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A bidimensional (2D) thermotropic liquid crystal (LC) is investigated with Molecular
Dynamics (MD) simulations. The Gay-Berne mesogen with parameterization GB(3, 5,
2, 1) is used to model a calamitic system. Spatial orientation of the LC samples is probed
with the nematic order parameter: a sharp isotropic-smectic (I-Sm) transition is observed
at lower pressures. At higher pressures, the I-Sm transition involves an intermediate
nematic phase. Topology of the orthobaric phase diagram for the 2D case differs from the
3D case in two important respects: 1) the nematic region appears at lower temperatures
and slightly lower densities, and 2) the critical point occurs at lower temperature and slightly
higher density. The 2D calamitic model is used to probe the structural behavior of LC
samples under strong confinement when either planar or homeotropic anchoring prevails.
Samples subjected to circular, square, and triangular boundaries are gradually cooled to
study how orientational order emerges. Depending on anchoring mode and confining
geometry, characteristic topological defects emerge. Textures in these systems are similar
to those observed in experiments and simulations of lyotropic LCs.
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1 INTRODUCTION

Bulk materials exhibit properties imbued by their underlying chemical makeup: the packing of and
interactions between atoms and/or molecules impart characteristic traits. On the other hand,
metamaterials are synthetically produced and depend more on the relative positioning of
building blocks within the structure. Such a trait allows metamaterials to achieve novel
properties not exhibited by bulk materials (prominently of an electromagnetic and/or an optical
nature). This has facilitated the expansion and miniaturization of existent technologies [1, 2].

Building blocks capable of molecular recognition are essential in the bottom-up production of
metamaterials [3–7]. Specifically, complementary moieties can display the ability to “latch” in
solution, onto a substrate, or in a combination of scenarios to produce desirable architectures. The
threshold concentration of building blocks and formation steps are some issues to consider when
optimizing their fabrication [8]. Structural properties in a metamaterial will remain stable provided
the interaction strength between units withstands thermal fluctuations in the medium. Bottom-up
approaches exploit this feature to circumvent the use of mechanical intervention. Production is
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scaled by merely increasing the amounts of reactants and relying
on system kinetics for product formation. Packing specificity can
be modulated by carrying out the assembly under spatial
confinement [9–15]. Many fabrication protocols have been
optimized by mimicking the strategies latent in biomolecular
systems [4, 16, 17].

The solvent is a key component in the production of
metamaterials, which must effectively disperse building blocks
and stabilize noncovalent interactions holding structures
together. Self-assembly reliant on the chemical
complementarity embedded in building blocks relegates the
solvent to a passive role, serving in large measure as a
dispersing agent. A paradigm shift is to screen solvents for an
active role in the generation of metamaterials [18–22]. In this
scenario, the solvent provides additional bottom-up control that
extends the gamut of attainable targets [23–26].

The solvent “paradigm shift” is exemplified in the elastic forces
mediated within a liquid crystal (LC) fluid. The intrinsic
anisotropy of LCs facilitates spatially ordered mesophases.
Solvent order at certain state points can be disturbed in the
presence of colloidal inclusions, resulting in topological defects
that exert static and dynamic control. Because of their ability to
spatially “communicate,” topological defects can couple (obeying
topological charge rules) to yield specific colloidal arrangements,
including dimers [27–38], wires (i.e., chains) [21, 28, 35, 39–44],
and arrays [21, 31–34, 36–38, 43, 45, 46]. Solvents recruited as
active agents contributing to the self-assembly of metamaterials
enhance a variety of structural possibilities.

Much research has been devoted to three-dimensional (3D)
self-assembly [25], though a two-dimensional (2D) variant
continues to be of interest from an exploratory perspective
[47–55] as well as in applied technologies [1, 56]. Optimal
function is achieved via slab geometry in many devices,
including optoelectronic/photonic materials [57–61], sensors
[60, 62–68], display technologies [69–71], smart glass [72, 73],
spatial light modulators [74–77], and tunable filters [78–81].
However, dimensionality plays an essential role in the type
and extent of structural order that a condensed phase can
maintain [52, 82–88]. When coupling the elastic forces of
topological defects in LC media, colloidal ordering induced via
a substrate can differ significantly from that observed via
topological mediation in the bulk [21, 24, 25, 35, 36]. Slab
assembly becomes relevant in 3D colloidal arrangements
because it yields intermediates: metamaterials are finalized
upon “stacking” slabs in layer-by-layer synthesis to achieve a
target 3D structure [89–91].

In this work, we focus on two aspects of a thermotropic
calamitic LC fluid relevant to colloidal self-assembly: 1) the
changes in topology of the solvent phase diagram due to a
reduction in dimensionality from 3D to 2D, and 2) the
mesophase behavior of the solvent under strong confinement
in slab geometry. The Gay-Berne (GB) model [92] is used here
because it captures salient mesogenic features and has a relatively
low computational overhead. Prior work with the GB mesogen
has focused on different mesophases in bulk 3D systems [93–98].
Additionally, surface-induced ordering (i.e., anchoring) via
boundary walls has been studied in thin films [99], droplets

[100], and toroidal cavities [101]. Several GB parameterizations
have reproduced nematic and smectic phases [102–104]. More
recently, a discotic parameterization has been used to explore
nematic and columnar phases [105–109], providing insight on
structural and dynamic measurements at the molecular level
[110–112]. The recognition of specific design principles has
stimulated the attainment of novel targets [27].

Despite serving as a point of reference for 3D phenomena, the
phase behavior of a strictly 2D thermotropic GB LC system has
been limited [113, 114]. On the experimental front, optical
microscopy commonly provides information on quasi-2D
samples, and in most cases, data merely reflect 2D projections
of an underlying 3D system [56, 115]. Renewed interest in the
organization of rigid biopolymers as effective 2D systems (in bulk
and under confinement) has led to new and interesting textures
observed under strong confinement [116–122]. Simple
simulation models reproduced the phenomenology observed in
2D [123–126]. Because those efforts focused on lyotropic liquid
crystals, we extend the field by considering a thermotropic fluid.
Specifically, we explore how shape of the confining area and type
of anchoring induced by boundary walls affect mesophase
behavior.

2 MODEL AND METHODS

The GB model is a generalization of the Lennard-Jones potential
defining the interaction between anisotropic molecules. Each
molecule i is represented as an ellipsoid having a center-of-
mass position ri and a unit vector êi along the principal
(major) axis denoting its orientation (Figure 1).

The intermolecular interaction between the ith and jth
mesogens is written as

FIGURE 1 | Schematic defining the degrees of freedom and parameters
associated with the GB(3, 5,2, 1) mesogens. Molecular axes are defined by unit
vectors êi and êj . The center-to-center unit vector r̂ij tempers the interaction potential
relative to mesogen-mesogen orientation, affecting both length [Eq. 2] and
energy [Eq. 5] scales. The interaction potential is scaledby amodel length σ0 defined
with respect to the side-side length σss. The end-end length σee is used to define the
molecular aspect ratio; for the parameterization used in this work, σee/σss � 3.
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UGB(rij, êi, êj) � 4 ε(r̂ij, êi, êj) [Ξ−12
ij − Ξ−6

ij ], (1)

where rij � ri − rj and the scaled distance is given by

Ξij � 1
σ0

[ rij − σ(r̂ij, êi, êj) + σ0 ], (2)

where σ0 the width of the mesogen (i.e., the minor axis) and rij �∣∣∣∣rij∣∣∣∣ is the magnitude of the intermolecular (center-to-center)
separation vector. The relative orientation of mesogens within the
mediummust be taken into account to regulate the strength of the
intermesogen interaction. This requires a fully specified function
of a general variable ω,

Γ(ω) � 1 − ω[c2i + c2j − 2ω ci cj cij
1 − ω2 c2ij

], (3)

where ci � êi · r̂ij, cj � êj · r̂ij, cij � êi · êj, and r̂ij � rij/
∣∣∣∣rij∣∣∣∣ is the

unit (center-to-center) separation vector. The orientation-
dependent length scale (range) parameter σ(r̂ij, êi, êj) is
computed as

σ(r̂ij, êi, êj) � σ0[Γ(χ)]− 1/2 (4)

Here, χ � (κ2 − 1)/(κ2 + 1), where κ � σee/σ0 � σee/σss is the
length-to-width (aspect) ratio of the mesogen (Figure 1). The
strength anisotropy function ε(r̂ij, êi, êj) is defined by the
product

ε(r̂ij, êi, êj) � ε0[ε1(êi, êj)]][ε2(r̂ij, êi, êj)]μ, (5)

where the exponents ] and μ are adjustable parameters. The
energy anisotropy functions are defined as

ε1(êi, êj) � [1 − χ2(êi · êj)2]− 1/2 (6)

and

ε2(r̂ij, êi, êj) � Γ(χ′). (7)

The parameter χ′ depends on the ratio of the potential well
depths corresponding to side-side (ss) and end-end (ee)
configurations, κ′ � εss/εee. More specifically, χ′ � [(κ′)1/μ − 1]/
[(κ′)1/μ + 1].

The GB model uses four parameters conventionally
represented as GB(κ, κ′, μ, ]). Previous work has shown that
specific parameter sets reproduce thermodynamic and
structural properties of experimental systems [105, 107, 127].
A complete phase diagram of the 3D GB model is available for
GB(3, 5, 2, 1) [104, 128–132], which corresponds to a calamitic
mesogen. Moreover, this parameterization has been used to
investigate intermolecular interactions in nematic samples
[133–135]. Simulations have been previously reported for GB
discotic mesogens focused on tracing changes in phase behavior
under confinement [99, 130, 136–140] and in droplets [141]. The
reader interested in additional parameterizations is referred to
previous work [127, 129, 135, 142–146].

The GB(3, 5, 2, 1) parameterization is used in this work to
elucidate the role that dimensionality plays on mesophase
behavior. Shown in Figure 2 are representative interaction
energy curves as a function of intermesogen distance for
different relative orientations. For the GB(3, 5, 2, 1) mesogen,
the side-side arrangement is preferred over other
configurations, a feature that promotes the nematic phase at
reasonably accessible temperatures. The GB(3, 5, 2, 1)
parameterization was chosen because it has been extensively
used as a model for prolate LCs, such as the alkylbiphenyl
mesogen family.

Confined systems were modeled with walls constructed from
an array of spherical (i.e., circular in 2D) particles. The mesogen-
wall interaction is obtained by taking the limit of Eqs. 1 and 2
when one of the interacting mesogens becomes a sphere (i.e., a
wall particle) [147–149]. In that limit, the range parameter and
strength anisotropy functions are given by

σw(r̂ij, êj) � σ0[1 − χ(r̂ij · êj)2]− 1/2 (8)

and

εw(r̂ij, êj) � ε0[1 − χ′w(r̂ij · êj)2] (9)

where

χ′w � 1 − (εh/εp)1/μ. (10)

For Eqs. 8–10, the ith molecule denotes a wall-type particle,
the jth molecule refers to a mesogen, εh corresponds to the energy
scale for homeotropic anchoring (when êj is locally perpendicular
to the confining wall), and εp represents the energy scale for

FIGURE 2 | Intermlecular potential for the GB(3, 5, 2,1) mesogen as a
function of intermesogen distance. Representative mesogen arrangements
are highlighted to emphasize how UGB(r) is tempered according to relative
mesogen-mesogen orientation.
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planar anchoring (when êj is locally parallel to the confining
wall). Anchoring conditions can thus be controlled by adjusting
these two parameters.

We focus on a strictly 2D thermotropic liquid crystal in this
work: “flat” ellipsoidal mesogens evolve in a plane. All results
reported herein were generated by performing MD simulations
in the canonical (NAT, where A is constant area for 2D,
analogous to NVT where V is constant volume in 3D) and
isothermal-isobaric (NPT) ensembles. Translational and
rotational equations of motion were integrated using the
velocity-Verlet algorithm [150]. For bulk samples, in either
the NAT or NPT ensembles, the time step used was δt � 0.001.
For systems in confined regions, the time step used was
δt � 0.002. The coupling parameters for simulations were as
follows: Qthermostat � 10, Qbarostat � 1, 000. In the case of bulk
samples, the simulation cell was defined with lateral
dimensions Lx and Ly : periodic boundary conditions were
applied in all directions. All simulations were initialized at
relatively high temperature (i.e., Tp � kBT/ε0 � 1.0). Low-
temperature states (Tp � kBT/ε0 � 0.1) were attained by
cooling the system gradually. Velocities were assigned from
a Maxwell-Boltzmann distribution and the moments of inertia
were set to I � (σ20/20)(κ2 + 1) [151]. All particles were set to
unit mass (m � 1) and intermolecular potentials were
truncated at a cutoff length scale rc � (κ + 1)σ0 for
expediency. Interparticle potentials were shifted to enforce a
smoothly vanishing force at rc. Simulations were run for at
least 5 × 106 time steps for equilibration and another 5 × 106

time steps for production.
Global orientational order is characterized by the orientational

traceless tensor Q [152], specialized for the 2D case [153] as

Q � 1
N

∑N
i�1
(2êi ⊗ êi − I), (11)

where ⊗ denotes the tensor product and I is the identity matrix.
Diagonalization of Q leads to two eigenvalues (λ+ and λ−). The
nematic (Maier-Saupe) order parameter S is defined in terms of
the highest eigenvalue λ+, so that S � λ+. The parameter S is equal
to zero for isotropic configurations and increases as orientational
order increases.

3 RESULTS AND DISCUSSION

3.1 Orientational Order and Liquid Structure
In this section, we present data for a series of samples of
increasing size (mesogen number) to elucidate the
orientational order of the LC liquid as a function of
temperature. We focus here on characterizing differences due
specifically to sample size, considering N ∈ {500, 1000, 4000}.
Profiles for the Maier-Saupe order parameter are presented in
Figure 3.

The nematic order parameter S displays a state with low
orientational order (S ≈ 0) when the temperature exceeds a
threshold depending on the pressure Pp of the system. The
onset of orientational order shows a jump in S, such that S ≈ 1
when the temperature is sufficiently low: this high value of S
indicates the formation of the smectic phase. An isotropic-
smectic transition (I-Sm) takes place without an intermediate
nematic state when the pressure is sufficiently low (i.e., for
Pp < 2). As the pressure increases, the I-Sm transition occurs
by passing through a range of nematic state points,
corresponding approximately to 0.25< S< 0.75. A finite-size
effect in S becomes pronounced at higher pressure
(i.e., Ppa2): the transition appears less sharp as the
ensemble size N decreases.

To investigate how finite-size effects are pronounced at higher
pressures, simulations were performed for Pp � 5.0. At this
pressure, finite-size effects are accentuated. We performed
simulations for N ∈ {10000, 50000}. As can be gleaned from
Figure 3, results for the larger two systems are close to one
another. Hence, finite-size effects seemingly dissipate when the
ensemble size is at least of O(104).

To gain insight into the local structure, we analyzed MD
snapshots forN � 50, 000 when Pp � 5.0 via a temperature sweep
shown in Figure 4. An eightfold magnification of a portion of the
ensemble is shown to aid discerning local mesophase order: the
entire ensemble for each temperature is provided in the
Supplementary Material. At high temperatures, translational
entropy overwhelms the cohesive energy of the LC medium
and a disordered phase is the most stable state accessible to
the system. At intermediate temperatures, the ensemble displays
small clusters of mesogens with correlated orientation. Clustering
grows in spatial extent with decreasing temperature. At even
lower temperatures, the cohesive energy overtakes the decreasing
translational entropy: a liquid phase with smectic order ensues at
these temperatures. The smectic mesophase is stabilized

FIGURE 3 | Order parameter S as a function of temperature Tp at
different pressures Pp ∈ [5.0 (black), 3.0 (red), 1.0 (orange), 0.5 (blue), 0.1
(green)] in the bulk 2D system. The response in the order parameter S is
compared among different ensemble sizes: N ∈ [500 (triangles), 1,000
(squares), 4,000 (diamonds)]. Finite-size effects become pronounced as
pressure increases (and correspondingly at higher temperature). For Pp � 5.0,
results are also included for N ∈ [10,000 (dashed line), 50,000 (circles with
error bars)]. Finite-size effects appear to dissipate when N is of O(104).
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(i.e., structural order increases in spatial extent) upon further
cooling.

3.2 Phase Diagram Topology and
Mesophases
A major contribution in this study is the orthobaric
[i.e., (ρp,Tp)] phase diagram for the 2D system shown in
Figure 5. The 3D case for the same GB mesogen is overlaid
with gray and red shadows: such a comparison enables us to
appreciate how dimensionality affects topology. The phase
diagram for the 3D case was previously reported [128, 129].
The 2D phase diagram reported here was obtained from MD
simulations performed in the isothermal-isobaric (NPT)
ensemble. The pressure Pp was controlled with a Nosé-Hoover
barostat; samples consisted of N � 1, 000 mesogens. Phase
regions were outlined by acquiring data for
Pp ∈ {0.1, 0.5, 1.0, 2.0, 3.0, 5.0}. For each pressure, the system
was initialized at a high temperature and gradually cooled in
steps of ΔTp � 0.02 for at least 5 × 106 time steps.

When compared to the 3D case, the 2D system displays an
evident shift in its phase boundaries. This behavior is justified by

the fact that thermal fluctuations are stronger when the
dimensionality of the system is reduced [154–156]. The 2D
system shows that the nematic phase emerges over a wider
(nearly double) range in temperature at slightly lower
densities. Additionally, the isotropic phase occupies a larger
area of stability in the (ρp,Tp)-plane, extending to lower
temperatures and higher densities in 2D. The critical point
appears at a lower temperature (Tp

c � 0.202 ± 0.007) and
slightly higher density (ρpc � 0.159 ± 0.002) when compared to
the 3D system. Our result for the 2D critical point compares very
well with previous work [157, 158].

It is instructional to consider how finite-size effects influence
the topology of the phase diagram. For this purpose, three
isobars are included: Pp ∈ {0.1, 3.0, 5.0}. For the (ρp,Tp)
region shown, only slight deviations from the boundaries in
the top-right corner would be expected. Boundaries shown on
the phase diagram serve as a guide to the eye based on the
available data extracted from the isothermal-isobaric
simulations. The slim regions conveyed by solid lines are best
estimates that outline the limits of phase stability and do not
represent true coexistence lines.

We note that isothermal-isobaric simulations can probe
metastable regions that elude canonical simulations without

FIGURE 4 | Snapshots of the bulk 2D system when Pp� 5.0 and N � 50, 000. Shown is an eightfold-magnified region of the ensemble to discern the local order of
mesogens. Configurations are arranged as a temperature sweep (arrows) with each configuration showing its temperature Tp. Mesogens are colored according to
orientation, as indicated by the color bar (bottom).

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 6228725

Calderón-Alcaraz et al. A Bidimensional Gay-Berne Calamitic

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


yielding coexistence (i.e., phase separation). The complete
mapping of such phase boundaries would require free energy
calculations, such as Gibbs ensembles [159–161], Gibbs-

Duhem integration [162], histogram reweighting [163], or
the Frenkel-Ladd method [164], among others. The
coexistence of mesophases, however, was verified by
independent canonical simulations. A sample cooling
routine highlighting the coexistence of different
mesophases is shown in Figure 6. The snapshots trim out
sparsely populated regions of the full simulation cell observed
at lower temperatures.

3.3 Confinement: Point Defects and Domain
Walls
The extent to which mesophase structure is affected by
strong confinement was also explored in this study.
Inspiration for this lies in the rich structures and
topological defects observed in lyotropic systems: the
similarity in the textures observed in our thermotropic
system highlights certain universal traits of topological
defects. From an applications standpoint, this is of
interest because topological defects can be recruited for
the self-ordering of colloidal particles. In the case of a 2D
system, this arrangement has the potential to yield
monolayers of colloidal particles with specific positional
constraints.

The 2D LC samples were confined within walls consisting of
an array of fixed Lennard-Jones particles. Three different
confinement scenarios were considered in this study: circular,
square, and triangular. The mesogen packing fraction was kept
approximately at η � 0.75 in all cases to ensure a nematic state
point consistent with the bulk 2D phase diagram. As a point of

FIGURE 5 | The orthobaric phase diagram for the GB(3, 5, 2,1)
mesogen in 2D (lines) and 3D (gray shadow). The 2D critical point (diamond)
appears when ρpc � 0.159 ± 0.002 and Tp

c � 0.202 ± 0.007. The nematic
phase region is highlighted in both cases: 2D (blue shadow) and 3D (red
shadow). For 2D, the nematic region is stable over a wider Tp-range for a
slightly narrower ρp-range. Three specific isobars (dotted lines, labeled with
Pp ) are shown for comparison. Only the top-right region of the phase diagram
is most sensitive to finite-size effects as shown in the response of the order
parameter S in Figure 3.

FIGURE 6 | A representative cooling sweep in the NAT ensemble. Configurations are shown for an ensemble with N � 2, 000 and ρp � 0.10. The temperature Tp

decreases going from left to right over a narrow temperature window as shown. Snapshots of the simulation box have been trimmed to improve the visual clarity of the
more densely populated regions observed at lower temperature.
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reference, the packing fraction for a 2D hexagonal lattice
composed of circular units is η ≈ 0.907 [165].

To characterize the way the confining walls exert a structuring
effect on the mesogenic liquid, two anchoring conditions were
considered: homeotropic (εh/εp � 5.0) and planar (εh/εp � 0.2)
cases (Eq. 10). The nematic field emerging from the sample in the
bulk region displays a dominant direction. However, the
boundaries defining the confined area disrupt any such
dominant alignment. The resulting director field persists in
response to a delicate balance between anchoring conditions
imposed by the confining walls and the strong tendency of
neighboring mesogens to mutually align. As a result, this
synergy has the effect of stabilizing topological defects within
the confined region.

Data for circular confinement are shown in Figure 7.
Topological defects are sharply sensitive to the type of
anchoring. For homeotropic anchoring, the confinement
radius in this work affords a low-temperature director field
giving rise to two defects (with topological charge +1/2),
localized away from the wall but separated in relation to one
another. This behavior is consistent with density functional

theory predictions [119]. As temperature increases, the defects
move away from one another until they approach the wall: at
sufficiently high temperature (Tp ∼ 1.80), the defects dissipate to
yield a single, isotropic configuration. Such an outcome is
possible because the anchoring energies at the confining
surfaces are of finite strength. As can be seen in the
configuration snapshots, thermal fluctuations are sufficiently
strong to overcome the orientation induced by anchoring.

The situation changes for planar anchoring: at low
temperature, two defects are present, but they are located at
opposite poles of the confining circle. As a result, the so-called
polar nematic configuration is observed. This state is
distinguished by a layered mesophase similar to the smectic-
like state that dominates all but two thin surface shells on
opposite ends (Tp ∼ 0.20). Another configuration also
observed at the lowest temperature possesses boundary
disclinations, but the main topological defect consists of point
defects appearing on opposite poles of the circular boundary
(refer to the discussion on circular boundary confinement in
Section 3.4). Radially oriented domains, like those observed in
the case of homeotropic anchoring, are absent in planar

FIGURE 7 | The 2D GB(3,5, 2, 1) mesogen system confined by a circular boundary. The series from top to bottom represents a cooling sweep: temperature is
indicated by the centered temperature bar. Renditions are shown for homeotropic (εh/εp � 5.0, two leftmost columns) and planar (εh/εp � 0.2, two rightmost columns)
anchoring. Each set of columns on either side of the temperature bar correspond as follows: configuration snapshots (left) and scalar field of the local order parameter
(right).
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anchoring. Nematic-like order emerges as temperature increases
for both anchoring modes under circular confinement. Although
two polar defects persist at high temperature in the two systems
(Tp ∼ 1.20), the type of anchoring can be distinguished by
probing the relative distance between defects: the separation
between the two defects is always larger (nearing the boundary
wall) for planar anchoring. As expected, internal order is mostly
lost in both types of anchoring at sufficiently high temperatures.
Our observations are consistent with those documented for a 2D
fluid of hard rods in the high-density regime, with a sufficiently
small aspect ratio [124].

Square confinement leads to more interesting textures as
shown in Figure 8. The reduced symmetry of the boundary
frustrates global mesophase order. For both anchoring
conditions, domain walls (i.e., boundaries between different
orientationally ordered domains) appear at sufficiently low
temperature (Tp ∼ 0.60). For homeotropic anchoring, domain
walls define three regions: a large region with a local director
rotated π/2 radians in relation to the local directors characterizing
two small regions oriented in the same direction. Mesogens in the
large region are highly oriented and form smectic-like layers.
These domain walls signal domains possessing different
orientations: the free energy is minimized in the system when

curved interfaces develop. Moreover, two equivalent states are
possible by symmetry: one shown in the snapshots and another
obtained by rotating the snapshot π/2 radians. In this way, the
system displays two-fold degeneracy. This effect was previously
observed using a density-functional approach [166]. An external
field can lead to an interchange between the two states
dynamically, as previously reported [167].

When planar anchoring is operative under square
confinement, four domain walls (i.e., five regions) appear.
Four small regions display an orientation aligned with the
confining walls and one interior region with a local director
tilted slightly in relation to adjacent lateral domains. This
arrangement is strikingly similar to the W ∼ 40L system
studied by Cortes et al. [117]. It is plausible for the interior
region to eventually reorient to create a single region where the
local director matches that of two adjacent lateral domains. As
temperature increases, those domain walls disappear and two
point defects arise close to the corners of the square. The
structural behavior of the LC sample under square
confinement agrees with previous theoretical models [121].

The most severe confining geometry in this study is the
triangular boundary, the results of which are shown in
Figure 9. For either type of anchoring, three orientationally

FIGURE 8 | The 2D GB(3, 5, 2, 1) mesogen system confined by a square boundary. Data are arranged as in Figure 7.
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ordered regions are discernible at low temperature: the resulting
topological defects are driven by an order that permeates from the
boundary wall toward the center of the confining region. This
effect promotes the formation of a near-centered defect in either
anchoring case at fairly high temperature (Tp ∼ 2.00). Streak
disclinations radiate from the point defect, signaling the partition
between distinctly oriented regions giving rise to three domain
walls only when the temperature is sufficiently low (Tp ∼ 0.60).

Although the scalar fields of the order parameter under
triangular confinement for both anchoring cases are similar,
the two samples can still be differentiated when accounting
for local order. The approximate local directors
corresponding to the three oriented domains highlighted
in Figure 9 are rotated π/6 radians with respect to one
another. This difference arises from the coupling of the
anisotropic shape of the calamitic mesogen and the
underlying confining geometry. When placed at the center
of the triangular region, the set of directors for the
homeotropic sample point at the corners of the triangular
boundary; the analogous set for planar anchoring results in
the bisection of all sides of the triangular region. As expected,
the orientationally ordered regions and the streak

disclinations dissipate with increasing temperature, though
the point defect persists even at high temperature (Tp ∼ 1.40).

3.4 Dynamics of Confined Samples
Ancillary data from this work are ensemble trajectories given that
systems were evolved with MD simulations. Although static
information obtained from simulation snapshots is useful in
characterizing orientational order and topological defects, it is
equally important to probe the temporal behavior of mesophases.
To this end, trajectories were leveraged to probe dynamical
fluctuations in the fluid structure and the scalar field of the order
parameter. The Supplementary Material includes trajectory
visualizations for the systems in Figures 7–9. Each visualization
is labeled by temperature and anchoringmode. The timescale in each
case corresponds to approximately 3% of an entire simulation run.

The system under circular confinement with planar anchoring
at reasonably high temperatures already exhibits features
reminiscent of the polar defects stabilized at low temperatures.
However, such defects are accompanied by strong fluctuations in
intensity and positional alignment. As one point defect vanishes
another emerges in the same pole. For homeotropic anchoring,
point defects fluctuate in number, intensity, and position at high

FIGURE 9 | The 2D GB(3,5, 2, 1) mesogen system confined by a triangular boundary. Data are arranged as in Figure 7. A set of approximate local directors
highlighted for the lowest temperature (red arrows) enables differentiating between the two anchoring modes, as discussed in the main text.
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temperatures. Upon further cooling, the homeotropic sample
displays two point defects with minimal fluctuations in
position and intensity, immediately after two radially oriented
domains form. Before the central smectic-like region sets in, the
separation between the two point defects reaches a minimum.
Fluctuations in intensity are minimal at the lowest temperature
studied: the separation between point defects stabilizes at a
slightly larger distance (Tp ∼ 0.20) than before (Tp ∼ 0.80). In
the case of planar anchoring, point defects appear on opposite
poles of the circular boundary. Unlike the low-temperature
configuration in Figure 7, textures in the bulk region of the
confined area become richer when the smectic phase sets in:
boundary defects of fleeting intensity appear upon further cooling
for planar anchoring. However, polar defects persist prominently.

The behavior of topological defects upon sample cooling is
similar for both anchoring modes under square confinement. In
both cases, a highly fluctuating cross pattern with approximately
two point-like defects on opposite corners of the square is
observed. As soon as the sample reaches a temperature where
the smectic mesophase becomes favorable, the fleeting point-like
defects vanish: each anchoring case becomes distinguishable at
this point (Tp ∼ 0.60). For homeotropic anchoring, two
prominent domain walls persist, giving rise to three distinct
regions. For planar anchoring, four domain walls become
stable, demarcating five distinct regions. The domain walls,
although subdued when compared to the homeotropic case,
yield a rhomboidal pattern.

When comparing the two anchoring modes for triangular
confinement, the cooling history is very similar in both cases. A
point defect is characteristic of either case upon the slightest hint of
ordering. Three domain walls weakly form at high temperature
(Tp ∼ 1.00), although they are characterized by strong fluctuations
in position and intensity. Upon further cooling, the domain walls
assert their presence and a point defect becomes prominent in the
sample (Tp ∼ 0.60). As discussed in Section 3.3, due to the
similarity between the two anchoring cases, it is only possible to
distinguish the two samples by inspecting the relative arrangement
of local directors in each sample.

4 CONCLUSION

Bulk and confined 2D samples were explored for the Gay-Berne
mesogen with parameterization GB(3, 5, 2, 1). This model
calamitic exhibits a sharp isotropic-smectic (I-Sm) transition
at lower pressures (Pp < 2.0); at higher pressures (Ppa2.0),
the I-Sm transition involves an intermediate nematic phase.
Clusters of locally ordered mesogens reach a threshold size, at
sufficiently low temperatures, before the LC sample becomes
smectic. The nematic phase shows an extended region of stability,
nearly doubling in the temperature range at slightly lower
densities. The critical point shifts to a lower temperature and
a higher density compared to the analogous 3D system.

Confined samples were subjected to three boundary geometries:
circular, square, and triangular. In circular geometry, two point defects
emerge: for homeotropic anchoring, point defects are stable in the bulk
region of the boundary and remain at a nearly constant separation. For

planar anchoring, point defects gravitate toward opposite poles of the
boundary. In square geometry, no stable point defects are observed at
low temperatures. Instead, two distinct domain walls give rise to three
regions under homeotropic anchoring; the structure under planar
anchoring results in four interconnecting domainwalls, rhomboidal in
form, producing five regions. In triangular geometry, confinement
yields similar defects when comparing anchoring modes: three
domain walls “emanate” from a nearly centered point defect
yielding three regions. In this case, local directors must be
accounted for to differentiate between anchoring modes.

All systems were studied with MD simulations. The resulting
trajectories of confined 2D LC samples were visualized,
revealing a complex evolution of textures originating from
topological defects. Ordered domains at low temperatures are
prefaced with strong thermal fluctuations that cause spatial
variations in the mesophase at sufficiently high temperatures.
Within the mesophase, flickering in position and intensity of
topological defects is minimized at sufficiently low
temperatures. Both the confining geometry and anchoring
mode contribute to the type of defects observed.

Confined 2D LC systems provide a rich and exciting outlook.
An outstanding matter with an eye toward 3D metamaterials is
how disclinations couple when colloidal slabs are stacked.
Practicable systems could extend layer-by-layer protocols [7,
89, 90, 168–180], thus expanding the gamut of metamaterials
attainable by conventional 3D-based methods. Studies on the
switching mechanics by applying external fields (as opposed to
thermal tempering) would be of interest in the production of
devices and associated technologies. A characterization of
relevant timescales would offer an important perspective on
design principles. Structured colloidal assemblies via
topological defects could be exploited to yield colloidal
assemblies with screw/twist properties, thus amplifying the
availability of chiral materials.

DATA AVAILABILITY STATEMENT

The numerical model simulations upon which this study is based
are unwieldy to archive or to transfer. Instead, all information
needed to replicate the simulations is provided.

AUTHOR CONTRIBUTIONS

AC-A and JM-V performed bulk simulations, wrote post-
simulation analysis codes, and implemented data analysis. AC-
A carried out simulations for small-scale bulk samples as well as
strongly confined systems and visualized trajectories. JM-V
performed large-scale simulations of bulk samples via
parallelization. SH and AR-H contributed to the interpretation
of results and drafted relevant sections of the analysis. ES verified
results for bulk systems, interpreted dynamical trajectories of
strongly confined systems, and completed writing the
manuscript. JM-R conceived the study, wrote the Gay-Berne
simulation code, drafted initial versions of the manuscript, and
coordinated the direction of the project.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 62287210

Calderón-Alcaraz et al. A Bidimensional Gay-Berne Calamitic

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FUNDING

JM-V and JM-R are thankful for the computing time generously
provided under grant LANCAD-UNAM-DGTI-344. SH is grateful
for funding provided by projects UNAM-DGAPA-PAPIIT IA104319,
LANCAD-UNAM-DGTIC-276, and LANCAD-UNAM-DGTIC-087.

ACKNOWLEDGMENTS

JM-R gratefully acknowledges the computing resources
provided by the Laboratorio de Supercómputo y
Visualización en Paralelo (LSVP) at UAM-I. SH gratefully

acknowledges the technical support provided by Carlos Sair Flores
Bautista, Alejandro de León Cuevas, and Luis Alberto Aguilar Bautista
from the Laboratorio Nacional de Visualización Científica Avanzada
(LAVIS-UNAM), as well as by Beatriz Marcela Millán Malo from
CFATA-UNAM.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/
full#supplementary-material.

REFERENCES

1. Fedotov V. Springer Handbook of Electronic and Photonic Materials. 2nd ed.
Cham, Switzerland: Springer International Publishing (2017). 1351–77. chap.
Metamaterials.

2. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem
Soc Rev (2011) 40:2494–507. doi:10.1039/c0cs00184h

3. Whitesides GM, Love JC. The art of building small. Sci Am (2001) 285:38–47.
doi:10.1038/scientificamerican0901-38

4. Zhang S. Building from the bottom up.Mater Today (2003) 6:20–7. doi:10.1016/
s1369-7021(03)00530-3

5. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a
new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci
(2001) 6:11–6. doi:10.1016/s1359-0294(00)00081-9

6. Kotnala A, Zheng Y. Digital assembly of colloidal particles for nanoscale
manufacturing. Part Part Syst Charact (2002) 36:1900152. doi:10.1002/ppsc.
201900152

7. Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of
multilayers. Chem Rev (2014) 114:8883–942. doi:10.1021/cr400531v

8. Conti S, Cecchini M. Predicting molecular self-assembly at surfaces: a statistical
thermodynamics and modeling approach. Phys Chem Chem Phys (2016) 18:
31480–93. doi:10.1039/c6cp05249e

9. Israelachvili JN. Intermolecular and Surface Forces. Amsterdam, Netherlands:
Academic Press (2011). 503–76 p.
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entanglement in highly twisted chiral nematic colloids: twisted loops, Hopf

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 62287211

Calderón-Alcaraz et al. A Bidimensional Gay-Berne Calamitic

https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphy.2020.622872/full#supplementary-material
https://doi.org/10.1039/c0cs00184h
https://doi.org/10.1038/scientificamerican0901-38
https://doi.org/10.1016/s1369-7021(03)00530-3
https://doi.org/10.1016/s1369-7021(03)00530-3
https://doi.org/10.1016/s1359-0294(00)00081-9
https://doi.org/10.1002/ppsc.201900152
https://doi.org/10.1002/ppsc.201900152
https://doi.org/10.1021/cr400531v
https://doi.org/10.1039/c6cp05249e
https://doi.org/10.1103/PhysRevLett.101.237801
https://doi.org/10.5488/cmp.13.33603
https://doi.org/10.5488/cmp.13.33603
https://doi.org/10.1021/acsnano.6b05954
https://doi.org/10.1039/c7cc06110b
https://doi.org/10.1039/c7cc06110b
https://doi.org/10.1002/cphc.201900344
https://doi.org/10.1021/acs.jpcc.6b03553
https://doi.org/10.1021/acs.jpcc.6b03553
https://doi.org/10.1038/scientificamerican0901-78
https://doi.org/10.1016/j.addr.2003.10.047
https://doi.org/10.1038/nmat2206
https://doi.org/10.1098/rsta.2012.0266
https://doi.org/10.1073/pnas.1102130108
https://doi.org/10.1073/pnas.1102130108
https://doi.org/10.1126/science.1129660
https://doi.org/10.1103/revmodphys.84.497
https://doi.org/10.1039/C2SM25952D
https://doi.org/10.1073/pnas.1015831108
https://doi.org/10.1038/ncomms2486
https://doi.org/10.1126/science.275.5307.1770
https://doi.org/10.1126/science.275.5307.1770
https://doi.org/10.1039/c9ra05377h
https://doi.org/10.1073/pnas.1500998112
https://doi.org/10.1002/adfm.201400911
https://doi.org/10.1002/adfm.201400911
https://doi.org/10.1039/c3sm51167g
https://doi.org/10.1073/pnas.1301464110
https://doi.org/10.1073/pnas.1417178112
https://doi.org/10.1073/pnas.1417178112
https://doi.org/10.1038/nature11710
https://doi.org/10.1103/PhysRevLett.97.127801
https://doi.org/10.1103/PhysRevLett.99.247801
https://doi.org/10.1103/PhysRevLett.99.247801
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


links, and trefoil knots. Phys Rev E—Stat Nonlinear Soft Matter Phys (2011) 84:
031703. doi:10.1103/PhysRevE.84.031703

37. Hashemi SM, Ravnik M. Nematic colloidal knots in topological environments.
Soft Matter (2018) 14:4935–45. doi:10.1039/c8sm00539g
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