eig2ig4, (44)

For i even

β2i � (iη − α2i)g2i + Dig2(i+1) + Eig2ig4 + Fig
2
(i+2). (45)

We can see in particular that in this truncation tadpoles and 2-
vertex diagrams contribute.

4 FIXED POINT ANALYSIS AND SCHEME
DEPENDENCE

By using the obtained general form of the beta functions for the
single trace truncation at our disposal we can discuss fixed points.
We first consider the fixed point structure analytically, before
inserting particular truncation rules, which provide numerical
values for the critical exponents, which allows us to discuss the
scheme dependence of our calculation.
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4.1 Analytic Fixed Point Analysis
By setting our truncation to (29), we obtain the following beta
functions

β4 � (−α4)g4 + D2g6 + E2g
2
4 , (46)

β6 � (−α6)g6 + E3g4g6, (47)

Where η has been set to zero in accordance with our previous
analysis. The set of fixed points of this system of beta functions is

(g*4, g*6) � {(0, 0),(α4
E2
, 0),(α6

E3
, α6

α4E3 − α6E2

D2E2
3

)}, (48)

And the Hessian matrix (defined as Hij � −zβi/zgj) is

( α4 − 2E2g4 −D2

−E3g6 α6E3g4
). (49)

Hence, the critical exponents, i.e. the eigenvalues of the
Hessian, evaluated in each of the fixed points take the form.

The canonical dimensions α4 and α6 are not fixed by
themselves, but tadpole diagrams show that α6 has to be one
dimension of N greater than α4. We identify the Gaussian fixed
point (0,0), which will not have a relevant direction. There are two
non-Gaussian fixed points: the first fixed point (α4/E2,0) contains
one relevant and one irrelevant direction if E2/E3 > α4/α6, and the
third fixed point in Table 1 possesses a relevant and an irrelevant
direction if E2/E3 < α4/α6. These two points are our candidates for
a double scaling limit. Next we will examine them using particular
schemes.

4.2 Scheme Dependence
To find concrete critical exponents, we supplement the projection
rule with the evaluation of both sides of the FRGE at preferred test
matrices A. Moreover, we consider the two rigidity matrices
obtained by constructing a block diagonal matrix from (18)
(19), namely (21) and (19) respectively. The specific test
matrices that we use for the projection are

Aδ
ab � δabθ(N − a), (50)

Aδ−mod
ab � aδabθ(N − a), (51)

Aδ−IR
ab � δ1,aδ1,b. (52)

Using three different matrices A allows us to estimate a lower
bound for the scheme dependence. We expect this because the
three field configurations contain two field configurations with
distinct UV behavior and one manifest IR field configuration.

One often assumes that the scheme dependence is an actual
approximate measure for the quality of the fixed point analysis,
however when comparing with analytic results, we will see that
this underestimates the truncation error.

The corresponding obtained critical exponents are shown in
Table 2 and the fixed points are shown in Table 3. The euclidean
values are computed as done in [23] using (50), (51) and (52) as
test fields.

We see that the relevant critical exponents are all close to 1,
while the irrelevant critical exponents spread a bit wider between
−0.858 and −1.215. Moreover, we observe that all critical
exponents lay within the spread obtained by scheme
dependence. This means that we can not distinguish the
Euclidean models from the Causal models, built from the 2 ×
2 and 4 × 4matrices, based on the present derivation of the critical
exponents.

In order to attempt to obtain more accurate numerical values
for the critical exponents we use the fixed point approximation.
This consists in first finding the zeros of the beta functions, then
evaluating the anomalous dimension, η, in the fixed point g4* and
substituting this numerical value in the beta functions to find the
critical exponents. The critical exponents obtained by using the
fixed point approximation are shown in Table 4.

Since the numerical values reported in Table 2 were found to
have a strong scheme dependence, it is important to compare the
renormalization scheme dependence vs. the causal-euclidean
results in the latter ones in Table 4. We compute the average
of the difference between the critical exponents obtained in the
different renormalization schemes and the “Causal vs. Euclidean”
results with each of both methods.

In Table 5 we observe that, while the first method (full) shows
a stronger renormalization scheme dependence, with the fixed
point approximation method the “Causal vs. Euclidean” relation
is more significant than the renormalization scheme dependence.
Regarding the accuracy of the values for the critical exponent
obtained with both methods compared to the theoretical values
(35), we observe that the Causal ones differ more from the
theoretical value than the Euclidean critical exponents.
Therefore we can conclude that in this case the fixed point
approximation is more useful for differentiating the Causal
from the Euclidean results, while the full method reproduces
more accurate numerical results.

CONCLUSION

This contribution is motivated by the observation that the
application of the FRGE to tensor models with dual weights
could lead to an approach to quantum gravity that combines the
advantages of the systematic search of continuum limits with the
FRGE with the physically promising phase diagrams of CDT and
EDT. The systematic development of these tools and the
systematic investigation of these models is a very ambitious
task. In this contribution we took a first step into this
direction and considered the FRGE flow of a matrix model for
CDT in 1 + 1 dimensions proposed by Benedetti and Henson.
This model implements a foliation through a dual weighting of

TABLE 1 | Critical points with its corresponding pair of critical exponents.

Critical point Critical exponents

(0,0) α4
α6(α4

E2
,0) −α4

α6E2−α4E3
E2

(α6
E3
, α6

α4E3−α6E2
D2E2

3
) −2α6E2+α4E3−

���������������������
4α6(E2

2−E2 )−4α4(E2E3−E2
3 )+α4E2

3

√
2E3

−2α6E2+α4E3+
���������������������
4α6(E2

2−E2 )−4α4(E2E3−E2
3 )+α4E2

3

√
2E3
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Feynman graphs, which introduces an action with an index-
dependent propagator. This action, upon integration of an
auxiliary field, reduces to an action with an index dependent
interaction.

Recalling the critical exponents analysis in Analytic Fixed
Point Analysis and the values in Table 1, we see that the
model uses a rigidity matrix C which is chosen in such a way
that one of the conditions for the beta function polynomials E2/E3
> α4/α6 or E2/E3 < α4/α6 is satisfied. In this case we obtain a
relevant and an irrelevant direction simultaneously, implying that
the only Feynman diagrams that contribute to the partition
function are the ones where all C matrices are contracted as
Tr(C2), which is precisely the condition that implements a
foliation. In this contribution we considered a single trace
truncation in which we included operators that contain two
C-matrices with the pattern prescribed by the interaction in
the Benedetti-Henson model and calculated the beta functions
for this truncation. We found that wave function renormalization
does not occur in this truncation, since the one-loop structure of
the FRGE can only remove 1 Cmatrix. This technical observation
has far reaching consequences for the structure of the beta

functions, which change significantly compared to the
Euclidean model, which is obtained by setting C to the
identity matrix. In other words: the structure of the beta
functions is more complicated and in particular includes wave
function renormalization if C is replaced with the identity matrix.

We then investigated this system of beta functions in a
truncation in which we included only a four- and a six-point
interaction. Despite the significant difference in the structure of
the beta functions, we found that this truncation contains fixed
points that possess the properties of the double scaling limit. We
investigated these fixed points numerically using three distinct
field configurations for projection.

This numerical investigation revealed a practical challenge: To
obtain numerical values for the beta functions one can not resort
to an abstract definition of the rigidity matrix C, since the
calculation requires an explicit numerical expression of C. We
took this as an opportunity to investigate the weakening of the
condition Tr(Cm) � δm mod k,2 for k � 2,4,6. This has the
implication that not all Feynman diagrams without a foliation
structure are suppressed, but only a part of these. In particular the
case k � 2 does not introduce any new restriction at the level of
Feynman diagrams of the Euclidean model, however, since we
used the structure of the beta function for general C, we still
obtained equations that differ from the Euclidean matrix model.
The numerical investigations however revealed that we can not
discern the Euclidean and the CDT model on the basis of the
critical exponents at the fixed point associated with the double
scaling limit. These results are summarized in Table 2. The
obtained relevant critical exponent (θ) in the Benedetti-

TABLE 2 | Numerical values obtained for critical exponents. Causal2 corresponds to values computed using (21) and Causal4 corresponds to the ones computed using
(LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

θ 1.033 1.008 1.046 1.024 1.033 1.052 1.065
θ´ −0.928 −1.215 −1.080 −0.858 −0.959 −1.086 −1.050

TABLE 3 | Numerical values obtained for critical points. Causal2 corresponds to values computed using (21) and Causal4 corresponds to the ones computed using
(LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

g4* −0.435 −0.300 −0.288 −0.902 −0.588 −0.339 −0.202
g6* −0.118 −0.094 −0.06 −0.387 −0.208 −0.040 −0.026

TABLE 4 | Numerical values obtained for critical exponents using the fixed point approximation. Causal2 corresponds to values computed using (21) and Causal4

corresponds to the ones computed using (LABEL:c4).

δ δ-mod. δ-IR

Causal2 Causal4 Euclidean Causal2 Euclidean Causal2 Euclidean

θ 0.722 0.902 0.630 0.649 0.544 0.658 0.602
θ´ −0.953 −1.222 −1.116 −0.880 −0.995 −1.105 −1.090

TABLE 5 | Renormalization scheme dependence and Causal-Euclidean
difference with both methods.

Renorm. Scheme Causal vs. Euclidean

Full 0.019 0.012
Fixed p. a. 0.049 0.084
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Henson model differs from the exact values in Benchmark Results
by 0.31 from the CDT value and 0.27 from the Euclidean one. We
also observe a 4% spread of these values depending on the field
configuration used for projection, which is a significantly lower
spread than the difference with the analytic values. This is
however consistent with the results obtained in [23], where a
similar difference from the analytic values was found. This was
also to be expected, because the presented calculation is
technically very similar to the calculation done in [23]. We
therefore expect that the truncation error improves in a
similar way as in [23] when the truncation is gradually
increased. This means that we expect the truncation error to
improve over the range of a few percent as one enlarges the
truncation, but also that there will remain a significant deviation
from the analytic results until the broken unitary Ward-Identity,
stemming from the variation of the kinetic term, is solved in a
self-consistent way.

We interpret our results as an encouragement for the
investigation of dually weighted tensor models for quantum
gravity: Already with the rather simple and elementary
techniques used in this contribution we were able to
investigate qualitatively the double scaling limit of the dually
weighted matrix model; analogous dually weighted tensor models
such as the one proposed in [22] can thus be treated with the
FRGE in a similar fashion. Our results indicate some practical
advise for these future investigations:

1) The one-loop structure of the FRGE can only couple
effective operators that differ by an index-dependent
contraction between two adjacent tensors, not more.
Therefore, to study the influence of an operator with
index-dependence in more than one contraction one
needs to include sufficient “intermediary” operators in
the truncation.

2) For analytical investigations it is possible to work with
abstract rigidity structures, that are defined through its
properties, such as Tr(Cm) � δm,2, however for numerical
investigations one needs a projection onto the truncation
and an explicit evaluation of the operator traces appearing
on the RHS of the flow equation. This evaluation of the
RHS requires an exact (or at least approximate) numerical
representation of the abstract structure encoded in the
rigidity matrix C. One might thus prefer the investigations
of models for which one has one of these numerical
representations at ones disposal.

3) If our present observations about the double scaling limit
are transferable then one sees that the existence of a fixed
point with certain characteristics can be found in rather
small truncations. However, the critical exponents found
in these truncations can be expected to differ significantly
from the exact values (which of course should be
accessible through lager truncations and optimized
renormalization schemes).

These general observations can serve as a guide of what to
expect in higher dimensions, where a modification of the
propagator can be used to suppress the Feynman diagrams

that lead to most significant deviations from foliated
spacetimes. Unfortunately, our observations do not have an
immediate implication for the existence of a physically viable
continuum limit in higher dimensions.

A RECIPE FOR CALCULATIONS

A detailed description of the recipe to do FRGE-calculations in
matrix and tensor models has been presented in [24]. We
essentially followed the recipe outlined there, but had to make
some adjustments due to the appearance of the rigidity matrix C,
which we present in the following.

A.1 Theory Space and Truncations
The theory space upon which we set up the flow equation must
include the action proposed in [1] and thus include the rigidity
matrix C. This action is invariant under the one-sided
transformation A→AO, for all matrices OTO � 1. These
actions can be expanded in terms of traces of products of ATA
and C. It is useful to organize the trace operators systematically
with increasing number of fields ATA. For a fixed number of fields
we observe that Tr((AuA)n1C/(AuA)nkC) defines a sequence
of k integers (n1,...,nk). Using cyclicity of the trace, we rotate the
trace such that we obtain the highest number in the base (max
{n1,...,nk}+1) number system, when (n1,...,nk) are taken as the
digits of a number in this system. Since we derive the beta
functions in a vertex expansion, it is useful to choose
truncations that contain only up to a fixed number of fields.
Moreover, as discussed in the text, the structure of the beta
functions decouples the bare action from many operators in such
a truncation. It is therefore useful to consider truncations that
contain only the operators that do not decouple.

A.2 Canonical Dimension
The canonical dimension of the operators can be derived from the
requirement that the beta functions possess a -expansion, since
one could not use them to investigate the continuum limit if it
were otherwise. The initial condition for this is that the couplings
that appear in the bare action possess the same scaling as
prescribed by the bare action proposed by Benedetti and
Henson, where the regulator is chosen in such a way that it
possesses the large N-scaling of the kinetic term. The vertex
expansion of the beta functions then provides a set of inequalities
that determines the scaling of the operators. The difference with
the pure matrix model case is that the appearance of the rigidity
matrix C appears on both sides of the flow equation, so that its
influence on the scaling arguments has to be taken into account.

A.3 Projection and Extraction of Beta
Functions
The most important adjustment to the recipe provided in [28]
concerns the projection onto the truncation and the derivation of
beta functions. The vertex expansion, the same as described in
[28], provides a lot of structural insight into the beta functions,
because it shows how operator traces can be converted into traces
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over products of ATA and C with the insertion of at most one
regulator-dependent factor. These traces are not of the form of
the operators that occur in the truncation, so one needs to find a
projection onto the truncation. This is usually done by evaluating
both sides of the FRGE on a family of field configurations that is
large enough to distinguish all operators in the truncation, while
one chooses them in such a way that the calculation is
computationally feasible.

We have provided several families of field configurations that
one can use to project onto the truncation, but this is not enough

to evaluate both sides of the flow equation due to the appearance
of the rigidity matrix C in the traces. In order to evaluate the
traces, one needs an explicit expression of C in the presence of the
regulator terms.
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