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Chimera and Solitary states have captivated scientists and engineers due to their peculiar

dynamical states corresponding to co-existence of coherent and incoherent dynamical

evolution in coupled units in various natural and artificial systems. It has been further

demonstrated that such states can be engineered in systems of coupled oscillators

by suitable implementation of communication delays. Here, using supervised machine

learning, we predict (a) the precise value of delay which is sufficient for engineering

chimera and solitary states for a given set of system’s parameters, as well as (b) the

intensity of incoherence for such engineered states. Ergo, using few initial data points

we generate a machine learning model which can then create a more refined phase

plot as well as by including new parameter values. We demonstrate our results for

two different examples consisting of single layer and multi layer networks. First, the

chimera states (solitary states) are engineered by establishing delays in the neighboring

links of a node (the interlayer links) in a 2-D lattice (multiplex network) of oscillators.

Then, different machine learning classifiers, K-nearest neighbors (KNN), support vector

machine (SVM) and multi-layer perceptron neural network (MLP-NN) are employed by

feeding the data obtained from the network models. Once a machine learning model

is trained using the limited amount of data, it predicts the precise value of critical delay

as well as the intensity of incoherence for a given unknown systems parameters values.

Testing accuracy, sensitivity, and specificity analysis reveal that MLP-NN classifier is better

suited than Knn or SVM classifier for the predictions of parameters values for engineered

chimera and solitary states. The technique provides an easy methodology to predict

critical delay values as well as intensity of incoherence for that delay value for designing

an experimental setup to create solitary and chimera states.

Keywords: multiplex network, delay, solitary states, chimera states, 2-D lattice, machine learning algorithms

1. INTRODUCTION

In the year 2002, a new area was introduced in the field of nonlinear dynamics when Kuramoto
et al. brought to light the phenomenon of occurrence of symmetry breaking in a system of
identically coupled oscillators [1]. Apart from synchronous and asynchronous states, they identified
a remarkable hybrid dynamical structure where both the asynchronous and synchronous regions
coexisted in a system of identical oscillators. Later, this mixed state of coherence and incoherence
was termed as “chimera,” coined by Strogatz and Abrams [2]. Initially identified in a system
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of identical Kuramoto oscillators, the chimera state has been
pinpointed in a variety of other network models such as
FitzHugh-Nagumo oscillators [3, 4], Rössler oscillators [5], van
der Pol oscillators [6], coupled Rulkov maps [7], coupled maps
[8], coupled chaotic oscillators [9], multi-layer neuronal models
[10], Morris-Lecar neurons [11], modular neural network [12],
neuronal network model of the cat brain [13], and data-driven
model of the brain [14]. Over the years, the researchers have
spotted similar fascinating chimeric patterns and labeled them as
virtual chimera [15], traveling chimera [16], breathing chimera
[17], spike-burst chimera states [18], and others [19, 20]. Several
approaches were made to provide an analytical explanation for
the emergent chimera state [21, 22]. A comprehensive review on
the development of chimera states in a variety of systems can be
found in [23, 24].

Recently, another chimera-like pattern, the solitary states,
has attracted tremendous attention of the scientific community.
The word solitary originated from Latin “solitarius” stands
for “alone” or “isolated.” In solitary states, unlike chimeric
patterns, a few identical oscillators are split off from different
isolated locations in the synchronized cluster, possessing
different frequencies and phases. Hence, k-solitary states
comprise k isolated elements [25]. Recently, the existence
of solitary states has been demonstrated in a network of
ensembles having attractive and repulsive interactions at
the edge of synchrony [26] and partial synchrony [27],
inertial Kuramoto model [28], oscillators with negative
time-delayed feedback under external forcing [29], identical
populations of Stuart-Landau oscillators [30], FitzHugh-
Nagumo neurons in the oscillatory regime [4], and neuronal
oscillators and coupled chaotic maps in the presence of
delayed links [31]. The occurrence of solitary states can be
observed in power grid networks in which individual grid-
units gradually desynchronize during a partial or complete
blackout [32].

Furthermore, in real-world complex systems, a set of
interacting units may have different types of interactions among
them, with each type of interaction affecting functionality
of other types. In such scenarios, the multiplex (multilayer)
framework turns out to be an apt contender in representing
different dynamical processes acting on the same set of units
through different layers comprising different genres of links
having different connectivity among the same set of interlinked
nodes [33–35]. Recently, the investigations pertaining to the
emergence of chimera states and solitary states have been
extended to multilayer networks subjected to a variety of
dynamical models [36–42].

The occurrence of chimera or solitary states have been
designed through experimental setup comprising Huygens clock
mechanical oscillators [43], coupled candle-flame oscillators
via quenching and clustering [44], modular networks of
electrochemical oscillations [45], and locally and non-locally
coupled Stuart-Landau oscillator circuits [46].

Furthermore, machine learning techniques have been
successfully being applied for prediction of system properties or
emergent phenomena covering a broad areas of interdisciplinary

research which ranges from non-linear dynamics, quantum
physics, astrophysics to bio-medics [47–49]. The field of complex
systems and nonlinear dynamics has also witnessed a recent
spurt in the use of machine learning techniques, particularly
in characterization or identification of a variety of system
properties or phenomena. For instance, the machine learning
algorithms have been successfully implemented in community
detection in networks [50], finding fixed points attractors [51],
spatiotemporal chaotic systems [52], detecting phase transition
[53], prediction of chaotic systems [54], and identification of
chimera states [55].

In the present work, by employing machine learning
techniques we predict the value of delay for engineering chimera
or solitary state for a given set of systems parameters. First off,
we generate chimera state and solitary state in two altogether
different network architectures, 2-D lattice and multiplex
network. The presence of delay in neighboring connections of
a node in a 2-D lattice structure gives rise to ripples of wave
like chimera states, labeled as rippling chimera. Whereas, for the
occurrence of solitary states, inter-layer connections delays of a
multiplex network is established which prohibits few individual
node to fall within the synchronized clusters of identical nodes.
Note that the presence of delays in either neighboring links in 2-D
lattice or inter-links in multiplex network induces perturbations
only in the dynamical evolution of the nodes and does not
compromise with the structural symmetry of either network.
Thereafter, for given data sets we employ multiple machine
learning algorithms to train a model which is then used to predict
the critical value of delay for yielding the chimera state and the
intensity of the rippling chimera for a given choice of system’s
parameters. The K-nearest neighbors (KNN), support vector
machine (SVM), and multi-layer perceptron neural network
(MLP-NN) classifier are used utilizing the data generated from
the two models. The analysis unveil that multi-layer perceptron
neural network (MLP-NN) classifier is the best candidate in
precisely predicting the critical delay values for engineering
chimera and solitary states. Finally, we plot the entire phase space
diagram using the trainedmachine learningmodel describing the
parameter regimes having chimera and non-chimera states.

2. METHOD AND TECHNIQUE

This article considers two different coupled dynamics on network
models to demonstrate the implementation of machine learning
techniques for predicting the value of delays to design the
solitary and the chimera states. Furthermore, using the trained
machine learning model a more refined phase plots describing
various dynamical states for the entire parameter region are
plotted. In the following, first we discuss the coupled dynamics
on network models to demonstrate occurrence of chimera and
solitary states by introducing delays in the coupling between pairs
of oscillators in their respective network structures. Thereafter,
we will describe the machine learning techniques used here
to create a model for predicting delay values for engineering
chimera and solitary states.
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FIGURE 1 | (A) Schematic diagram of 100 identical nodes networked in a 2-D lattice formation assuming periodic boundary condition. (B) Schematic diagram of a

multiplex network of two globally coupled networks having mirror inter-layer links. For a suitable choice of systems parameters, the state of multiplex network (B)

demonstrating coherence for undelayed inter-layer links and (C) demonstrating solitary states in the presence of a few delayed interlayer links.

2.1. Chimera States in 2-Dimensional
Lattice
We consider N nodes, each having 4 nearest neighbors, arranged
in a 2-dimensional lattice formation assuming periodic boundary
condition (see Figure 1A), with the local dynamics at each node
governed by the Kuramoto oscillators. Such 2-D lattice exhibits
coherence at large coupling strength. However, when a delay is
introduced in each neighboring link of a randomly selected node,
referred as delayed node, the delayed node and its neighboring
then start exhibiting incoherence in the synchronous chunk, thus
giving rise to chimera. The presence of delays in the coupling
links for a node means that the information the node receives
from its neighbors are delayed in time.

Thus the evolution of phase of an un-delayed and a delayed
node i is respectively given by

θ̇i = ω + µ

N
∑

j=1

Aij sin (θj(t − τi)− θi(t)), (1)

where θi (i= 1, . . . ,N) denotes the phase of ith node, ω denotes
the identical intrinsic frequency of the nodes, µ is the coupling
strength and τi is the value of delay introduced in the links of
ith node. For delayed nodes τi 6= 0 and for non-delayed nodes
τi = 0. Aij is the element of adjacency matrix of the network
defined as.

Aij =

{

1 if i and j are connected,

0 if, otherwise.

2.2. Solitary States in Multiplex Network
To demonstrate the occurrence of solitary states by setting up a
discrete arrangement of delayed inter-layer links in a multiplex

network, we begin with considering a multiplex network of two
identical globally connected rings (of size N) whose nodes obey
the dynamics of Kuramoto oscillators. Figures 1B,C illustrate a
schematic representation of a multiplex network in the absence
and the presence of delayed inter-layer links. In the absence of
delay, both the layers of the multiplex network are in coherent
state at sufficiently large coupling strength. However, as the delay
is established in one of its inter-layer links, two end nodes of the
delayed link then get dislodged from their coherent state.

To fabricate the delayed environment in the system, we take
into account delayed couplings at a number of arbitrarily chosen
but discretely located inter-layer links in the multiplex network,
referred to as inter-layer delays for the sake of convenience.
Hence, time update of the dynamics of Kuramoto oscillators in
the multiplexed identical layers 1 and 2 under the delayed setting
is governed by:

θ̇1i = ω + µ1

N
∑

j=1

sin(θ1j − θ1i )+

σ 12 sin(θ2i (t − τi)− θ1i (t)),

(2)

θ̇2i = ω + µ2

N
∑

j=1

sin(θ2j − θ2i )+

σ 21 sin(θ1i (t − τi)− θ2i (t)),

(3)

where ω is the identical intrinsic frequency, θi is the phase of ith
(i= 1, . . . ,N) node, µ is the intra-layer coupling strength of a
layer and σ 12 = σ 21 = σ is the inter-layer coupling strength
representing the impact of dynamics of one layer on the other. τi
is an element of a delay-vector τ (of length N), which contains
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particulars about the position and the amplitude of delayed inter-
layer links and is directed along either σ 12 or σ 21. We assume
a fraction Nτ (significantly smaller than N) of arbitrarily picked
discrete locations in τ , which contains time-delays (τi 6= 0)
either drawn from a uniform random distribution or of identical
amplitude. The remaining fraction (N − Nτ ) of τ contains no
delay, i.e., τi = 0. Therefore, the number Nτ determines the
number of coveted solitary states, i.e., the system can have 1-
solitary state, 2-solitary states, or maximum possible Nτ -solitary
states in a layer. Also, the fraction of heterogeneous (identical)
(τi 6= 0) delays in τ would give rise to solitary points with unequal
(equal) phase displacement from the synchronous cluster.

2.3. Machine Learning Techniques
In this paper, three different supervised machine learning
algorithms are employed to predict the precise value of delay
to engineer solitary and chimera states for a given set of
network parameters. These machine learning algorithms are
K-nearest neighbors (KNN) classifier, support vector machine

(SVM) classifier and multi-layer perceptron neural network
(MLP-NN) classifier.

KNN classifier is a non-parametric classification algorithm,
which has been proven to be effective in numerous cases. If
we represent our data in a vector space, each point in this
vector space can be classified based on the classes of k nearest
neighbors of the data point. The k nearest neighbors are selected
based on a distance parameter. Most commonly, the euclidean
distance is used to determine the k nearest neighbors. Therefore,
KNN divides our data’s vector space into different regions
corresponding to different classes. The parameter k plays a very
important role in deciding how well KNN will perform while
dividing the vector space into different regions and classifying the
points in that vector space [56].

SVM classifier is a supervised machine learning model, which
performs by estimating the most appropriate hyperplane that can
separate our training data into two different distinct classes. The
hyperplane estimation is achieved by maximizing the distance
between the nearest training data point and the proposed

FIGURE 2 | Phase and frequency snapshot of 2-D lattice of N = 100 nodes and µ = 1. (A) Phase and frequency snapshot of the nodes in the absence of delay

(τ = 0). (B) A frequency snapshot and (C) a phase snapshot of the nodes in the presence of delay (τ = 10) in all the links to 45th node. (D) A heatmap representation

of the phases in (C). (B–D) Demonstrate rippling chimera states.
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hyperplane. This distance is also called margin. Simple SVM can
only produce linear hyperplanes. One can use kernels to estimate
nonlinear hyperplanes. A kernel functions by transforming
our training data from a lower-dimensional space into a
higher-dimensional space and estimating a linear hyperplane in
that higher-dimensional space. When the higher-dimensional
hyperplane is transformed back to the lower-dimension, we get
a nonlinear hyperplane that can classify each point of our data’s
vector space into different classes [56].

MLP-NN classifier functions by creating an artificial neural
network consisting of many different layers of nodes. There
exist three types of layers in a neural network, the input layer,
hidden layer, and the output layer. One can have any number
of hidden layers, and each hidden layer can have any number
of nodes. The neural network takes the input data and tries
to estimate the weights of each link between the nodes of the
network. A neural network can be called a trained model if
the algorithm can successfully estimate the weights of the links
such that the model can categorize our data into their correct
classes [56].

3. RESULTS

First off, we numerically demonstrate the occurrence of chimera
and solitary states in the models discussed in section 2.
Thereafter, we make predictions for the precise value of critical
delay required for the engineering chimera states and solitary
states by employing machine learning classifiers. Here, we
numerically demonstrate the occurrence of chimera and solitary
states in two distinct network structures.

3.1. Engineering Chimera States
To engineer chimera states, the intrinsic frequency of the N =

100 nodes are considered to be the same, i.e., ω = 1 and their
initial phases are assigned randomly in the interval [0, 2π]. We
begin with an un-delayed but synchronous 2-D lattice obtained
for coupling constant µ = 1 as shown in Figure 2A. Starting
from a set of initial random phases, after sufficiently high intra-
layer coupling strength, all the oscillators settle into the steady
phase with constant frequency (ω = 1). However, when a delay
is instituted in all the neighboring links to a node (say 45th node)
of the lattice, this produces the perturbation in the neighboring
links and hence giving rise to chimera states (see Figures 2B,C).
Such emergent chimera pattern resembles to the ripples on the
surface of water, originating from the delayed (ith) node, hence is
termed as rippling chimera states.

When the lattice evolves in the presence of delay at
neighboring links to a node (say 45th node), as expected
the phase and the frequency of the delayed node (45th)
and its neighboring nodes (for example: 35th and 46th) get
desynchronized from their respective synchronous clusters (rest
of the nodes). Nevertheless, the rest of the nodes remain
synchronous and their frequency still closely follows the intrinsic
frequency. Moreover, a gradual steep fall in the amplitude of
both the phase and frequency starting off the delayed node
through neighboring nodes until the rest synchronous chunk is
quite apparent from Figures 2B,C, mimicking the ripples on the
surface of synchronous cluster. This phenomena is also reflected
from Figure 2D, the heatmap representation of the phases of the
nodes for a delay present in the neighboring links of 45th node.
The desynchronized delayed node and its neighboring nodes are
referred here as drifting oscillators. Thus, the inclusion of delayed

FIGURE 3 | Snapshots of the layers of the multiplex network displaying (A) a flat frequency profile with undelayed inter-layer links (B) introduced delay profile at

inter-layer links (C) Phase and (D) frequency profile for the solitary state with introduced delayed interlayer links. System parameters are µ1 = 0.5, µ2 = 3 and σ = 1.

Frontiers in Physics | www.frontiersin.org 5 April 2021 | Volume 9 | Article 513969

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kushwaha et al. Machine Learning Assisted Chimera States

FIGURE 4 | Snapshots of the layers of the multiplex network with (top row) different inter-layer delay profile, resulting in (mid row) Phase; (bottom row) frequency

profile for (A) 2- (B) 5- (C) 10- solitary states with the introduced inter-layer delays (as depicted in top row), respectively.

links to a node give rise to the rippling chimera states, whereas the
delayed node and its neighbors form the incoherent regime and
the rest of the nodes remain part of the synchronous regime.

3.2. Engineering Solitary States
Solitary states are spatiotemporal patterns obtained from the
dislodgement of a few nodes from the main synchronous
cluster, which possess frequencies different than that of the
synchronous cluster. To exhibit the emergence of solitary states
in the multiplex network with the aid of inter-layer delays, we
select initial phases of the nodes drawn randomly from the
interval θ

1,2
i ∈ [0, 2π). We start off with an un-delayed but

synchronized multiplexed rings, each of 100 nodes, which is
obtained for intralayer coupling constants µ1 = 0.5, µ2 =

3 and interlayer coupling constant σ = 1 as shown in
Figure 3A. Now the presence of delay in one of the interlayer
links (with end nodes i, i = 50,N+50; see Figure 3B) exhibits
dislodgement of the phases (frequencies) of the interconnected
nodes from their respective phase (frequency) synchronized
clusters (see Figures 3C,D) resulting in two 2-solitary states, one
for each layer. Note that the choice of µ1 = µ2 (one yielding
synchronous clusters) can also result in splitting off phases from
the main synchronous clusters; however, this does not induce
dislodgement in frequencies of the same nodes, hence can not be

delineated as solitary states. A mismatch in intra-layer coupling
strength µ1 and µ2 ensures splitting off the frequencies along
with the phases of the end nodes of inter-layer delays. In similar
fashion, 2Nτ solitary states are accrued from the presence of
Nτ delayed inter-layer links as shown in Figure 4. Figures 4A–C
corresponding to Nτ = 2, 5, and 10 exhibit 4, 10, and 20-
solitary states.

Delay is integral to our scheme to get solitary states. The
phase difference between the dislodged nodes and the bulk of
synchronous nodes can be different; however, the corresponding
frequency mismatch remains almost the same for any value
of delay for a set of structural parameters µ1,µ2, and σ . The
presence of delay in an inter-layer link makes the dynamics of
the nodes at its two ends either slower or faster than the rest
bulk of synchronized nodes. Therefore, the employed scheme
allows us to settle on the appropriate values for the delay and
the inter-layer coupling strength (σ ), which can substantially
change the frequencies of the end nodes of the inter-layer
delays than those of the rest of the nodes, yielding pronounced
solitary states.

Note that besides generating tailored solitary states, the
employed scheme can generate chimera states as well when the
fraction of delays are installed in a string of inter-layer links
instead of globally spread ones.
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3.3. Implementation of Machine Learning
Techniques
In this section, three different supervised machine learning
algorithms trained on the input data obtained from simulations
in 3.1 are used for the model-free prediction of factors
determining or controlling the intensity of chimera and solitary
states emergent in different network structures.

3.3.1. Predicting Intensity of Rippling Chimera and

Critical Delay Using Machine Learning
Here, we make the prediction for the intensity of chimera
states using machine learning classifiers discussed in section 2.
To generate the data used in training the machine learning
models, the network is allowed to evolve in time (using RK4
algorithm with time-steps 1t = 0.01) for different values of
coupling constant and delay. The coupling constant is varied
from 0.5 to 2 with interval of 0.075. The delay is varied from
0 to 1 with interval of 0.05 and from 1 to 20 with interval
of 1. Total 800 simulations are carried out and the number of
drifting oscillators is recorded at the end of each simulation.
Phase diagram is then plotted using the raw data obtained
from the simulations (Figure 5a). Figure 5a unveils that the data
contains a lot of noise, which arises due to the inaccuracies in
the numerical simulations. From the inspection of data, only one
boundary can be drawn with certainty as shown in Figure 5b.
This diagram provides a parameter space for which synchronized
and chimera regimes are distinguishable, however it lacks in
capturing some useful information that our data contains. For
instance, the exact number of drifting oscillators or the intensity
of chimera state can not be discovered by the inspection of
this diagram.

To construct amore detailed phase diagram,machine learning
techniques are used. The data is tabulated in three columns
where first, second, and third column contain the value of µ,
τ , and number of drifting oscillators corresponding to the pair

of delay and coupling constant, respectively. The data structure
looks like Table 1. The data is randomly split into the training
and the testing set in the ratio of 4:1. Our task here is to train
a machine learning model to predict the number of drifting
oscillators for an input pair of µ and τ . The number of drifting
oscillators is calculated for each pair of µ and τ at the end
of numerical simulation as shown in Table 1. The number of
drifting oscillators is determined from the number of points in
the node index vs frequency plot (e.g., Figure 2B), which are far
apart from the natural frequency of the oscillators.

Machine learning algorithms have hyperparameters which
determine how well a trained machine learning classifier will
perform on a given data. In order to get the best possible
predictive model which an algorithm is capable of generating,
one needs to find the optimal hyperparameters for that algorithm,
which depend on the given dataset. One by one, we provide
the details of hyperparameters for the three algorithms put
into practice.

TABLE 1 | Data structure for Rippling data: there are 800 rows in total in this table.

Coupling constant Delay No. of drifting oscillators

: : :

: : :

0.875 0.5 0

0.875 0.6 9

0.875 0.7 13

: : :

1.1 1 21

1.1 2 21

: : :

: : :

FIGURE 5 | (a) Phase diagram for 2D lattice in two parameter space of τ and µ. This phase diagram is plotted using the data which is directly obtained from the

simulations. (b) This is a filtered version of (a). All the regions in (a) with positive values for “number of drifting oscillators” are merged here to form green region, which

represents chimera state. The number of drifting oscillators in blue region is zero, which represents a synchronized state.
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FIGURE 6 | Validation curve for KNN obtained using 5-fold cross validation of data. The parameter K is varied from 1 to 20. The value of K at which a KNN model

yields high training accuracy as well as high validation accuracy is the optimum value of K for the dataset. K = 1 leads to overfitting as in that case the training

accuracy is 1 but the validation accuracy is very low. The validation curve suggests that the best possible KNN model that one can obtain for our dataset is for K = 5.

Blue and orange line represent training set accuracy and validation set accuracy, respectively.

TABLE 2 | Parameters for Machine learning models trained using dataset of 2D lattice network.

KNN SVM MLP-NN

Description Value Description Value Description Value

K 5 Regularization Parameter 10

Total number of layers 4

Number of hidden layers 2

Number of nodes in each hidden layer 30

Weight Function Uniform Kernel EBF

Number of nodes in the output layer 8

Optimizer Adam

Learning rate 10−3

Distance Metric Euclidean Gamma 0.5

L2 Penalty 10−4

Activation ReLU

Batch size 200

Epochs 200

(a) KNN: The validation curve is plotted to find the optimal
hyperparameter K for KNN as shown in Figure 6. The optimal
hyperparameters for KNN is given in Table 2.

(b) SVM: SVM has three hyperparameters which are
kernel, regularization parameter, and gamma. To find the
optimal hyperparameters for SVM, the grid search analysis

is performed. The optimal hyperparameters for SVM is
given in Table 2.

(c) MLP-NN: All the optimal hyperparameters and other
information about the MLP-NN is given in Table 2.
Next 1,000, 1,000, and 100 models are generated for KNN, SVM,
and MLP-NN, respectively, by choosing different training sets at
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random for each iteration. The final prediction for the number
of drifting oscillators using KNN, SVM, and MLP-NN classifiers
is obtained by aggregating the results of these 1,000 KNN, 1,000
SVM, and 100 MLP-NN models.

Training accuracy measures how well an algorithm learns
from the training data whereas testing data measures how
well an algorithm can train a model which can classify a
data which it has never seen before. Higher value of testing
accuracy is more desirable than higher value of training accuracy.

TABLE 3 | Accuracy of different algorithms.

Algorithm Training accuracy Testing accuracy

KNN 85.449 77.66

SVM 85.455 80.821

Neural Network 83.012 82.725

High training accuracy but low testing accuracy can mean
that the algorithm is over-fitting our data. Table 3 shows that
out of the three algorithms, neural network is the best at
classifying any unknown data. The lower value of training
accuracy for MLP-NN is due to the fact that MLP-NN is able
to identify the noise present in the training data (Figure 5a).
It classifies the noisy data-points into their correct classes
(Figure 7c), which lowers it’s training accuracy as compared to
KNN (Figure 7a) and SVM (Figure 7b) which are not good
at classifying the noisy data-points into correct classes. The
phase diagrams obtained using each algorithm (Figures 7a–c)
shows that out of the three algorithms, neural network is
significantly better at segregating different regions in a phase
space (τ -µ) corresponding to different intensities of chimera.
Figures 8A–C show the confusion matrix for KNN, SVM, and
MLP-NN classifiers, respectively. Tables 4, 5 show the sensitivity
and specificity of each algorithm, respectively. Comparisons of

FIGURE 7 | Phase diagrams of 2D lattice in τ and µ parameters space employing (a) KNN, (b) SVM, and (C) MLP-NN algorithm. Here, the region boundaries are

determined using a trained machine learning model. These are filled contour plots where each color represents a different value for “number of drifting oscillators”

found in the engineered chimera state. (a) Using KNN algorithm: the value of parameter K = 5 for training this model is obtained using validation curve analysis (see

Figure 6). (b) Using SVM algorithm: RBF kernel are used while training this SVM model. The value of parameters C = 10 and gamma = 0.5 is obtained used grid

search analysis. (c) Using MLP-NN algorithm: ReLU activation function is used while training this MLP-NN model. Apart from the input and output layer, the artificial

neural network used in this algorithm contains 2 hidden layers with 30 nodes each. (d) The behavior of critical delay as a function of µ for a 2D lattice network. The

values of critical delay in this plot are calculated using a trained MLP-NN machine learning model.
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FIGURE 8 | (A) Confusion matrix for classification of intensity of chimera in a 2D lattice network using a trained (A) KNN model (B) SVM model and (C) MLP-NN

model. In (A–C), numbers on x and y axis correspond to different values of “total number of drifting oscillators” found in a 2D lattice network. (D) Confusion matrix for

classification of state of a multilayer network using a trained MLP-NN model. In (D), on the x and y axis, 0 represents a synchronized state and 1 represents a

solitary state.

sensitivity and specificity for each algorithm confirm that MLP-
NN is the best one out of the three algorithms in identifying
the noise present in the training data and classifying the
noisy data-points into their correct classes. Therefore, MLP-NN
algorithm stands out in predicting the intensity of chimera state
in a system.

For a value of coupling constant, the minimum value of delay
which transitions the network from a synchronized to chimera
state is known as critical delay of the network corresponding to
that value of coupling constant. The trained MLP-NN machine
learning model was used to predict the exact values of critical
delay for a set of coupling constant values (Figure 7d). To predict
the exact value of critical delay corresponding to a coupling
constant, µ is kept fixed and τ is increased from τ = 0 in the
steps of 0.001 and the final collective behavior of the network

TABLE 4 | Sensitivity of different algorithms for 2D lattice network.

Sensitivity

Algorithm Zero One Five Nine Thirteen Twenty

one

Twenty

five

Twenty

nine

Knn 1 0 0 0.817 0.676 0.949 0.166 0

SVM 0.995 0 0 0.796 0.669 0.955 0.166 0

Neural network 0.984 0 0 0.72 0.633 0.964 0 0

for each pair of µ and τ is predicted using the MLP-NN model.
The smallest value of τ for which the MLP-NN model predicted
the final collective state to be a chimera, is the critical delay
corresponding to the given value of µ. Using this technique,
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TABLE 5 | Specificity of different algorithms for 2D lattice network.

Specificity

Algorithm Zero One Five Nine Thirteen Twenty

one

Twenty

five

Twenty

nine

Knn 0.98 0.999 1 0.965 0.953 0.902 1 1

SVM 0.975 1 1 0.967 0.958 0.892 1 1

Neural network 0.969 1 1 0.966 0.953 0.879 1 1

TABLE 6 | Data structure for Solitary data: there are 8,000 rows in total in this

table.

Interlayer coupling Intralayer coupling Delay State

: : : :

: : : :

3.60 0.86 0.50 0

3.60 0.88 0.50 0

3.70 0.1 0.50 1

: : : :

2.00 0.20 2.00 1

2.00 0.22 2.00 0

: : : :

: : : :

TABLE 7 | Sensitivity and specificity of MLP-NN predictive model for multilayer

network.

Sensitivity Specificity

0 (Sync.) 1 (Solitary) 0 (Sync.) 1 (Solitary)

0.9951 0.9802 0.9802 0.9951

TABLE 8 | Parameters for neural network model trained using dataset of

multilayer network.

Description Value

Total number of layers 4

Total number of hidden layers 2

Number of nodes in each hidden layer 30

Number of nodes in the output layer 2

Optimizer Adam

Learning rate 10−3

L2 Penalty 10−4

Activation ReLU

Batch size 200

Epochs 200

critical delay corresponding to any value of coupling constant
can be found. The advantage of using a ML model to find critical
delay is that it is very fast as we don’t have to run any simulation
once the machine learning model is trained, to predict those
values of critical delays.

3.3.2. Predicting Value of Critical Delay for

Emergence of Solitary State
Here, we precisely forecast the value of critical delay required to
delineate solitary states using the machine learning algorithms.
First, the coupled dynamic Equations (2) and (3) are allowed to
evolve for different values of interlayer coupling strength (σ ) and
intra-layer coupling strength of layer 1 (µ1). µ2 = 3 is kept
fixed in all the analysis done in this section. In total 1,600 such
simulations are performed and the frequency difference between
the delayed nodes and rest of the synchronized nodes is recorded
at the end of each simulation. This is performed for 5 different
values of delay, i.e., 0, 0.5, 1, 2, 4. Therefore, the total number
of simulations performed are 8,000. For a given pair of values
of inter-layer and intra-layer coupling, the system can achieve
solitary state if a necessary amount of delay is applied to the
system. It is rather difficult and computationally demanding to
find the exact value of delay at which the system transits from the
synchronized to the solitary state for given values of inter-layer
and intra-layer coupling strength.

For that matter, we use machine learning techniques to find
the precise value of the critical delay for a given set of values of
inter-layer and intra-layer coupling strength.

The data that is used to train our model is tabulated in
four columns where first, second, third and fourth column
contain the values of interlayer coupling constant (σ ), intra-layer
coupling constant (µ1), delay (τ ), and 0 (1) for the synchronized
state (solitary state), respectively. A system is solitary or not
is decided by looking at the frequency difference between the
excited (delayed) node and a synchronized node. If the frequency
difference is more than threshold value of 0.01 the system’s state
is then delineated as solitary state. The data structure looks like
Table 6.

In order to predict the values of critical delay corresponding
to any given set of values for inter-layer and intra-layer coupling
strength, one trains a machine learning model to predict the final
state [synchronized (0) or solitary (1)] of the multilayer network
after feeding the input values of µ1, σ , and τ . The value of delay
is increased by 0.001 in each iteration while keeping the values
of µ1 and σ fixed. The prediction of MLP-NN model for each
combination of µ1, σ , and τ is then recorded for each iteration.
The lowest value of delay is recorded for which the network
makes transition from a synchronized state to solitary state. This
way the value of critical delay is obtained for a given pair of µ1

and σ .
We have seen for a 2D lattice network that MLP-NN is

the algorithm best suited to train a machine learning model
to predict the exact value of critical delay. Therefore, we use
MLP-NN again for generating a prediction model fed on the
dataset of the emergent solitary states in multilayer network (see
Table 8). The data is randomly split into training and testing set
in the ratio of 4:1. Parameters selected for the neural network
are shown in Table 7. We first generated 50 neural network
models with randomly chosen different training sets for each
iteration and then the output is averaged for each model to
obtain a final value of the critical delay. The confusion matrix
for the MLP-NNmodel is shown in Figure 8D. We also study the
sensitivity and the specificity of the MLP-NN model as shown in
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FIGURE 9 | The behavior of critical delay as a function of (a) µ1 and (b) σ for a multiplex network with σ = 2.81 and µ1 = 0.43, respectively. (c) Exhibits a heatmap in

µ1 and σ parameters space for the multiplex network. The colorbar represents the value of critical delay. The values of critical delay in (a–c) are calculated using a

trained MLP-NN machine learning model. (d) The critical delay as a function of µ1 for the multiplex network with σ = 3.82. Each line corresponds to a different value

of threshold for frequency difference between the desynchronized node and the synchronized nodes, to determine if a state is solitary or not. For a value of threshold

between 0.001 and 0.02, the predicted value of the critical delay using machine learning model does not see any significant change. Once the value of threshold

exceeds 0.02, the machine learning model starts yielding bad predictions.

Table 7. Using the trained multi layer perceptron neural network
model, the exact value of the critical delay can be calculated
for any pair of interlayer and intra-layer coupling strength
(Figures 9a–c).

The impact of the threshold for frequency difference to
differentiate between solitary state and synchronized state
is also studied (see Figure 9d). It is observed that if the
value of threshold frequency difference is low then changing
the threshold value does not have any significant effect
on the prediction of the critical delay but as soon as
the threshold is changed to a larger value such as a
value >0.02 then the machine learning model starts giving
wrong predictions.

4. CONCLUSION

In this paper, different supervised machine learning algorithms
have been employed for the model-free prediction of factors
characterizing the intensity of chimera and solitary states. We
demonstrated success of the scheme for two different model
systems namely, 2-D lattice and multilayer network. First,
chimera states (solitary states) are constructed by instituting
delays in the neighboring connections for a selected node (a
few isolated interlayer connections) in a 2-D lattice (multiplex
network) of Kuramoto oscillators. Next, three machine learning
algorithms, K-nearest neighbors, support vector machine and
multi-layer perceptron neural network are then put into practice
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to train the data obtained from the evolution of two network
models for the prediction of intensity of rippling chimera states
and the value of critical delay to characterize solitary states. It
is found that multi-layer perceptron neural network (MLP-NN)
classifier makes the most precise prediction in identifying the
possible desynchronized oscillators in the rippling chimera states
and the value of delay required to tailor the solitary states for
a given set of multiplex structural parameters. Furthermore, the
trained machine learning model was used to plot the entire phase
diagram for the rippling chimera and the solitary state.

To conclude, we demonstrated the success of powerful and
model-free machine learning algorithms in tailoring the chimera
and the solitary states and anticipate that this investigation
would be fruitful in broadening the scope of machine learning
techniques in characterizing other dynamical properties and
phenomena such as occurrence of explosive synchronization.
The study is particularly useful is accessing the systems
parameter for experimental setup toward engineering chimeras
and Solitary states.
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