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Multi-view clustering has been deeply explored since the compatible and complementary
information among views can be well captured. Recently, the low-rank tensor
representation-based methods have effectively improved the clustering performance by
exploring high-order correlations between multiple views. However, most of them often
express the low-rank structure of the self-representative tensor by the sum of unfolded
matrix nuclear norms, which may cause the loss of information in the tensor structure. In
addition, the amount of effective information in all views is not consistent, and it is
unreasonable to treat their contribution to clustering equally. To address the above
issues, we propose a novel weighted low-rank tensor representation (WLRTR) method
for multi-view subspace clustering, which encodes the low-rank structure of the
representation tensor through Tucker decomposition and weights the core tensor to
retain the main information of the views. Under the augmented Lagrangian method
framework, an iterative algorithm is designed to solve the WLRTR method. Numerical
studies on four real databases have proved thatWLRTR is superior to eight state-of-the-art
clustering methods.

Keywords: clustering, low-rank tensor representation, subspace clustering, tucker decomposition, multi-view
clustering

INTRODUCTION

The advance of information technology has unleashed a multi-view feature deluge, which allows data
to be described by multiple views. For example, an article can be expressed in multiple languages; an
image can be characterized by colors, edges, and textures. Multi-view features not only contain
compatible information, but also provide complementary information, which boost the performance
of data analysis. Recently, [1] applied multi-view binary learning to obtain the supplementary
information frommultiple views. [2] proposed a kernelized multi-view subspace analysis method via
self-weighted learning. Due to the lack of label, clustering using multiple views has become a popular
research direction [3].

A large number of clustering methods have been developed in the past several decades. The most
classic clustering method is the k-means method [4–6]. However, it cannot guarantee the accuracy of
clustering since it is based on the distance of the original features and them are easily affected by
outliers and noises. Many researchers have pointed out that the subspace clustering method can
effectively overcome the above problem. As a promising technique, subspace clustering aims to find
clusters within different subspaces by the assumption that each data point can be represented as a
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linear combination of the other samples [7]. The subspace
clustering-basaed methods can be roughly divided into three
types: matrix factorization methods [8–11], statistical methods
[12] and spectral clustering methods [7,13,14]. The matrix
factorization-based subspace clustering methods perform low-
rank matrix factorization on the data matrix to achieve clustering,
but they are only suitable for noise-free data matrices and thus
loss of generalization. Although the statistical-based subspace
clustering methods can clearly deal with the influence of outliers
or noise, their clustering performance is also affected by the
number of subspaces, which hinders their practical applications.
At present, the spectral clustering-based subspace clustering
methods are widely used because they can well deal with high-
dimensional data with noise and outliers. Among them, two
representative examples includes sparse subspace clustering
(SSC) [13] and low-rank representation (LRR) [7] by
obtaining a sparse or low-rank linear representation of
datasets, respectively. When encountering multi-view features,
SSC and LRR can not well discover the high correlation among
them. To overcome this limitation, Xia et al. [15] applied LRR for
multi-view clustering to learn a low-rank transition probability
matrix as the input of the standard Markov chain clustering
method. Taking the different types of noise in samples into
account, Najafi et al. [16] combined the low-rank
approximation with error learning to eliminate noise and
outliers. The work in [17] used low-rank and sparse
constraints for multi-view clustering simultaneously. One
common limitation of them is that the above methods only
capture the pairwise correlation between different views.
Considering the possible high-order correlation of multiple
views, Zhang et al. [3] proposed a low-rank tensor constraint-
regularied multi-view subspace clustering method. The study in
[18] was inspired by [3] to introduce Hyper-Laplacian constraint
to preserve the geometric structure of the data. Compared with
most matrix-based methods [15,17], the tensor-based multi-view
clustering methods have achieved satisfactory results, which
demonstrates that the high-order correlation of the data is
indispensable. The above methods impose the low-rank
constraint on the constructed self-representative tensor
through the unfolding matrix nuclear norm. Unfortunately,
this rank-sum tensor norm lacks a clear physical meaning for
general tensor [19].

In this paper, we proposed the weighted low-rank tensor
representation (WLRTR) method for multi-view subspace
clustering. Similar to the above tensor-based methods [3,18],
WLRTR still stacks the self-representation matrices of all views
into a representation tensor, and then applies low-rank constraint
on it to obtain the high-order correlation among multiple views.
Different from them, we exploits the classic Tucker
decomposition to encode the low-rank property, which
decomposes the representation tensor into one core tensor and
three factor matrices. Considering that the information contained
in different views may be partially different, and the
complementary information between views contributes
differently to clustering, the proposed WLRTR treats the
singular values differently to improve the capability. The main
contributions of this paper are summarized as follows:

(1) We propose a weighted low-rank tensor representation
(WLRTR) method for multi-view subspace clustering, in
which all representation matrices are stored as a
representation tensor with two spatial and one view modes.

(2) Tucker decomposition is used to calculate the core tensor for
the representation tensor and the low-rank constraints are
applied to capture high-order correlation among multiple
views and remove redundant information. WLRTR assigns
different weights on the singular values in the core tensor to
differently treat singular values.

(3) Based on the augmented Lagrangian multiplier method, we
design an iterative algorithm to solve the proposed WLRTR
model, and conduct experiments on four challenging
databases to verify the superiority of WLRTR method over
eight state-of-the-art single-view and multi-view clustering
methods.

The remainder of this paper is organized as follows. Section 2
summarizes the notations, basic definitions and related content of
subspace clustering involved in this paper. In Section 3, we
introduce the proposed WLRTR model, and design an
iterative algorithm to solve it. Extensive experiments and
model analysis are reported in Section 4. The conclusion of this
paper is summarized in Section 5.

RELATED WORKS

In this section, we aim to introduce the notations, basic
definitions through this paper and the framework of subspace
clustering methods.

Notations
For a third-order tensor, we represent it using bold calligraphy
letter (e.g.,X ). The matrices and vectors are represented by upper
case letters (e.g., X) and lower case letters (e.g., x), respectively.
The elements of tensor and matrix are defined as X ijk and xij,
respectively. The l2,1 norm of matrix X is defined as

||X||2,1 � ∑
i

������∑
j
|xij|2

√
� ∑

j

∣∣∣∣∣∣∣∣xj∣∣∣∣∣∣∣∣2, where xj represents the j-th

column vector of X. The Frobenius norm of X is defined as
||X||F �

������∑
ij
|xij|2

√
. We denote the i-th horizontal, lateral and

frontal slice by X(i, :, :), X(:, i, :), X(:, :, i). The Frobenius norm
and L1 norm of tensor are ||X ||F �

�������∑
ijk
|X ijk|2

√
and ||X ||1 � ∑

i,j,k
|X ijk|.

For 3 −mode tensor X ∈ Rn1×n2×n3, the Tucker decomposition of X
is X � S ×1 U1 ×2 U2 ×3 U3. S ∈ Rn1×n2×n3 is the core tensor and
Ui ∈ Rni×ni (i � 1, 2, 3) is the orthogonal factor matrix. The Tucker
decomposition will be exploited to depict the low-rank property of the
representation tensor.

Subspace Clustering
Subspace clustering is an effective method for processing high-
dimensional data clustering. It divides the original feature space
into several subspaces and then imposes constraints on each
subspace to construct the similarity matrix. Suppose X �
[x1, x2,/, xn] ∈ Rd×n is a feature matrix with n samples, and
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d represents the dimension of one sample. The subspace
clustering model based on LRR is expressed as follows:

min
Z,E

||Z||* + β||E||2,1
s.t. X � XZ + E,

(1)

where ||Z||* denotes the nuclear norm (sum of all singular values
of Z). This model has achieved the promising clustering effect,
because the self-representation matrix Z represents the
correlation between samples, which is convenient to obtain the

final similarity matrix C � |Z|+|ZT |
2 . However, the above LRR

method is only suitable for single-view clustering. For the

dataset {X(v)}Vv�1 with V views, the effective single-view
clustering method is usually extended to multi-view clustering:

min
Z,E(v)

||Z||* + β∑V
v�1

∣∣∣∣∣∣∣∣E(v)∣∣∣∣∣∣∣∣2,1
s.t. X(v) � X(v)Z + E(v), (v � 1, 2,/,V),

(2)

The LRR-based multi-view method not only improves the
accuracy of clustering, but also detects outliers from multiple
angles [20]. However, with the increase of feature views, the above
models will inevitably suffer from information loss when fusing
high-dimensional data views. It is urgent to explore efficient
clustering methods.

WEIGHTED LOW-RANK TENSOR
REPRESENTATION MODEL

In this section, we first introduce an existing tensor-based multi-
view clustering method, and then propose a novel weighted low-
rank tensor representation (WLRTR) method. Finally, the
WLRTR is solved by the augmented Lagrangian multiplier
(ALM) method.

Model Formulation
In order to make full use of the compatible and complementary
information among multiple views, Zhang et al. [3] used LRR to
perform tensor-based multi-view clustering. The main process is
to stack the self-representation matrix of each view as a frontal
slice of the third-order representation tensor which is imposed
low-rank constraint. The whole model is formulated as follows

min
Z,E

||Z||* + β||E||2,1
s.t. X(v) � X(v)Z(v) + E(v), (v � 1, 2,/,V),
Z � Φ(Z(1),Z(2),/,Z(V)), E � [E(1); E(2);/; E(V)], (3)

where the tensor nuclear norm is directly extended from the

matrix nuclear norm: ||Z||* � ∑3
m�1

ξm
����Z(m)

����
p
, Z(m) is the

unfolding matrix along the m-th mode, ξm is a constant that

satisfies ∑3
m�1

ξm � 1, ξm > 0. However, this rank-sum tensor norm

lacks a clear physical meaning for general tensor [19]. In
addition, the meaningful information contained in each view
is not completely equal, so it is unreasonable to use the same

weight to penalize the singular values of Z(m) in the tensor
nuclear norm. In order to overcome these limitations, we
propose a novel weighted low-rank tensor representation
(WLRTR) method, which uses Tucker decomposition to
simplify the calculation of the tensor nuclear norm and
assigns different weights to the core tensor to take advantage
of the main information in different views. The proposed
WLRTR is formulated as:

min
Z,S,E,U1 ,U2 ,U3

||Z − S ×1 U1 ×2 U2 ×3 U3||2F + α||ω+S||1 + β||E||2,1
s.t. X(v) � X(v)Z(v) + E(v), (v � 1, 2,/,V),
Z � Φ(Z(1),Z(2),/,Z(V)), E � [E(1); E(2);/; E(V)],

(4)

where ω � c/|σ(Z)| + ϵ, c and ϵ are constants. α and β are two
nonnegative parameters. The WLRTR model consists of three
parts: the first term obtains the core tensor through Tucker
decomposition; the second term weights the core tensor to
preserve the main feature information, and uses the l1 norm
to encode the low-rank structure of the self-representing tensor;
since the errors are specific with respect to samples, the third term
uses the l2,1 norm to encourage columns sparse and eliminate
noise and outliers.

Optimization of WLRTR
In this section, we aim to use the ALM to solve the proposed
WLRTR model in Eq. 4. Since the variable Z is involved in
the objective function and constraint conditions, it is
difficult to directly solve the proposed WLRTR model. To
solve this problem, we use the variable-splitting technique
and introduce one auxiliary tensor variable Y. Therefore, the
Eq. 4 can be transformed into the following formulation:

min
Z,S,E,U1 ,U2 ,U3

||Z − S ×1 U1 ×2 U2 ×3 U3||2F + α||ω+S||1 + β||E||2,1
s.t. X(v) � X(v)Y(v) + E(v), (v � 1, 2,/,V),
Z � Φ(Z(1),Z(2),/,Z(V)), E � [E(1); E(2);/; E(V)],Z � Y.

(5)

Correspondingly, the augmented Lagrangian function of
constrained model in Eq. 5 is obtained by

L(Z,Y,S,E;U1,U2,U3,Θ,Π, ρ)�||Z − S ×1 U1 ×2 U2 ×3 U3||2F + α||ω+S||1+

β||E||2,1 + ρ

2
⎛⎝∑V

v�1

���������X(v) − X(v)Y(v) − E(v) + Θ(v)

ρ

��������
2

F

+
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Z − Y + Π

ρ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2F⎞⎠,

(6)

where Θ and Π are the Lagrange multipliers. ρ> 0 is the penalty
parameter. Then, each variable is updated iteratively by fixing the
other variables. The detailed iteration procedure is shown as
follows:
Update self-representation tensor Z: When other variables are
fixed, Z can be updated by

Z* � arg min
Z

||Z − S ×1 U1 ×2 U2 ×3 U3||2F +
ρ

2
(∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Z − Y + Π

ρ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2F).
(7)
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By setting the derivative of Eq. 7 with respect to Z to zero,
we have

Z* � 2S ×1 U1 ×2 U2 ×3 U3 + ρY − Π
2 + ρ

. (8)

Update auxiliary variable Y(v): Update auxiliary variable Y(v)
with fixed residual variables is equivalent to optimizing

Y(v)* � arg min
Y(v)

ρ

2
(∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣X(v) − X(v)Y(v) − E(v) + Θv

ρ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2F

+
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Z(v) − Y(v) + Π(v)

ρ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2F).

(9)

The closed-form of Y(v)* can be calculated by setting the
derivative of Eq. 9 to zero

Y(v)* � (ρI + ρX(v)TX(v))− 1 × (ρX(v)TX(v) − ρX(v)TE(v) + X(v)TΘv

+ ρZ(v) + Π(v)).
(10)

Update core tensor S: By fixing other variables, the subproblem
of updating S can be written as follows

Sp� arg min
S

||Z − S ×1 U1 ×2 U2 ×3 U3||2F + α||ω+S||1. (11)

According to [21], the Eq.(11) can be rewritten as

Sp � arg min
S

||S −O||2F + α||ω+S||1, (12)

where O � Z ×1 UT
1 ×2 UT

2 ×3 UT
3 . The closed solution S* is as

follows

S* � sign(O)max(|O| − ωα/2, 0). (13)

Update error matrix E: Similar to the subproblemsZ ,Y(v) and
S, the subproblem E is expressed as:

E* � arg min
E

β||E||2,1 + ρ

2
⎛⎝∑M

v�1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣X(v) − X(v)Y(v) − E(v) + Θ(v)

ρ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

⎞⎠
� arg min

E

β

ρ
||E||2,1 + 1

2
||E − F||2F ,

(14)

where F represents the matrix that vertically concatenates the
matrix X(v) − X(v)Y(v) + (1/ρ)Θv along the column. The j-th
column of optimal solution E* can be obtained by

E*(:, j) � ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖F(:, j)‖2 − β

ρ

‖F(:, j)‖2 F(:, j), if
β

ρ
< ‖F(:, j)‖2;

0, otherwise.

(15)

Update Lagrangian multipliers Θ,Π and penalty parameter ρ:
The Lagrangian multipliersΘ,Π and the penalty parameter ρ can
be updated by

Θvp � Θv + ρ(X(v) − X(v)Y(v) − E(v));
Πp � Π + ρ(Z − Y);
ρp � min{λpρ, ρmax}, (16)

where λ> 0 is to facilitate the convergence speed [22]. In order to
increase ρ, we set β � 1.5. ρmax is the max value of the penalty
parameter ρ. The WLRTR algorithm is summarized in
Algorithm 1.

Algorithm 1: WLRTR for multi-view subspace clustering
Input: multi-view features {X(v), v � 1, 2,/,V} ; parameter

α, λ, c;
Initialize: Z, S, E, Θ1, Π1 initialized to 0; ρ1 � 10− 3, β � 1.5,

tol � 10− 7, t � 1;
1: while not converged do
2: Update Zt+1 according to Eq. 8;
3: Update Y(v)

t+1 according to Eq. 10;
4: Update St+1 according to Eq. 13;
5: Update Et+1 according to Eq. 15;
6: Update Θ(v)

t+1, Πt+1, and ρt+1 according to Eqs. 16;
7: Check the convergence condition:
8:

∣∣∣∣∣∣∣∣X(v) − X(v)Y(v) − E(v)∣∣∣∣∣∣∣∣∞ ≤ tol,
∣∣∣∣∣∣∣∣Y(v) − Z(v)∣∣∣∣∣∣∣∣∞ ≤ tol;

9: end while
Output: Z* and Y*.

EXPERIMENTAL RESULTS

In this section, we conduct experiments on four real databases
and compare with eight state-of-the-art methods to verify the
effectiveness of the proposed WLRTR. In addition, we reported a
detailed analysis of the parameter selection and convergence
performance of the proposed WLRTR method.

Experimental settings

(1) Datasets: We evaluate the performance of WLRTR on three
categories of databases: news stories (BBC4view, BBCSport),
face images (ORL), handwritten digits (UCI-3views).
BBC4view contains 685 documents and BBCSport consists
of 544 documents, which belong to 5 clusters. We use 4 and 2
features to construct multi-view data, respectively. ORL
includes 400 face images with 40 clusters. We use 3
features for clustering on ORL database, i.e., 4096d
(dimension, d) intensity, 3304d LBP, and 6750d Gabor.
UCI-3views includes 2000 instance with 10 clusters. For
UCI-3views database, we adopted the 240d Fourier
coefficients, the 76d pixel averages and the 6d
morphological features to construct 3 views. Some examples
of ORL and UCI-3views are shown in Figure 1. Table 1
summarizes the statistic information of these four databases.

(2) Compared methods: We compared WLRTR with eight
state-of-the-art methods, including three single-view
clustering methods and five multi-view clustering
methods. Single-view clustering methods: SSC [13], LRR
[7] and LSR [23], which use nuclear norm, l1 norm and
least squares regression to learn a self-representing matrix,
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respectively. Multi-view clustering methods: RMSC [15]:
RMSC utilized the low-rank and sparse matrix
decomposition to learn the shared transition probability
matrix; LT-MSC [3]: LT-MSC is the first tensor-based
multi-view clustering by the tensor nuclear norm constraint
to learn a representation tensor; MLAN [24]: MLAN
performed clustering and local structure learning using
adaptive neighbors simultaneously; GMC [25]: GMC is a
graph-based multi-view clustering method; AWP [26]:
AWP is a multi-view clustering via adaptively weighted
procrustes. SMSC [27]: SMSC used non-negative
embedding and spectral embedding for multi-view clustering.

(3) Evaluation metrics: We exploit six popular clustering
metrics, including, accuracy (ACC), normalized mutual
information (NMI), adjusted rank index (AR), F-score,
Precision and Recall to comprehensively evaluate the
clustering performance. The closer the values of all
evaluation metrics are to 1, the better the clustering
results are. We run 10 trials for each experiment and
report its average performance.

Experimental Results
Tables 2–5 report the clustering performance of all comparison
methods on the four databases. The best results are highlighted in
bold and the second best results are underlined. From four tables,
we can draw the following conclusions: Overall, the proposed
WLRTR method has achieved better or comparable clustering
results on all databases over all competing methods. Especially
on the BBC4view database, WLRTR method outperforms all
competing methods on six metrics. As for the ACC metric, the
proposed WLRTR is higher than all methods on all datasets. In
particular, WLRTR method shows better results than single-view
clustering methods: SSC, LRR, LSR in most cases. This is because
the multi-view clustering methods fully capture the complementary
information among multiple views. The above conclusions have
verified the effectiveness of the proposed WLRTR method.

On the ORL database, the proposed WLRTR and LT-MSC
methods have the best clustering effect among all the comparison
methods. This shows that the tensor-based clustering methods can
well explore the high-order correlation of multi-view features.
Compared with LT-MSC method, WLRTR has improved ACC,

FIGURE 1 | Samples of (A) ORL and (B) UCI-3views databases.

TABLE 1 | Information of four real multi-view databases.

Categories Databases Instance Cluster View 1 View 2 View 3 View 4 View 5

BBC4view 685 5 4659d 4633d 4655d 4684d —

News stories BBCSport 544 5 3183d 3203d — — —

Face images ORL 400 40 4096d 3304d 6750d — —

Handwritten Digits UCI-3views 2000 10 240d 76d 6d — —

TABLE 2 | Clustering results on ORL database.

Method ACC NMI AR F-score Precision Recall

SSC 0.765 ± 0.008 0.893 ± 0.007 0.694 ± 0.013 0.682 ± 0.012 0.673 ± 0.007 0.764 ± 0.005
LRR 0.773 ± 0.003 0.895 ± 0.006 0.724 ± 0.020 0.731 ± 0.004 0.701 ± 0.001 0.754 ± 0.002
LSR 0.787 ± 0.029 0.904 ± 0.010 0.719 ± 0.026 0.726 ± 0.025 0.684 ± 0.029 0.774 ± 0.024
RMSC 0.723 ± 0.007 0.872 ± 0.012 0.645 ± 0.003 0.654 ± 0.007 0.607 ± 0.009 0.709 ± 0.004
LT-MSC 0.795 ± 0.007 0.930 ± 0.003 0.750 ± 0.003 0.768 ± 0.004 0.766 ± 0.009 0.837 ± 0.005
MLAN 0.705 ± 0.022 0.854 ± 0.018 0.384 ± 0.010 0.376 ± 0.015 0.254 ± 0.021 0.721 ± 0.020
GMC 0.633 ± 0.000 0.857 ± 0.000 0.337 ± 0.000 0.360 ± 0.000 0.232 ± 0.000 0.801 ± 0.000
AWP 0.753 ± 0.000 0.908 ± 0.000 0.697 ± 0.000 0.705 ± 0.000 0.615 ± 0.000 0.824 ± 0.000
SMSC 0.728 ± 0.000 0.885 ± 0.000 0.660 ± 0.000 0.669 ± 0.000 0.601 ± 0.000 0.755 ± 0.000
WLRTR 0.846 ± 0.019 0.920 ± 0.007 0.776 ± 0.016 0.781 ± 0.016 0.751 ± 0.022 0.815 ± 0.010
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AR and F-score metrics by 5.1, 2.6, and 1.3%, respectively. The
main reason is thatWLRTR takes the different contribution of each
view to the construction of the affinity matrix into consideration,
and assigns weights to it to retain important information. On the
other hand, WLRTR uses Tucker decomposition technology to
impose low-rank constraints on the core tensor instead of directly
calculating the tensor nuclear norm based on the matrix.

On UCI-3views and BBCSport databases, although MLAN is
better than WLRTR in some metrics, the clustering results of
MLAN on different databases are unstable, and even lower than
all single-view clustering methods on ORL database. In addition,
we can find that the results of the recently proposed GMCmethod
on the four databases cannot achieve satisfactory performance.
The reason may be the graph-based clustering methods: MLAN
and GMCusually use the original features to construct the affinity
matrix, however, the original features usually are destroyed by
noise and outliers.

Model Analysis
In this section, we conduct the parameter selection and
convergence analysis of the proposed WLRTR method.

Parameter Selection
We perform experiments on ORL and BBCSport databases to
investigate the influence of three parameters, i.e., α, β and c for the
proposed WLRTR method, where parameters α and β are
empirically selected from [0.001, 0.1] and c is selected from
[0.01, 0.2]. The influence of α and β on ACC is shown in the
first column of Figure 2. After fixing c, we find that when α is set to
a larger value, WLRTR can achieve the best result, which shows
that noise has a greater impact on clustering. Similarly, we fix the
parameters α and λ to analyze the influence of c onACC. As shown
in the second column of Figure 2, for the ORL database, when
c � 0.2, ACC reaches the maximum value. For the BBCSport
database, the value of ACC has a peak at c � 0.04, and when c

TABLE 4 | Clustering results on BBC4view database.

Method ACC NMI AR F-score Precision Recall

SSC 0.660 ± 0.002 0.494 ± 0.005 0.470 ± 0.001 0.599 ± 0.001 0.578 ± 0.001 0.622 ± 0.001
LRR 0.802 ± 0.000 0.568 ± 0.000 0.621 ± 0.000 0.712 ± 0.000 0.697 ± 0.000 0.727 ± 0.000
LSR 0.815 ± 0.001 0.589 ± 0.001 0.608 ± 0.002 0.699 ± 0.001 0.701 ± 0.001 0.697 ± 0.001
RMSC 0.775 ± 0.003 0.616 ± 0.004 0.560 ± 0.002 0.656 ± 0.002 0.703 ± 0.003 0.616 ± 0.001
LT-MSC 0.591 ± 0.000 0.442 ± 0.005 0.400 ± 0.001 0.546 ± 0.000 0.525 ± 0.000 0.570 ± 0.001
MLAN 0.853 ± 0.007 0.698 ± 0.010 0.716 ± 0.005 0.783 ± 0.004 0.776 ± 0.003 0.790 ± 0.004
GMC 0.693 ± 0.000 0.563 ± 0.000 0.479 ± 0.000 0.633 ± 0.000 0.501 ± 0.000 0.860 ± 0.000
AWP 0.904 ± 0.000 0.761 ± 0.000 0.797 ± 0.000 0.845 ± 0.000 0.838 ± 0.000 0.851 ± 0.000
SMSC 0.816 ± 0.000 0.601 ± 0.000 0.608 ± 0.000 0.709 ± 0.000 0.648 ± 0.000 0.781 ± 0.000
WLRTR 0.931 ± 0.003 0.805 ± 0.001 0.851 ± 0.002 0.886 ± 0.002 0.885 ± 0.001 0.887 ± 0.002

TABLE 5 | Clustering results on BBCSport database.

Method ACC NMI AR F-score Precision Recall

SSC 0.627 ± 0.003 0.534 ± 0.008 0.364 ± 0.007 0.565 ± 0.005 0.427 ± 0.004 0.834 ± 0.004
LRR 0.836 ± 0.001 0.698 ± 0.002 0.705 ± 0.001 0.776 ± 0.001 0.768 ± 0.001 0.784 ± 0.001
LSR 0.846 ± 0.002 0.629 ± 0.002 0.625 ± 0.003 0.719 ± 0.001 0.685 ± 0.002 0.756 ± 0.001
RMSC 0.826 ± 0.001 0.666 ± 0.001 0.637 ± 0.001 0.719 ± 0.001 0.766 ± 0.001 0.677 ± 0.001
LT-MSC 0.460 ± 0.046 0.222 ± 0.028 0.167 ± 0.043 0.428 ± 0.014 0.328 ± 0.028 0.629 ± 0.053
MLAN 0.721 ± 0.000 0.779 ± 0.000 0.591 ± 0.000 0.714 ± 0.000 0.567 ± 0.000 0.962 ± 0.000
GMC 0.807 ± 0.000 0.760 ± 0.000 0.722 ± 0.000 0.794 ± 0.000 0.727 ± 0.000 0.875 ± 0.000
AWP 0.809 ± 0.000 0.723 ± 0.000 0.726 ± 0.000 0.796 ± 0.000 0.743 ± 0.000 0.857 ± 0.000
SMSC 0.787 ± 0.000 0.715 ± 0.000 0.679 ± 0.000 0.762 ± 0.000 0.701 ± 0.000 0.835 ± 0.000
WLRTR 0.880 ± 0.002 0.736 ± 0.002 0.747 ± 0.001 0.806 ± 0.001 0.822 ± 0.001 0.791 ± 0.001

TABLE 3 | Clustering results on UCI-3views database.

Method ACC NMI AR F-score Precision Recall

SSC 0.815 ± 0.011 0.840 ± 0.001 0.770 ± 0.005 0.794 ± 0.004 0.747 ± 0.010 0.848 ± 0.004
LRR 0.871 ± 0.001 0.768 ± 0.002 0.736 ± 0.002 0.763 ± 0.002 0.759 ± 0.002 0.767 ± 0.002
LSR 0.819 ± 0.000 0.863 ± 0.000 0.787 ± 0.000 0.810 ± 0.000 0.756 ± 0.000 0.872 ± 0.000
RMSC 0.915 ± 0.024 0.822 ± 0.008 0.789 ± 0.014 0.811 ± 0.012 0.797 ± 0.017 0.826 ± 0.006
LT-MSC 0.803 ± 0.001 0.775 ± 0.001 0.725 ± 0.001 0.753 ± 0.001 0.739 ± 0.001 0.767 ± 0.001
MLAN 0.874 ± 0.000 0.910 ± 0.000 0.847 ± 0.000 0.864 ± 0.000 0.797 ± 0.000 0.943 ± 0.000
GMC 0.736 ± 0.000 0.815 ± 0.000 0.678 ± 0.000 0.713 ± 0.000 0.644 ± 0.000 0.799 ± 0.000
AWP 0.806 ± 0.000 0.842 ± 0.000 0.759 ± 0.000 0.785 ± 0.000 0.734 ± 0.000 0.842 ± 0.000
SMSC 0.734 ± 0.000 0.779 ± 0.000 0.666 ± 0.000 0.700 ± 0.000 0.700 ± 0.000 0.734 ± 0.000
WLRTR 0.917 ± 0.001 0.846 ± 0.001 0.828 ± 0.001 0.845 ± 0.001 0.842 ± 0.001 0.848 ± 0.001
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becomes larger, the value of ACC decreases. The results show that c
is very important for the weight distribution of the core tensor.

Numerical Convergence
This subsection investigates the numerical convergence of the
proposed WLRTR method. Figure 3 shows the iterative error
curves on the ORL and BBCSport databases. The iterative error
is calculated by

∣∣∣∣∣∣∣∣X(v) − X(v)Y(v) − E(v)∣∣∣∣∣∣∣∣∞ and
∣∣∣∣∣∣∣∣Y(v) − Z(v)∣∣∣∣∣∣∣∣∞.

One can be seen that the error curves gradually decrease with the
increase of iterations and the error are close to 0 after 25 iterations. In
addition, the error curves stabilized only after a few fluctuations. The
above conclusions show that the proposed WLRTR method has

strong numerical convergence and the similar conclusions can be
obtained on the BBC4view and UCI-3views databases.

CONCLUSION AND FUTURE WORK

In this paper, we developed a novel clustering method called weighted
low-rank tensor representation (WLRTR) for multi-view subspace
clustering. The main advantage of WLRTR is to encode the low-rank
structure of the tensor through Tucker decomposition and l1 norm,
avoiding the error in calculating the tensor nuclear normwith the sum
of nuclear norms of the unfolded matrices, and assigning different
weights to the core tensor to exploit the main feature information of

FIGURE 2 | ACC versus different values of parameters α and β (left), and parameter c (right) on (A) ORL and (B) BBCSport.

FIGURE 3 | Errors versus iterations on (A) ORL and (B) BBCSport databases.
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the views. In addition, the l2,1 norm is used to remove sample-specific
noise and outliers. Extensive experimental results showed that the
proposed WLRTR method has promising clustering performance. In
future work, we will further explore the structural information
representing tensors and use other tensor decomposition to
improve the performance of multi-view clustering.
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