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Ultrasmall precious metal clusters have attracted extensive attention for providing a
very specific surface and promoting electron transfer. In this work, ultrasmall Au
clusters based on defective TiO2 nanosheets (Au/D-TiO2) were prepared and
introduced into photocatalytic hydrogen evolution. Different defects of TiO2

nanosheets (D-TiO2) were constructed using a heating process and then loaded
with Au clusters. Compared with bare TiO2, Au clusters established on defective
TiO2 nanosheets with a narrower band gap showed higher light absorption
performances, resulting in obviously enhanced photocatalytic hydrogen production
performances. The Au/D-TiO2 displayed the greatly enhanced photocatalytic hydrogen
evolution activity of 3,142.33 μmol h−1 g−1, which was over 45 times than the pure TiO2.
The results showed that the catalysts had good prospects in the field of photocatalytic
hydrogen production.
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1. INTRODUCTION

Photocatalytic H2 evolution, which utilizes water decomposition under solar energy, is a promising
route to overcome the growing energy crisis and environment issues. However, in this process, the
photocatalyst plays a key role. At present, photocatalysts such as nitrides [1, 2], metal sulfides [3, 4],
and metal oxides [5, 6] have been demonstrated in hydrogen evolution systems. Among the
traditional photocatalysts, anatase is one of the most extensively studied photocatalysts due to
its reasonable price, nontoxicity, and remarkable photochemical stability [7, 8]. However, TiO2 with
a comparatively large band gap (3.2 eV) can absorb only the ultraviolet portion of the solar spectrum,
resulting in insufficient photocatalytic activity of TiO2 for H2 production.

Photocatalytic efficiency of TiO2 for water decomposition is limited due to the high
recombination rate of photogenerated carriers. Hence, many measures have been taken to solve
the problem of low photocatalytic performance of TiO2, involving the mingling of transition metals
[9, 10], adding of the nonmetal ions [11, 12], loading of the precious metals [13, 14], the surface for
dye-sensitized [15], and the generation of hybrid semiconductor [16, 17]. The manufacture of metal-
semiconductor oxide composite materials is another very dynamic research area that can improve
the photocatalytic activity of semiconductor oxide photocatalysts [18]. It has been reported that the
transfer of electrons from semiconductor oxides to metals may reduce electron hole recombination
events and improve the photocatalytic performances of semiconductor oxide-based catalysts. Thus,
the electron hole pairs in the recombined semiconductor oxide produced by photons can be reduced
by a large part [19, 20].
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Therefore, in this work, the electron hole recombination rate
was reduced, we have demonstrated a method of constructing
defects on metal oxides to support Au clusters. Both oxygen
vacancies and a Ti-O-Ti structure were formed in this process.
Oxygen atoms were lost through the formed oxygen vacancies,
and the original oxygen vacancies were occupied by metal
clusters, thus effectively reducing the recombination rate of
photogenerated carriers. Au clusters built on defective TiO2

nanosheets (Au/D-TiO2) were applied to the production of
photocatalytic hydrolysis hydrogen and showed significantly
enhanced performances. Compared with the traditional TiO2

catalyst, the catalysts of Au/D-TiO2 could produce up to 45 times
more hydrogen than TiO2. The results demonstrated that the
structural defects on the surface of metal oxide could improve the
catalytic performance of Au/D-TiO2 catalysts. This work laid a
foundation for the preparation of catalysts in the future.

2. EXPERIMENTAL SECTION

2.1. Materials
The chemical reagents Tetra-n-butyl Titanate (Ti(OC4H9)4,
99.0%, AR grade), hydrofluoric acid solution (HF, 40.0 wt%,
AR grade), ethanol (99.7%, AR grade), and ammonium
carbonate (40%, AR grade) were bought from Tianjin Damao
Chemical Reagent Factory, China. HAuCl4·3H2O (99.9%, AR
grade) was bought from Aladdin, China. All experimental
materials were used directly in the experiment after purchase.

2.2. Sample Preparation
2.2.1. Preparation of D-TiO2 Nanosheets
TiO2 nanosheets were obtained by hydrothermal method. In a
common synthesis, Ti(OC4H9)4 (50 ml) and HF (6 ml) were

added to the Teflon-lined autoclave. Then, the hydrothermal
reaction occurred at 180°C for 24 h. After the reaction, the white
sediment of the Teflon-lined autoclave was centrifuged and
rinsed three times with water and ethanol, and dried in an
oven at a temperature of 80°C for 12 h. Different defects of
D-TiO2 sample were obtained after being calcined at reducing
atmosphere (10 vol.% H2 and 90 vol.% Ar, 2 h) with unequal
temperatures (The D-TiO2 were treated at 100°, 150°, and 200°C,
respectively).

2.2.2. Synthesis of Au/D-TiO2

Au/D-TiO2 was composite according to the deposition-
precipitation method. First, 1 g of pure or defective TiO2

nanosheets powders were suspended in 50 ml distilled water
and stirred for 20 min. Then, the aqueous solution (25 ml) of
2.4 g (NH4)2CO3 and 0.01 g HAuCl4

.3H2O were mixed into the
above solution drop by drop and stirred for 1 h at room
temperature. And then, the samples were collected by
centrifugation, and washed with distilled water and ethanol for
three times, respectively. Au/D-TiO2 samples were gained after
being dried at 70°C for 6 h and calcined (200°C, 10 vol.% H2 and
90 vol.% Ar) for 2 h. For comparison, Au/TiO2 was synthesized
with the same method on TiO2 nanosheets instead of D-TiO2.

2.2.3. Characterization
The crystalline structures of the acquired samples were analyzed
by a powder X-ray diffractometer (XRD, BRUKER D8
ADVANCE) with a scan range of 10°–90° and a step size of
0.02°. The measurement of electron paramagnetic resonance
(EPR) was performed at room temperature using a BRUKE
A300 EPR spectrometer. The transmission electron
microscopy (TEM) and high angle annular dark-field
(HAADF) were performed on a JEM-2100HR operating at

FIGURE 1 | (A) XRD of pure TiO2, Au/TiO2, and Au/D-TiO2 (The D-TiO2 were treated at 100°, 150°, and 200°C, respectively) (B) EPR of TiO2 and Au/D-TiO2 (treated
at 150°C).
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200 kV. The surface analysis of every sample was examined by
X-ray photoelectron spectroscopy (XPS) using a Thermo Fisher
Scientific K-Alpha spectrometer. The Metal contents of samples
were analyzed by analysis of inductively coupled plasma
spectroscopy (ICP, Agilent 700). The UV-vis diffuse
reflectance spectra (DRS) recorded on a Lambda 750
spectrophotometer. The photoluminescence (PL) spectra
gained by a F-4600 FL Spectrophotometer.

2.2.4. Photocatalytic Hydrogen Evolution
The photocatalytic hydrolysis reaction was carried out in a heat-
resistant glass reactor, which was connected to a sealed single
channel glass system, a circulating water system, a controller,
and a vacuum pump. A 300 w xenon lamp was applied as a light
source and fixed with the distance of 1 cm from the glass
reactor. The glass reactor was charged with 80 ml of distilled
water, 20 ml of methanol solution and 50 mg of photocatalyst.

Before the start of the reaction, in order to keep the entire
reaction device free of air, the vacuum pump was turned on for
1 h, and the valves of the glass system were rotated while
evacuating, and the air of the system was extracted as much
as possible. The circulating water and the controller were
opened while the vacuum pump was being punched, and the
magnetic stirrer placed under the glass reactor was turned at
500 rpm to avoid overheating of the reaction during the
experiment and to guarantee uniform dispersion of the
photocatalyst in the solution. In the photocatalytic hydrogen
production experiment, a gas chromatograph was used to
analyze the produced hydrogen gas, and the gas
chromatograph was equipped with a packed bed column
having a temperature of 70°C and a detector. In the
hydrogen production experiment, the xenon lamp irradiation
time was 1 h for each time, and the intake air was detected every
hour with a total of 4 h [21, 22].

FIGURE 2 | (A) TEM image of TiO2 nanosheets (B) HRTEM image of the selective area (C) TEM image, Au clusters high-lighted by red arrows (D) elemental
mappings show the distribution of Ti (red) and Au (gold).
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3. RESULTS AND DISCUSSION

The compositions and phase structures of the samples were
studied by using XRD (Figure 1). It could be seen from the
XRD patterns that both pure and defective TiO2 were with a
palpable structure of anatase phase (JCPDS no. 21-1272). In the
case of Au/D-TiO2, the crystallographic peaks of Au could be
detected (Figure 1A). Defects in D-TiO2 were tested by electron
paramagnetic resonance (EPR) measurements (Figure 1B),
which indicated an aerobic vacancy defect with a g value of
2.015 [23–25].

The preparation of defective TiO2 was the first and an
important step in the synthesis process of the catalyst Au/
D-TiO2. The transmission electron microscopy (TEM) image
(Figure 2A) demonstrated the nanosheet structure of D-TiO2

with a length of about 50 nm. And the high-resolution
transmission electron microscopy (HRTEM) showed a lattice
spacing of approximate 0.358 nm (Figure 2B) corresponding to
(101) planes of TiO2. In addition, Figure 2C had many Au
clusters distributed and marked by the red arrow. Further, the

high angle annular dark-field (HAADF) and the element
mapping image (Figure 2D) further indicated that the Au
clusters were well dispersed on the defective TiO2 carrier.

In order to further explore the surface defects of the pure TiO2

and the defective TiO2, the X-ray photoelectron spectroscopy (XPS)
spectra were conducted. The O 1 score-level XPS spectrum
manifested two peaks in Figure 3A, one of which at 530.0 eV
was considered as the oxygen band of Ti-O-Ti, and another one
at 531.5 eV could be attributed to oxygen vacancy. The peak area of
531.5 eV of 150°C treated sample was larger than that of the other
samples, indicating the highest oxygen vacancy concentration
(Figure 3A). Figure 3B showed the O 1 s XPS spectrum of Au/
TiO2 and Au/D-TiO2 (treated at 150°C). It was found that the
binding energy of Au/D-TiO2 was significantly shifted to higher
binding energies comparedwithAu/TiO2. And the strength of Ti-O-
Ti of Au/D-TiO2 (treated at 150°C) was greater than that of Au/
TiO2. Usually, such binding energy transfer is explained by a strong
interaction between the two components. Figure 3C displayed the Ti
2p XPS spectrum of TiO2 andAu/D-TiO2 (TheD-TiO2 were treated
at 100°, 150°, and 200°C, respectively) and demonstrated that they

FIGURE 3 | (A) XPS of TiO2 and D-TiO2 (The D-TiO2 were treated at 100°, 150°, and 200°C, respectively) (B) XPS of synthesized Au/TiO2 and Au/D-TiO2 (treated at
150°C) (C) Ti 2p spectrum (D) Au 4f spectrum.
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were not obvious differences. The Au 4f of Au/D-TiO2 (treated at
150°C) core-level XPS spectrum displayed one special peak at
83.9 eV in Figure 3D, and this peak could be attributed to Au
clusters [26, 27].

The measurements of UV-visible diffuse-reflectance spectrum
(UV-vis DRS) were carried out to investigate the light absorption
intensity. As can be seen from Figure 4A, the intensity of light
absorption for Au/D-TiO2 was significantly enhanced in the
wavelength ranging from 250 to 800 nm compared with the
untreated TiO2 nanosheets. And Au/D-TiO2 (treated at 150°C)
showed the strongest absorption intensity. According to the UV-
vis DRS, the optical band gap value Eg of all samples was estimated
from these absorption profiles using the Tauc’s relation
(Figure 4B) [28]. As shown in Figure 4B, the band gaps of
these samples were analogous. However, after combining with
Au clusters, the band gap of the samples mildly narrowed, whereby
the results of pure TiO2, Au/TiO2, Au/D-TiO2 (treated at 100°C),
Au/D-TiO2 (treated at 150°C) and Au/D-TiO2 (treated at 200°C)
were 2.93, 3.05, 3.03,2.86 and 2.98 ev, respectively [29, 30].

Figure 5 presented a comparison of the PL spectra of
synthesized TiO2 and Au/D-TiO2 (The D-TiO2 were treated
at 100°, 150°, and 200°C, respectively). PL emission in
semiconductors was due to the recombination of free
carriers. The PL peak at about 396 nm was attributed to the
emission of the bandgap transition. At an excitation wavelength
of 230 nm, the light energy was approximately equal to the
bandgap energy of anatase (387 nm). As expected, the PL
intensity of the prepared Au/D-TiO2 was significantly
reduced as compared with pure TiO2. This indicated that the
recombination rate of electrons and holes of Au/D-TiO2 sample
was low. This might be owing to the fact that electrons were
excited from the valence band to the conduction band, and then
moved to Au, thereby preventing the direct recombination of
electrons and holes. In general, low recombination rate of
electrons and holes are often associated with high
photocatalytic activity [31, 32].

In order to understand the band structure change of TiO2

nanosheets after Au loading, the Mott-Schottky experiment (MS)
was conducted (Figure 6).

Based on the MS equation, the capacitance (C) depend on
applied potential and could be fitted as follows [33]:

1
C2

� + 2
eεε0Nd

(E − EFB − kb
e
) (1)

Where the slope expresses the type of semiconductor (negative to
p-type and positive to n-type). TheNd denotes the carrier density.
The C, E (corrected by the AgCl vs 0.197 eV) denote the space
charge capacitance and applied potential. Ɛ denotes the relative
permittivity. Ɛ0 denotes the vacuum permittivity. Where e

FIGURE 4 | (A) UV-vis DRS of synthesized of TiO2, Au/TiO2 and Au/D-TiO2 (The D-TiO2 were treated at 100°, 150°, and 200°C, respectively) (B) the forbidden band
width of synthesized of TiO2, Au/TiO2, and Au/D-TiO2 (The D-TiO2 were treated at 100°, 150°, and 200°C, respectively).

FIGURE 5 | PL spectra of TiO2, Au/TiO2 and Au/D-TiO2 (The D-TiO2

were treated at 100°, 150°, and 200°C, respectively).
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denotes the electron charge. Besides, the intercept on the x axis
denotes the Efb (band potential).

As revealed in Figure 6, the positive slope in the
Mott–Schottky plot for the samples indicated that TiO2

nanosheets was typical n-type semiconductors according to the
MS equation. Furthermore, the conduction band (CB) of the
samples were obtained corrected by the AgCl by calculating, and
the flat band potential (Efb (Vs RHE)) of pure TiO2, Au/TiO2, Au/
D-TiO2 (treated at 100°C), Au/D-TiO2 (treated at 150°C) and Au/
D-TiO2 (treated at 200°C) were gained to be –0.16, –0.13, –0.07,
–0.04, and –0.01 V, respectively. Moreover, the valence band
(VB) was calculated by adding the band gap value to the CB
level. whereby the results of pure TiO2, Au/TiO2, Au/D-TiO2

(treated at 100°C), Au/D-TiO2 (treated at 150°C) and Au/D-TiO2

(treated at 200°C) were 2.77, 2.92, 2.96, 2.82, and 2.97 V,
respectively compared with NHE.

The photocatalytic H2 production activities of the bare TiO2,
Au/TiO2 and Au/D-TiO2 were further examined in Figure 7.
Under the same experimental conditions, the test was performed
every 1 h, and a total of 4 h of experiments were performed. Bare
TiO2 and Au/TiO2 only exhibited a very low photocatalytic H2

production rate of 69.18 and 138.7 μmol h−1 g−1, respectively.
However, after coupling with Au clusters, the production rate
of photocatalytic H2 was significantly enhanced. Au/D-TiO2

(treated at 150°C) exhibited the highest photocatalytic H2

production rate of 3,142.33 μmol h−1 g−1, suggesting that the
construction of Au/D-TiO2 could effectively boost the
production activity of photocatalytic H2. Besides, the
production rate of photocatalytic H2 first increased and then
declined when the treated temperature of D-TiO2 increased from
100° to 200°C for Au/D-TiO2 samples, indicating that the treated
temperature could efficiently adjust the defects of TiO2

nanosheets and effect the H2 production activity [34–36].
The stability test with Au/D-TiO2 was carried out by a total of

16 h of cycling experiments, which were divided into four groups
of 4 h, respectively, and an injection was performed every hour
for data recording. The result suggested a good stability of Au/
D-TiO2 at fully photocatalytic hydrogen production experiment
process without obvious decrease, which might be due to the Au
clusters could be effectively stabilized on TiO2.

A reaction mechanism for the evolution of hydrogen is shown
in Figure 8. First, the valence band electrons of TiO2 are excited
to the conduction band, and then immediately transferred to Au
through the intimate interface contacts. Since it is well known
that H2O has an ionization balance in the natural state, the water
contains trace amounts of H+ and OH−. Therefore, the releasing
H+ binding in the e− of H2O to produce H2. H

+ adsorption on the
surface of the Au and accepting excited electrons is a key step in the

FIGURE 6 | The Mott–Schottky curves of using Ag/AgCl as a reference
electrode of TiO2, Au/TiO2, and Au/D-TiO2 (The D-TiO2 were treated at 100°,
150°, and 200°C, respectively).

FIGURE 7 | (A) H2 production of TiO2, Au/TiO2, and Au/D-TiO2 (The D-TiO2 were treated at 100°, 150°, and 200°C, respectively) under sunlight irradiation (B)
Circulation experiment of hydrogen evolution of Au/D-TiO2 (treated at 150°C).

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 6163496

Zhang et al. TiO2/Au for Photocatalytic Hydrogen Production

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


hydrogen evolution reaction. On the other hand, H2O/OH
− reacts

with h+ in Au/D-TiO2 to produce H2 and OH. When H2 is
released, O2 is also formed. Then O2 reacts with the e− to form
O2

−. Finally, the O2
− reacts with CH3OH to formH2O.When TiO2

is coupled with Au clusters, it can provide more active sites for the
hydrogen release reaction due to the characteristics of the Au/
D-TiO2 catalyst, thereby increasing photocatalytic activity [37, 38].

CONCLUSION

In conclusion, Au based on defective TiO2 nanosheets (Au/D-TiO2)
has been successfully prepared and applied to the production of
photocatalytic hydrolysis hydrogen. Compared with bare TiO2 and
Au/TiO2 only exhibit a very low production rate of photocatalytic
H2 of 69.18 and 138.7 μmol h−1 g−1, respectively, the production rate
of photocatalytic H2 was significantly enhanced after coupling with
Au clusters. The Au/D-TiO2 treated at 150°C exhibited the highest
production rate of photocatalytic H2 of 3,142.33 μmol h−1 g−1. The
stability test suggested a good stability of Au/D-TiO2 at fully
photocatalytic hydrogen production experiment process due to
the Au clusters could be effectively stabilized on TiO2. Overall,
this could be an effective approach for enhancing photocatalytic
hydrogen production efficiency and stability by catalyst.
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