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In addition to vaccine and impactful treatments, mitigation strategies represent an effective
way to combat the COVID-19 virus and an invaluable resource in this task is numerical
modeling that can reveal key factors in COVID-19 pandemic development. On the other
hand, it has become evident that regional infection curves of COVID-19 exhibit complex
patterns which often differ from curves predicted by forecasting models. The wide
variations in attack rate observed among different social strata suggest that this may
be due to social heterogeneity not accounted for by regional models. We investigated this
hypothesis by developing and using a new Stochastic Heterogeneous Epidemic Model
that focuses on subpopulations that are vulnerable in the sense of having an increased
likelihood of spreading infection among themselves. We found that the isolation or
embedding of vulnerable sub-clusters in a major population hub generated complex
stochastic infection patterns which included multiple peaks and growth periods, an
extended plateau, a prolonged tail, or a delayed second wave of infection. Embedded
vulnerable groups became hotspots that drove infection despite efforts of the main
population to socially distance, while isolated groups suffered delayed but intense
infection. Amplification of infection by these hotspots facilitated transmission from one
urban area to another, causing the epidemic to hopscotch in a stochastic manner to places
it would not otherwise reach; whereas vaccination only in hotspot populations stopped
geographic spread of infection. Our results suggest that social heterogeneity is a key factor
in the formation of complex infection propagation patterns. Thus, the mitigation and
vaccination of vulnerable groups is essential to control the COVID-19 pandemic
worldwide. The design of our new model allows it to be applied in future studies of
real-world scenarios on any scale, limited only by computing memory and the ability to
determine the underlying topology and parameters.
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INTRODUCTION

Coronaviruses represent one of the major pathogens that
primarily target the human respiratory system. Previous
outbreaks of coronaviruses (CoVs) that affected humans
include the severe acute respiratory syndrome (SARS)-CoV
and the Middle East respiratory syndrome (MERS)-CoV [1].
COVID-19 is a disease caused by the novel coronavirus SARS-
CoV-2 virus that is both fatal and has a high transmission rate
(R0), almost twice that of the 2017–2018 common influenza [2,
3]. TheWorld Health Organization stated that this combination
of high health risk and susceptibility is of great global public
health concern, and efforts must be directed to prevent further
infection while vaccines are still being developed [4]. As of
November 2020, there are almost sixty million confirmed
COVID-19 cases worldwide and close to confirmed one and
a half million deaths. Older adults seem to be at higher risk for
developing more serious complications from COVID-19 illness
[5, 6]. In addition to vaccines and treatments, an effective way to
combat the virus is to find and implement mitigation strategies.
An invaluable resource in this difficult task is numerical
modeling studies that can reveal key factors in pandemic
development.

What models could be useful? Direct study of the available
data of COVID-19 is complicated because many cases and deaths
are underrepresented. However, a simple model that correctly
captures large-scale behaviors, but gets some details wrong, is
useful, whereas a complicated model that gets some details
correct but mischaracterizes the large-scale behaviors is
misleading [7]. Previously, during the H1N1 pandemic,
generic (i.e., non-specific) stochastic influenza models were
important to understand and quantify the full effects of the
virus in simulations of important scenarios [8]. Open source
stochastic models such as FluTE (2010) or GLEaM (2011) [9, 10]
were developed to simulate the spatial interaction and
clusterization of millions of people to discover epidemic patterns.

Now, with respect to COVID-19, the FluTE model has
recently been used to offer interventions to mitigate early
spread of SARS-CoV-2 in Singapore [11], and GLEaM was
adopted by Chinazzi et al. [12] to model the international
propagation of COVID-19 to gain insight into the effect of
travel restrictions on virus spread. Detailed statistical
information about the social interactions and grouping of
individuals is difficult to gather, but ultimately can be used to
calibrate the parameters of agent-based models. Such calibrated
agent-based models have been applied to model high-density
housing in Brazil and their effect on viral spread to the rest of the
population [13].

Despite extensive efforts to understand and predict the
COVID-19 spread, the key factors that determine the
multimodal rise patterns, the asymmetry of the recovery phase,
and the emergence of a distinct second wave remain unclear.
Therefore, instead of another data-based forecasting model, we
chose to develop a scenario model to study the consequences of a
set of hypothesis-driven conditions in a network of populations.
One underexplored but important factor of pandemic spread is
social heterogeneity which defines the degree of dissimilarity in

the behaviors of embedded subpopulations. With regard to virus
spread, the important characteristics of social heterogeneity to
consider are levels of clusterization, societal interaction, and
disease mitigation strategies. Our hypothesis is that complex
infection curves that consist of multiple infection peaks and
growth periods are the consequence of asynchronous
propagation of infection among groups with widely varying
degrees of intra-group interaction and isolation from main
hubs (a metapopulation of infections).

To approach this problem, we developed a novel Stochastic
Heterogeneous Epidemic Model (dubbed SHEM) which
incorporates heterogeneous aspects of society. We also take
into account over-dispersed stochasticity (super-spreading)
[14], which is usually not incorporated into compartmental
models but can be critical in small or virgin populations. The
model design was inspired by our stochastic models of local
calcium release dynamics inside heart cells, driven by explosive
calcium-induced-calcium-release [15, 16]. We examine several
key scenarios of heterogeneity where separate communities of
various clusterization and transmission capabilities are linked to a
large population hub. The basic reproduction number of infection
(R0) of the bulk of our population was assigned to R0 � 2.5 which
is within the range of SARS-CoV-2 basic reproduction number
based on the early phase of COVID-19 outbreak in Italy [17].
Interplay of various degrees of heterogeneity and isolation
periods in our model generated various dynamic patterns of
infection, including a multi-modal growth periods, an extended
plateau, prolonged tail, or a delayed second wave of infection.
Most importantly, we found that vulnerable social subgroups play
a key role in the propagation and unpredictability of the
epidemic, and can defeat efforts at social distancing.

METHODS

Model Purpose
In view of the constantly changing behavioral environment for
COVID-19 in the United States and worldwide, data-based
predictive modeling of the future of the epidemic is difficult.
Our model is specifically intended to examine the effect of
heterogeneity, including not only geographic but also social
heterogeneity, i.e. the existence of groups within one
geographic location that have different social interaction
patterns and may be partially isolated from neighboring
groups, e.g., nursing homes, prisons, campuses. Alternatively,
subgroups can be partially embedded in the main population, e.g.,
meat processing plants or warehouse employees who are unable
to socially distance at work, but spend part of their day in the
main community where they can acquire and amplify infection.
The model is fully stochastic and, unlike most compartmental
models, incorporates the effect of over dispersion of secondary
infections (super spreading).

Structure of the Model
The general model consists of a number of subpopulations
(“villages”) whose number is limited only by computing
memory. The simulation is based on a generalization of the
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SEIRD representation. The state of each village is represented by
the numbers of individuals in each of five states: Susceptible,
Exposed (destined to become infected), Infected, Recovered
(immune) and Dead (however, see below under Super-
spreading for additional state-dependence). Each village is, by
definition, homogeneous and mixed. Villages could represent
actual geographic units, but could also be groups or sub-regions
that have different social interactions or behavior. The mean
duration of infection (infectious period) was taken to be 7 days
and the incubation period 5.5 days.

Each village J is characterized by its population, the expected
mortality of virus infections, and its local value RINN(J) of the basic
reproduction numberR0.R0 is defined as themean expected number
of secondary infections spawned by one infected individual over the
duration of their illness, if the population were totally susceptible. It is
a property of both the virus and the behavior of individuals in the
population, but is distinct from R(t), the realized, time dependent,
reproduction number that depends also on the fraction of
susceptible individuals remaining during the epidemic.

Villages are connected by a user-specified network of formally
unidirectional links along which infection or individuals can
travel at user-specified rates, including links from each village
to itself to represent internal infection/recovery processes.
Infection can spread by two processes: transient contact
between groups (alpha process) e.g., nursing home staff
coming from the city; or actual migration of individuals from
one village to another (beta process). Each non-self link is
characterized by four user-supplied parameters: alphain and
alphaout describe the degree of transient contact (see below)
along or against the direction of the link respectively; betain and
betaout are rates of migration of individuals (time−1).

Transient Contact (Alpha) Process
Infection transmitted by transient contact is modeled as though
members of one village spend some (small) fraction alpha(in/out)
of their time (i.e., of their inter-personal contacts) “visiting” the
opposite village at the other end of the link, adjusted for any
mitigations (an example would be staff working at a nursing
home, or meat-packing plant employees, treated as a separate,
high-risk population but living in the surrounding county). The
spread of infection in each direction of the link has two
components: 1) exposure of susceptibles by visiting infectious
individuals and 2) exposure of visiting susceptibles in the visited
village, who then carry the infection back to their village. This
formulation allows for the possibility that transmission is
asymmetric. The generation of exposure by these “visitors” at
home and abroad is scaled so that each infected individual,
generates (in an otherwise susceptible population) his destined
number of secondary cases (see below under super-spreading).

This arrangement allows for the possibility that “visitors” from
different villages could cross-infect while visiting a common hub
(picture UPS and FEDEX drivers) even if there is no direct link
between them. To represent this process, “virtual links” are
generated between pairs of physical links that meet in a hub (in
graph-theory terms these are links of the adjoint graph of the
network). Infection by this indirect process is second-order in the
alpha’s so it makes very little contribution in the case of highly

isolated sub-populations (e.g., nursing homes, prisons) but could
be important for embedded sub-populations with high contact
with the hub. Although each village is considered homogeneous by
definition, further heterogeneity within a village could be
represented by subdividing the population into several “villages”
in close mutual contact via the alpha process (e.g., students in a
college split into those who go to bars and those who study alone).

Simulation Method
The entire collection of populations is simulated as a single,
continuous-time Markov chain (birth-death process). There are
16 types of possible events associated with each link:

• Infection from source to target by transient contact
• Infection from target to source by transient contact
• Infected individual moves from source to target
• Exposed individual moves from source to target
• Susceptible individual moves from source to target
• Infected individual moves from target to source
• Exposed individual moves from target to source
• Susceptible individual moves from target to source
• Susceptible gets exposed inside village (self-link only)
• Exposed converts to infected inside village (self-link only)
• Infected recovers inside village (self-link only)
• Infected dies inside village (self-link only)
• Recovered moves from source to target
• Recovered moves from target to source
• Susceptible gets vaccinated
• Recovered loses immunity

The objective of the simulation is to generate a continuous-
time sequence of Markov states, with transition rates determined
by the SEIRD equations, modified as described below under
Super Spreading. The algorithm consist of a front-end
program that sets up the network of villages and the rates of
spread of infections by the alpha and beta processes, and an
engine module that is called repeatedly by the front-end to walk
the Markov scheme under a sequence of imposed conditions, e.g.,
open, lockdown etc. The operation of the program is described by
the following simplified pseudocode:

PROGRAM FRONT_END
use module simulator
read parameter file !nh � number of villages

do ih � 1,nh
initialize village population sizes
and states
lrlinks(ilink,1:2) � ih !create
self-links
set r0’s for first time period
end do

!create network
lrlinks(ilink,1) � source
lrlinks(ilink,2) � target
set alphain, alphaout, betain,
betaout(ilink)
ilink++
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call episim(...lrlinks . . . tswitch, yflag) !
invoke the engine in simulator module

if yflag � false on return then ! t reached a
breakpoint

change r0’s,alphas, betas
advance tswitch
call episim again

else
reached tmax
write output history

end program front-end

MODULE SIMULATOR
contains
subroutine episim ! main engine
create bidirectional linked infectivity lists
!generate virtual links by extending link array
do ll1 � 1,nrlinks

do ll2 � ll1, nrlinks ! triangular
search for common hubs j3
ilink++
links(ilink,3) � j3
alphav(ilink) � alphain/out(j1)
*alphaout/in(j2)
end do

end do
t � 0
! main loop
do while t < tswitch

do over all links
do event � 1,16 !generate
cumulative rates of possible
events
rtot � rtot + rate(event, link)
rtt(jtt) � rtot
jtt++
end do

end do
!rtotistotalrateofavailablemarkovtransitions
! time of next event in Poissant point process

time of next event � t-log(random)/rtot
!exponential distribution

! choose the actual event link and type:
find rtot*random2 in the cumulative
array rtt at index jbin
jl�(jbin-1)/16 + 1 ! find which link fired
links(jl,1:3) gives the villages at the
link ends and/or hub
jp � jbin-16*(jl-1) ! remainder points
to the event type

! carry out the event
if the event creates a new infectious
person then

k � kranbin(random3,rinn(j),reff)
! personal infectivity

push k on the top of infection list
of village j
inf(j) � inf(j)+k

! inf is the collective infectiousness of
village j, plays role of
! (numberinfected)*r0 in SEIRD equations

end if
if the event removes infectious person
by recovery or death then

pull k off bottom of infection list
inf(j) � inf(j)-k

end if
if the event is migration of infectious
move between tops(most recent) of
infection list
end if
if t > tmax then

return with yflag � true
end if
if t > tout then

record state in kout array
increment tout

end if
end do over links

end do while ! continue with time steps until t >
tswitch

return with yflag � false ! continue to
the next simulation period.

end subroutine episim

FUNCTION kranbin ! draws random negative
binomial integer with mean r0 and !
dispersion reff.

end module simulator

Super-Spreading
It is known that the distribution of secondary COVID-19 infections
generated by a single, infected individual is over-dispersed (i.e. has a
long tail compared to the Poisson distribution of infections expected
if transmission were random). Although the average R0 is estimated
to be 2.5-4 in the absence of social distancing mitigations, contact
tracing has shown that single individuals have infected up to a
hundred others. This is known as super-spreading events, and can
occur by several possible mechanisms, involving either a predilection
of an individual (e.g., a celebrity who travels widely and contacts
many other people) or a situation in which individuals were placed in
unusually close contact (e.g., a church choir in an indoor location).
On the other hand, themajority of infected individuals do not appear
to spread the infection to anyone. It has been shown [14] that this
over-dispersed distribution can be approximated by a negative
binomial distribution, with mean R0 (by definition) and dispersion
parameter r<<1, for example 3 and 0.16. By iterating this distribution
for several generations of viral spread, it is found that the eventual
distribution of epidemic size is predicted to be quite different than
found for a hypothetical stochastic transmission by Poison-
distributed secondary infections with the same R0. A recent model
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of contact tracing assumed, based on data from the Netherlands, that
the distribution of number of personal contacts outside the family is
distributed as a negative binomial and used this to generate random
changes to infection levels at 1-day intervals [18].

Unfortunately, viral generations do not remain synchronous in
time, so it is not straightforward to incorporate super-spreading in a
time-dependent epidemic evolution model except by following the
interactions and infections of each individual in the population, as done
for example in the FLuTE simulation for influenza [8]. This is very
compute-intensive, but a more significant objection from our point of
view is that it depends on knowing (statistically) the social interaction
groups and travel behavior of the population at afine-grained scale, and
these have been severely disrupted by mitigation efforts during the
current pandemic. It is possible to try to adjust for these mitigations by
calibration against the evolving case data, but this is difficult. Rather
than speculate on these variables, we have developed a modified
Markov scheme that tries to reproduce the observed distribution of
secondary infections by replacingR0 in the event-rate calculations by an
infectivity that is itself stochastic. This requires storing a partial history
of individual infections, whichmakes the actual state-space, considered
as a Markov process, much larger than that in a classic SEIRD model.

The stochastic process of infection generation by one infected
case is in competition with the independent stochastic recovery
process. In the model, recovery is a Poisson point process with a
rate proportional to the number of infections. If we don’t identify
individuals, a super-spreader is likely to be “recovered” before (or
after) generating his destined number of infections. To avoid this,
we have adopted the following scheme:

• In each village j, at each event, an infectivity inf(j) is
maintained that takes the place of ki*R0 in the SEIRD
rate equations.

• Whenever a new infection is created (by conversion of an
exposed individual), a random number K is drawn from a
negative binomial distribution of mean R0 and dispersion
reff , the latter to be determined. Inf is incremented by K and
the individual infectivityK is placed on the top of a linked list.

• Whenever a random recovery event is generated at the
above-mentioned rate, the oldest individual infectivity is
removed from the bottom of the list and subtracted from inf.

The number of secondary infections actually realized by one
infected individual is proportional to the actual length of time he
remains infectious. Since infections recover in the order in which
they were created, if there are n infections active, that lifetime will
be the nth waiting time of the Poisson point process whose rate is
n times the mean recovery rate (i.e., the reciprocal of the mean
infection duration). The secondary infections generated by
individual K are a Poisson point process, which is then
convolved with the recovery process to give the realized
distribution of secondary infections generated by that
individual. Further convolving that with the negative binomial
distribution of K with mean r0 and dispersion r we find:

p(j, n) �
nnΓ(n + j)rr ∑

∞

k�0
rk0k

j(n+k)− n− j(r+r0)− r− kΓ(r+k)
Γ(k+1)

jΓ(j)Γ(n)Γ(r) (1)

As the distribution of the actual, realized number of secondary
infections. This is a long-tailed probability distribution that can
be fit, by an appropriate choice reff for the dispersion parameter r
so as to approximate the empirical negative binomial distribution
with r � 0.16 over the relevant range. With more than a few active
infections present, the distribution converges to the limit:

p(j,∞) � ∑
∞

k�0

rk0k
je−krr(r + r0)− r− kΓ(r + k)
jΓ(j)Γ(k + 1)Γ(r) (2)

We choose reff to give the best least-squares fit on a linear scale for
the case n � 1, which is the most important stochastic case since it
governs the chance that a single infected individual can start an
outbreak, and gives the chance that an infected individual causes no
secondary infections, p(0,1) � 0.62 similar to the empirical distribution.
These distributions are all normalized and have mean R0 and differ
dramatically from the Poisson distribution (Supplementary Figure S1,
dashed line) assumed in the classic SEIR model. Larger values of n are
decreasingly important because the aggregate distribution of the actual
infection rate controlled by the sum inf behaves similarly to
negbinomial (R0 ,n*r) which converges to Poisson, so stochastic
effects become less important once there are many active cases.

Super-Spreaders Vs Super-Spreading
Events
Super-spreading can be a property of the individual or of the
circumstances. What happens when an individual infected patient
migrates to a new village? Does he keep his identity or does he
assume the infectiousness typical of the local R0 of his new
environment? In the model we can make the choice, determined
by a logical variable SPREADR (default TRUE. controlled in the
demos by the input parameter spreads). If SPREADR is true, a
migrant keeps his prior K value which simply migrates from the top
(newest) link to be added to the top of the infection list in the new
village, thereby preserving his infectious lifetime in his new home. If
SPREADR is false then the K value of migrants is re-randomized
using the local R0 and reff and the infectivity of transient visitors in
the alpha process is re-scaled to the local value of R0. In the current
version of the program, SPREADR is a single variable governing all
events, but it could easily be made specific to individual links to
distinguish groups that are vulnerable due to high density in their
home village (e.g., factory or warehouse) vs. groups that are
intrinsically super-spreaders due to their individual behavior
(celebrities, bar hoppers).

Software Considerations
The model software is written in Fortran 77/95. The main
simulation engine, described above, is in the form of a single
Fortran module SIMULATOR. It is intended to be driven by a
front-end program that sets up the network and scenario. For
purpose of these demonstrations, we hand-coded a front end
(epichainF) describing a chain of urban clusters (or a single
cluster) connected by bidirectional travel, each linked to a large
set of small subpopulations whose characteristics differ from the
urban cluster. The single Markov-chain structure of the model is
intrinsically serial, and is implemented in a single processor thread.
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For networks with many nodes and dense links this can be speeded
up about 5-fold with 32 processors by parallelizing an inner loop.

RESULTS

Simulations of Infection in Isolated Clusters
Driven by An Urban Cluster
In the first set of simulations we examined the virus spread in simple
hypothetical scenarios with equal numbers of individuals in urban
and isolated populations (Figure 1A, insert). The large urban cluster
was composed of one million individuals set to R0 � 2.5 (open level,
but changing throughout the simulation). The isolated population
consisted of 250 clusters, each with 4,000 ± 500 people and with the
same internal R0 � 2.5 that remained constant throughout all
simulation stages. The urban cluster was weakly connected with
0.001% transient contact into the isolated clusters (alphainpop)
while isolated clusters had 0.1% contact into the urban cluster
(alphaoutpop), see Methods for the definition of transient contact.
This can be visualized as a collection of small suburban
neighborhoods or nursing homes that are attempting to isolate
themselves from the city. We investigated four scenarios, specified
below. In each scenario except #1, the urban cluster closed to R0 �
1.25 at t � 40 days (closed level, e.g., this was New York City under
lockdown, based on 21% antibody positive tests at the peak [19]).

(1) No mitigation, i.e., freely expending pandemic: The large
cluster of individuals stays always open.

(2) Premature, partial reopening to R0 � 1.9 at 100 days.
(3) Moderate lockdown period with full reopening at 225 days to

R0 � 2.5.
(4) Long lockdownperiodwith full reopening at 365 days toR0� 2.5.

A general tendency throughout all four scenarios was that as
the lockdown period increased, the magnitude of the infection
decreased but its duration increased. At the same time, the
interplay of the urban cluster and the isolated clusters
generated a variety of specific patterns in virus spread
dynamics. In the first “no mitigation” scenario (Figure 1A)
the isolated areas generated a strong second peak at the time
when infection in the urban cluster had gone through its peak and
was decaying. On the other hand, the infection rise in the
“premature reopening” scenario (Figure 1B) was multi-modal,
and the cumulative peak in isolated clusters happened later than
the urban cluster, creating an apparent plateau in active infection
cases from day 175–225. The infection dynamics in the “moderate
lockdown” scenario (Figure 1C) was more complex. During the
closed stage (of the urban center), the infection in the urban
cluster declined, but the delayed infection in isolated clusters
continued to rise forming an additional peak in total infections
(Figure 1E, inset). Then another peak in total infections emerged
in the reopen stage that was generated mainly by the urban
cluster, and then was echoed by the isolated subpopulations.
Finally, in the “late reopening” (Figure 1D) scenario, infection
decreased during the first wave in both urban and isolated clusters
but a distinct delayed second wave of infection occurred.

FIGURE 1 | Complex dynamic patterns of SARS-CoV2 infection in
simulations in a heterogeneous society when infection in isolated clusters are
ignited by an urban cluster implementing various lockdown strategies. (A)
isolated clusters generate a second delayed peak when no intervention
is implemented. Inset schematically illustrates the society structure in this
scenario. Contributions are shown by different colors. (B) an apparent plateau
after early reopening and complex rise pattern during close period (inset).
Green shade shows the lockdown periods. (C) A multimodal rise (inset) with
additional peak generated by rural cluster after full reopening at day 225. (D) A
delayed second wave emerged after full reopening at day 365. (E) The
dynamics of total number of deaths in each scenario.
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We also performed a control simulation to validate that
heterogeneity of isolated clusters is indeed important for the
infection pattern. In the most complex scenario of “moderate
lockdown” shown in Figure 1C we substitute 250 clusters by one
big cluster with the same population of one million people
keeping all other parameters the same. The simulations
showed a different pattern in which the second big cluster
always generated a peak of substantially larger amplitude
(Supplementary Figure S2).

Simulations of Integrated Clusters Driving
Infection in an Urban Cluster
By altering parameters in the same topology as Figure 1A, we found
that the outlying clusters, if they are unable to socially distance, can
become potential “hotspots” that can drive the infection in the
urban population even against efforts of the latter to lock down. In
this scenario the large urban cluster was composed of 1 million
individuals with R0 � 1.25 throughout all simulation stages
while the highly susceptible population consists of 250 clusters
each with 1,200 ± 500 people and internal R0 � 3.0 that are
partially embedded in the urban cluster. This R0 value is based
on data from four districts in Germany when essential
manufacturing sectors were open–95%-prediction interval:
2.16–3.73 [20]. The potential hotspot clusters were connected
with 20% out-coupling into the urban cluster (alphaoutpop �
0.20, see Methods). This mechanism of transient contact
implements short-term movement of the same people in and out
regularly, which does not dilute the effect of the conditions in
hotspots the way that random bidirectional migration would. In
other words, the same people “virtually” move back and forth but
spendmost of their time in the high-R0 locations where the infection
regenerates. In this scenario, the small number of infections in the
urban area are picked up by hotspots, amplified, and then drive a
wave of infection among the urban population despite their efforts to
keep their internal R0 at 1.25 by social distancing.

We performed 10 runs of these simulations which
demonstrated that the integrated clusters drove infection in
the urban cluster, leading the late appearance of the epidemic
in places that had seen few cases in a microcosm of the pattern
(Figure 2). In the second “chain” topology multiple small
urban areas (population 100 K each) are sequentially
connected and 30 potential hotspots with R0 � 2.0 drive
infection within each urban cluster and facilitate
propagation from cluster to cluster (Figure 3,
Supplementarys Figure S3 and Video S2 show the
stochastic dynamics of individual hotspots). In this model,
the first urban cluster began with R0 � 2.5, then locked down
to 1.25 at day 40, while the unsuspecting urban clusters
connected through the chain kept R0 � 1.25 throughout,
signifying efforts at social distancing. Ultimately these
efforts were defeated by the hotspots picking up the small
number of arriving infections and amplifying them. These
results demonstrate that subgroups who cannot or will not
socially distance can drive the propagation of the epidemic to
new regions against the best efforts of the majority of the
populations. It follows that it is possible to control the spread

of the epidemic through the mitigation of hotspot
amplification. To validate this finding, we simulate the
application of vaccine treatments to just the hotspot
members, who constitute only about 30% of the
population. The vaccine treatment is applied to individuals
in hotspots at the rate of 5% per day, and, as a result, the
geographic spread of infection is sufficiently stopped and the
entire downstream region is protected from infection and
deaths (Figure 4).

Reopening Urban Cluster After Hotspots
Drive First Wave of Infection
We extended the single urban cluster hotspot scenario to
reopen when infection numbers substantially drop. Here, the
main cluster was composed of 1 million individuals which
starts off closed with R0 � 1.05 and reopens to R0 � 2.50 at
day 360. The cluster was connected to 30 potential hotspots
each with 1,200 ± 500 people with R0 � 3.0 which remained
constant throughout all simulation stages. The urban cluster
was connected with 0.1% transient contact into the isolated
clusters (alphainpop) while isolated clusters had 1% contact
into the urban cluster (alphaoutpop). The results show two
distinct waves of infection (Figure 5). The hotspots drove the
first wave of infection, whereas the second wave was almost
entirely composed of infection from the urban area,
demonstrating that the hotspots acquired immunity and did
not participate at all in the second wave. The ending of the first
wave, dominated by the vulnerable groups, created the illusion
that the epidemic was nearly over, while a large fraction of the
surrounding populations was in fact still susceptible when
reopening occurred.

DISCUSSION

Interpretations and Implications
Since Summer of 2020, the infection curves of the COVID-19
pandemic in various locations have been very different from
standard smooth bell curves. Here we tested the hypothesis
that multiple, asynchronous waves and plateaus are in part
due to stochasticity and heterogeneity, as well as due to
changing efforts at mitigation. Geographic heterogeneity is
included in forecasting models [12, 21, 22] which use
extensive, public databases of population characteristics
and travel patterns, but these do not fully account for the
stratification of social behaviors that controls the spread of
the virus. Therefore, instead of building another data-based
forecasting and estimation model, we developed a numerical
scenario model that we used to explore mechanisms of
infection dynamics with regards to social stratification.
The model was built as a network of “populations” which
represent social and behavioral strata of geographic
populations. Our model can be considered a
metapopulation of SARS-CoV2, when a single species is
spread among different environments that determine its
local survival or extinction.
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We examined several scenarios which included one or more
large urban populations connected to vulnerable subgroups that
are unable/unwilling to socially distance and thus represent
potential COVID-19 hotspots. Depending on the degree of
interaction, these subgroups were either driven by infection
from the main population, or acted as major drivers of the
epidemic. Isolated subpopulations were infection-driven (e.g.,
nursing homes, prisons, remote suburbs, clustered religious
groups) and had a substantially delayed contribution to total
infection cases, ultimately forming an infection curve which
could include multi-modal growth periods, an extended plateau,
a prolonged tail, or a delayed second wave of infection (Figure 1).
These communities, due to their isolated nature, had low herd
immunity that put them at risk for explosive scenarios when basic
mitigation strategies were not implemented. Alternatively, partially
integrated subpopulations were driving infection (e.g., employees
of factories, warehouses, meat packing plants, church groups,
campuses, shelters, and other essential workers) in its connected
urban population by picking up infection and amplifying it by
(Figure 2, Supplementary Video S1). We found that these
“hotspots” ignite infection even in a locked down population,
ultimately propagating and igniting other isolated populations
(Figure 3, Supplementary Video S2). The locked down
population however does not acquire herd immunity, as
opposed to the hotspots, and thus when lockdown is lifted, a
second wave is generated by the main cluster (Figure 5).

There are several implications that arise from our results.
We can expect social heterogeneity to form delayed local
asynchronous epidemics, creating a variety of infection
profiles in various regions over time, prolonging the
pandemic time span, and spreading to new areas
unpredictably due to the stochasticity of infection in small
subgroups, as is becoming increasingly obvious in the
United States in the Fall of 2020 Effective mitigation of the
epidemic in the main population requires close attention to
vulnerable subgroups in order to prevent the formation of
COVID-19 infection hotspots. Otherwise vulnerable
subgroups that cannot implement mitigation strategies
spread infection to the socially distanced populations,
defeating their efforts at mitigation. Despite hotspots
possibly acquiring immunity, there still exists a threat of a
second wave of infection in the socially distanced main
population. Thus, an effective treatment or vaccination
needs to be developed prior to full reopening. As vaccines
become readily available, the selection and timing of their
administration will be an important policy consideration.
Our simulations in idealized scenarios (Figure 4) suggest
that focusing vaccination on the small fraction of the
population that is unable or unwilling to socially distance
may be sufficient to interrupt regional spread and protect a
much wider fraction of the public. Notably, achieving this effect
requires vaccinating all hotspot groups, not merely medical
personnel, and essential workers, but also uncooperative
college students and those with an aversion to mitigations.
This creates a kind of moral hazard–rewarding bad
behavior–but the model suggests that it is the public interest.

FIGURE 2 | Highly susceptible integrated clusters (hotspots) drive
SARS-CoV2 infection in an urban cluster. (A,B) Initial rise of infection in
hotspot clusters is followed by the infection in urban cluster with a delay of
about 30 days. Y-axis represents active infections in % population
reflecting for hotspots (red line) the ratio of all active cases in all hotspots to
entire population of all 250 hotspots. Inset shows schematically the society
structure in this scenario. (C) Infection in individual hotspots (multiple colors)
substantially fluctuates in terms of time of ignition and magnitude from the
mean (red bold curve). See also Supplementary Video S1. (D) Explosive
infection in hotspots within locked urban cluster substantially increased the
peak of infection in the entire society and shifted it toward much earlier
occurrence from about 400 to 200 days. Shown are 10 simulation runs for
each scenario.
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Comparison With Other Studies
While our study is focused on vulnerable subpopulations in
pandemic development, there are other important factors
regarding social heterogeneity identified by previous studies.

The study by Dolbeault et al. [23], using their multi-group
SEIR model, underlined the importance of mitigation measures
on single individuals with a high level of social interactions.

Indeed, their study showed that even a small group of individuals
with high transmission rate can trigger an outbreak even if the R0
of the majority is below 1. Althouse et al. [14] identified and
explored in depth another important factor, explosive super-
spreading events originating from long-term care facilities,
prisons, meat-packing plants, fish factories, cruise ships, family
gatherings, parties and night clubs. This study further

FIGURE 3 | Complex infection propagation patterns in multiple urban areas containing hotspots. (A) Schematic illustration of the heterogeneous society used in
simulations. (B) Total infection count oscillates as infection propagates. While individual oscillations exhibit substantial variations in timing and amplitude, the patterns remain
the same (i.e., four oscillations, reflecting infection surge in each urban cluster). (C) The infection in hotspots is delayed before the lockdown at day 40, but then is always in the
lead (red curves), driving infection in each urban cluster (blue curves) and facilitating infection propagation among clusters (Supplementary Video S2).
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demonstrated the urgent need for targeted interventions as routes
of effective virus transmission. Taking into account the
importance of these super-spreading events and individuals,
they were included in the design of our model (see Methods,
Super-spreading) to generate more realistic outcomes of
scenarios.

With regard to agent-based models, Chinazzi et al. [12] used
GLEaM to demonstrate that travel restrictions introduced in

Wuhan in January 2020 only delayed epidemic progression by
3–5 days within China, and international travel restrictions
only helped slow infectious spread until mid-February. Our
simulations of COVID-19 spread also show that ultimately,
when enough time goes by, isolation does not prevent infection
of vulnerable subpopulations (Figure 1). Chinazzi et. al.
suggests that early detection, hand washing, self-isolation,
and household quarantine are more effective than travel
restrictions at mitigating this COVID-19 pandemic. Our
recommendations are in accord, and we advocate for
communities to take extra care of vulnerable subpopulations
internally, as so to prevent a possible hotspot formation that
may evolve into a regional epidemic.

Model Features, Limitations, and Future
Studies
An epidemic can be likened to a forest fire, which spreads by
diffusion along a front, but can also jump by embers that may or
may not start a new blaze. Such spread to virgin areas, with a virus
as with a fire, is intrinsically stochastic and such stochasticity,
which is not explicitly included in mean-field models, may
contribute to the remarkable patchiness of the COVID-19
epidemic. This has caused the epidemic to appear entirely
different to observers in different locations, leading to
politicization of the response, which is, itself, a form of social
heterogeneity. For rare spread to small, isolated subgroups
(embers) this stochasticity is crucial. Patchiness is aggravated
by the over-dispersion (super-spreading) of secondary cases of
COVID-19, where the majority of infected individuals do not
spread the virus, but some can cause up to a hundred secondary
infections [14]. Our model is explicitly stochastic, with a
mechanism to account for over-dispersion, by keeping a
partial history of individual infections. Furthermore, the
design of our new model allows it to be applied in future
studies of real-world scenarios on any scale, limited only by
memory and the ability to determine the underlying topology and
parameters.

However in our model, we make no attempt to distinguish
between symptomatic and asymptomatic cases, despite recent
findings by Chao et al. [24] in their agent-based model (dubbed
Corvid) that demonstrated that most infections actually
originate from pre-symptomatic people. Since the relative
infectivity of symptomatic and non-symptomatic is
uncertain, there is no direct way to accurately determine the
number of asymptomatic infections at present. Such a
distinction (included in a number of other models) could
easily be added by subdividing the five compartments, at the
risk of added complexity and more parameters needed in a
scenario.

We did not take into account recent suggestions that
infectivity is concentrated in a short time window just
before and after symptom onset. Instead, we used the
standard SEIRD assumption that infections are generated
throughout the period of infection, using a mean clinical
duration of 7 days. The model does not consider the
physical mechanisms of transmission of COVID-19, or the

FIGURE 4 | Multicity model as in Figure 3 without (A) and with (B)
vaccination of only the hotspot populations at a rate of 5% of the population
per day, starting at day 150. Vaccination of hotspot individuals prevents
geographic spread of the virus even though they are only about 1/3 of
the population, thereby protecting the general population. The colored curves
show only the infections among the socially distanced majority of the city
population. (C) Overall mortality with and without vaccine, assuming case
mortality of 1% in all groups.
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possibility that many recovered patients do not quickly re-
enter their normal social circles, delaying herd immunity. An
additional compartment, with a pipeline mechanism, could
also be added to account for this.

We examined several simple scenarios as a demonstration of our
model, which revealed the important role of embedded, non-
distancing sub-populations in infection propagation. Further
studies require consideration of the role of model network
topology. Several studies have shown that epidemic propagation
in large, scale-free networks can result in the establishment of an
endemic state even with small infection rates, preventing random
vaccination from effectively ending the epidemic [25, 26]. Strictly
speaking this cannot happen in the scenarios we considered, which
assumed that recovered individuals are permanently immune–a
choice we made because of the extreme rarity of re-infections
with SARS-CoV-2. A more important point is that prior
theoretical analyses pertained to networks of individuals, each of
whom can be either infected or susceptible. Within a single
population cluster, over-dispersed link distributions such as in
scale-free networks can enable persistence of infection because
highly connected individuals can scavenge rare infections and
widely redistribute them [27]. This is a major mechanism of
super-spreading, which is incorporated in our model by
heuristically handling super-spreading in each homogeneous
cluster. However, stratification of the connectivity of individuals
is not included in the model: Individual villages were taken to be
homogeneous, characterized by their populations, R0 and reff that
determine the effective dispersion of secondary infections. Further
stratification of individual connectivity could be handled by splitting
social behavior into separate, mutually embedded clusters e.g.,
college students who study together vs. those who study alone.

It requires further studies to see if similar topological
considerations pertain to networks of populations as in our

model. With that in mind, the model includes the possibility
that a recovered individual may revert to being susceptible,
with a specified rate constant. How the topology of the
larger-scale network of populations affects the
propagation of the virus requires simulation studies too
extensive to be considered in this paper. For example,
whether physical transportation and communication
networks are scale-free is controversial [28–30]. In our
preliminary simulations (not shown), we found that a
scale-free random network of 500 villages with
populations proportional to the link numbers, and
uniform behavior, had a significant probability of entering
an endemic state even when the lifetime of immunity was as
long as 500 days. However, the same was true of Erdös-Rényi
random networks with a similar number of links.
Interestingly, both types of random networks produced
smooth single-peak epidemics resembling a single
population suggesting that the increasingly complex
patterns now being observed do depend on behavioral
heterogeneity.
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