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Mutual interaction of localized nonlinear waves, e.g., solitons and modulation instability
patterns, is a fascinating and intensively-studied topic of nonlinear science. Here we report
the observation of a novel type of breather interaction in telecommunication optical fibers,
in which two identical breathers propagate with opposite group velocities. Under
controlled conditions, neither amplification nor annihilation occurs at the collision point
and most interestingly, the respective envelope amplitude, resulting from the interaction,
almost equals another envelope maximum of either oscillating and counterpropagating
breather. This ghost-like breather interaction dynamics is fully described by an N-breather
solution of the nonlinear Schrödinger equation.
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INTRODUCTION

The study of both, formation and interaction of localized waves has been a central task in nonlinear
physics during the last decades, including plasma physics, fluid dynamics, Bose-Einstein condensates
and photonics. Among different types of nonlinear localized waves, solitons are the most
representative and ideal testbed to investigate nonlinear wave interactions due to their intrinsic
particle-like properties during propagation [1–4]. A generic and relevant case of study for various
fields of research is the elastic and nonlinear interaction of envelope solitons, which can be described
by the focusing one-dimensional nonlinear Schrödinger equation (NLSE). In this conservative and
integrable system, the possible collision of solitons with different velocities does not affect their shape
or velocity after interaction, and their main physical properties keep unchanged. In general, the
interaction-induced displacement in position and phase shift are independent on the relative phases
of the envelope solitons. However, collision dynamics in the interaction region strongly depends on
the relative phases. Consequently, in the simplest case of two-soliton collision with opposite
velocities, as shown in Figures 1A1–D1 the two solitons appear to attract with each other and
cross (forming a transient peak) in the in-phase configuration, while they seem to repel each other
and as such stay apart in the out-of-phase case. The wave magnitude at the central point of collision
then evolves from the sum of the two solitons’ amplitudes (i.e., amplification) to their difference
(i.e., annihilation), respectively. A large range of theoretical descriptions, numerical simulations and
experimental observations of such soliton interactions and their possible synchronization have been
reported earlier [5–12].

Besides solitons, breather solutions of the NLSE are also exciting examples to investigate
nonlinear wave interactions because of the salient complexities of breather synchronization in
relation to their self-oscillating properties. From this point of view, phase-sensitive breather
interactions are now widely studied [13–22]. More particularly, for co-propagative breathers,

Edited by:
Manuel Asorey,

University of Zaragoza, Spain

Reviewed by:
Haci Mehmet Baskonus,
Harran University, Turkey

Abdullahi Yusuf,
Federal University, Nigeria

*Correspondence:
Bertrand Kibler

bertrand.kibler@u-bourgogne.fr

Specialty section:
This article was submitted to

Mathematical and Statistical Physics,
a section of the journal

Frontiers in Physics

Received: 22 September 2020
Accepted: 10 November 2020
Published: 07 December 2020

Citation:
Xu G, Gelash A, Chabchoub A,

Zakharov V and Kibler B (2020) Ghost
Interaction of Breathers.
Front. Phys. 8:608894.

doi: 10.3389/fphy.2020.608894

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 6088941

BRIEF RESEARCH REPORT
published: 07 December 2020

doi: 10.3389/fphy.2020.608894

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.608894&domain=pdf&date_stamp=2020-12-07
https://www.frontiersin.org/articles/10.3389/fphy.2020.608894/full
http://creativecommons.org/licenses/by/4.0/
mailto:bertrand.kibler@u-bourgogne.fr
https://doi.org/10.3389/fphy.2020.608894
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.608894


breather molecules can be formed when group velocity and
temporal phase of breathers are perfectly synchronized, while
for counter-propagating breathers, the phase-sensitive collision
process exhibits various dynamical behaviors. Two of them have
been studied in detail in the context of rogue wave formation,
namely amplification and annihilation cases that resemble soliton
collisions. The above interactions are fully described by
N-breather solutions of the NLSE [16, 18]. However, the two-
breather collision has been recently found to provide a peculiar
third configuration for particular phases, neither of the above-
mentioned cases, the later leads to a peak amplitude at the central
point of collision equivalent to the single breather amplitude
before or after the collision. Phenomenologically, it seems that
one breathermysteriously disappears in the nonlinear interaction
region, but it then appears after that. That is why this intriguing
breather interaction was vividly termed by “ghost interaction”
[19]. Its generalization to the N-breather interaction is still under
investigation. However, both, detailed analysis and experimental
confirmation of this remarkable dynamics for the simplest two-
breather collision are still to emerge into light.

To address this scientific gap, we present the observation of
ghost interaction of two breathers in a single-pass
telecommunication optical fiber experiment. By means of the
Fourier-transform pulse shaping technique applied to an optical
frequency comb, we generate the initial condition for two
counter-propagating breathers with desired temporal phases.
The experimental results are in excellent agreement with the
exact two-breather solution of the NLSE. We confirm that this
peculiar phase-sensitive breather interaction is strictly different to
the well-known soliton interactions. Our study paves the way for

novel directions of investigation in the rich landscape of complex
nonlinear wave dynamics [23–26].

METHOD

Theoretical Model and Breather Solutions
Our theoretical framework and starting point is based on the
dimensionless form of the self-focusing 1D-NLSE:

iψξ +
1
2
ψττ +

∣∣∣∣ψ∣∣∣∣2ψ � 0, (1)

where subscripts stand for partial differentiations. Here, ψ is a wave
envelope, which is a function of ξ (a scaled propagation distance or
longitudinal variable) and τ (a co-moving time, or transverse
variable, moving with the wave group-velocity). This
conventional form of the NLSE is widely used to describe the
nonlinear dynamics of one-dimensional optical and water waves
[25]. This integrable equation can be solved using various
techniques and admits a wide class of unstable pulsating
solutions known as breathers [13]. The simplest cases (i.e., first-
order breathers) are well-known localized structures emerging
from the modulation instability process [26]. The general one-
breather solution is a localized wave envelope which coat the plane
wave in space-time and propagate with a particular group velocity
and oscillating period in relation to carrier. This also includes
limiting cases such as time-periodic Akhmediev breathers [13],
space-periodic Kuznetsov-Ma breathers [27, 28] and the doubly-
localized Peregrine breather [29], which have been observed in
various experimental configurations [30–37]. Higher-order

FIGURE 1 | Typical temporal evolution of soliton-pair interaction (first line) and breather-pair interaction (second line). (A1) Dependence of amplitude at the soliton
collision point

∣∣∣∣ψ2S(0, 0)
∣∣∣∣ on the soliton phases θ1 and θ2. (B1–D1) Amplitude evolution of soliton collision with soliton phases: θ1 � 0, θ2 � 0 (b1); θ1 � π/2, θ2 � 0 (c1);

θ1 � π, θ2 � 0 (d1). (b1-d1) are plotted based on the two-soliton solution of NLSE with the soliton parameters: angular frequencies Ω1 � −Ω2 � 0.5; soliton amplitudes
A1 � A2 � 1. (A2)Dependence of amplitude at the breather collision point

∣∣∣∣ψ2B(0,0)
∣∣∣∣ on temporal phases θ1 and θ2. Prototypes of interactions include Amplification

(B2), Annihilation (C2), and “Ghost interaction” (D2). (A1–D2) are plotted based on the one-pair breather solution of NLSE. In all these cases, key parameters of
breathers are listed as follows R1 � R2 � 1.05, α1 � −α2 � 0.4, μ1 � μ2 � 0. while θ1 � θ2 � 0 for (B2); θ1 � θ2 � π/2 for (C2) and θ1 � θ2 � π for (D2). Red arrows in (B1)
and (B2) indicate the moving motions of solitons and breathers respectively.
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breathers can be simply generated by considering the interaction of
the above elementary breathers, thus, associated to the nonlinear
superposition ofmultiple breathers [13, 38, 39].More generally, the
NLSE has an exact N-breather solution, which can be constructed
by appropriate integration technique by studying the auxiliary
linear Zakharov-Shabat system. More technical details to solve the
NLSE, e.g., applications of the dressing method are reported in
Refs. [16, 18]. In the following, we restrict our work to the general
two-breather solution. It has four main parameters R1,2, α1,2

(subscripts 1 and 2 correspond to the first and second breather)
which control the main breather properties (localization, group
velocity, and oscillation) and four additional parameters
μ1,2 ∈ [−∞,∞] and θ1,2 varying between 0 et 2 π that define
the location and phase of each breather. More details can be
found in Ref. [40]. In particular, we study the simplest one-pair
breather solution ψ2B with breathers moving in opposite directions
in the (ξ, τ) -plane that can be obtained by setting
R1 � R2 � 1 + ε � R, α1 � −α2 � α. The resulting solution can be
written as follows:

ψ2B(ξ, τ) � [1 + (R2 − 1
R2
) N

Δ sin2α]eiξ , (2)

where

N � (R − 1
R
)sinα(∣∣∣∣q1∣∣∣∣2qp21q22 + ∣∣∣∣∣q2∣∣∣∣∣2qp11q12)

− i(R + 1
R
)cosα[(qp1q2)qp21q12 − (q1qp2)qp11q22]

and

Δ � (R + 1
R
)2

cos2α
∣∣∣∣∣q11q22 − q12q21

∣∣∣∣∣2 + (R + 1
R
)2∣∣∣∣∣q1∣∣∣∣∣2∣∣∣∣∣q2∣∣∣∣∣2sin2α

In these expressions, qi � (qi1, qi2) with i � 1, 2 as a two-
component vector function, which contains the following
components:

q11 � e−φ1 − e−φ1−iα

R
,

q12 � eφ1 − e−φ1−iα

R
,

q21 � e−φ2 − eφ1+iα

R
,

q22 � eφ2 − e−φ2+iα

R

with φ1 � ητ + cξ + μ1
2 + i(kτ + ωξ + θ1

2) and φ2 � ητ − cξ + μ2
2 −

i(kτ − ωξ + θ2
2).

The parameters η, k, c and ω are defined as:

η � −1
2
(R − 1

R
)cosα,

k � −1
2
(R + 1

R
)sinα,

c � −1
2
(R2 + 1

R2
)sin2α

and

ω � 1
2
(R2 − 1

R2
)cos2α

Figures 1A2–D2 presents the interaction of a pair of
counter-propagating breathers when R1 � R2 � 1.05, α1 �
−α2 � 0.4, thus corresponding to two identical and
symmetric breathers propagating with the same oscillating
frequency but opposite group velocities. Here, we fixed the
temporal position μ1,2 � 0, so the central point of collision
locates at the origin (ξ � 0, τ � 0). According to the two-
breather solution of the NLSE, we continuously vary the
breather phase θ1,2 over the full range [0, 2π] to analyze its
impact on the resulting waveform and amplitude at the
origin. As shown in Figure 1A2, the amplitude of the
collision-induced wave

∣∣∣∣ψ2B(0, 0)∣∣∣∣ strongly depends on θ1,2

values, the maximum is obtained for θ1,2 � 0 or θ1,2 � 2π, when
synchronization of the maximal amplitude of pulsating
breathers is perfectly reached. When θ1,2 ∼ π/2, the
amplitude at the central point of collision decreases to a
minimum value close to the constant background amplitude∣∣∣∣ψ0∣∣∣∣ ∼ 1. Interestingly, there is another local peak of

∣∣∣∣ψ2B(0, 0)∣∣∣∣
at θ1,2 � π, whose amplitude is very close to that of a single
breather before or after the collision

∣∣∣∣ψ1∣∣∣∣ ∼ 2.7. In order to
improve the unveiling of the space-time dynamics of such
breather interactions, we depict the full wave evolution in
Figure 1B2–D2 for the following cases: 1) θ1 � θ2 � 0, the
synchronized collision of breathers that generates a rogue
peak with extremely high amplitude (already reported
experimentally in Ref. [15]); 2) θ1 � θ2 � π/2, the quasi-
annihilation of breathers that gives rise to very small
perturbations located on the plane wave (already reported
experimentally in Ref. [19]). However, note that in this case,
we observe a jump of wave field symmetry before and after the
collision of these two breathers because of the noticeable π

-phase shift (see Figure 1C2). This specific configuration of
breather collision also known as superregular breathers can
be regarded as a prototype of small localized perturbations of
the plane wave for describing modulation instability [16]; 3)
θ1 � θ2 � π, the two breathers are almost transformed into a
single one in the main local interaction and interaction
region, at the origin

∣∣∣∣ψ2B(0, 0)∣∣∣∣ ∼ ∣∣∣∣ψ1∣∣∣∣, which raises the
impression that one breather has vanished (see Figure 1D2).

We emphasize that such ghost interaction of breathers as
illustrated in Figure 1D2 cannot occur for the soliton counterpart
(see Figures 1A1–D1). To clarify this point, we compare
systematically the phase-dependent soliton collision and the
phase-dependent breather collision. Similarly, we consider a
pair of counter-propagating solitons with the amplitudes A1 �
A2 � A and the frequencies Ω1 � −Ω2 � Ω. In this configuration,
the two-soliton solution (on zero-background) can be written in
the following form [18]:
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ψ2S(ξ, τ) � 2A
Ω2(∣∣∣∣q1∣∣∣∣2qp21q22 + ∣∣∣∣q2∣∣∣∣2qp11q12) − iAΩ[(q*1q2)qp21q12 − (qp2q1)qp11q22]

A2
∣∣∣∣q11q22 − q12q21

∣∣∣∣2 +Ω2
∣∣∣∣q1∣∣∣∣2∣∣∣∣q2∣∣∣∣2 eiξ ,

(3)

In this expression, qi � (qi1, qi2) with i � 1, 2 is a two-component
vector function having the following components: q11 � e−φ1 ,
q12 � eφ1 , q21 � e−φ2 , q22 � eφ2 , with

φ1 �
A
2
τ + AΩ

2
ξ + μ1

2
+ i(Ω

2
τ + Ω2 − A2

4
ξ + θ1

2
) and

φ2 �
A
2
τ − AΩ

2
ξ + μ2

2
+ i( − Ω

2
τ +Ω2 − A2

4
ξ + θ2

2
).

Again, the μ and θ are key parameter to control the soliton
position and phase. We set μ1 � μ2 � 0 and Figure 1A1
demonstrates the dependence of the amplitude at the collision
point

∣∣∣∣ψ2S(0, 0)∣∣∣∣ on θ1 and θ2. Compared to the breather collisions,
here the key parameter for soliton collision is the relative soliton
phase θ1 − θ2. In general, amplification interaction occurs for
θ1 − θ2 � 0, and annihilation interaction happens for θ1 − θ2 �
π.While for other values of relative soliton phase,

∣∣∣∣ψ2S(0, 0)∣∣∣∣ keeps
being low ( ∼ 0), and a partial energy exchange occurs from one
soliton to another in the collision area which leads to a
remarkable significant time-parity symmetry transformation
(examples shown in Figures 1B1–D1).

Experimental Setup
In order to validate these theoretical predictions with respect
to ghost interaction of breathers, we have performed
experiments with light waves propagating in high-speed
telecommunication-grade components, as depicted in
Figure 2. The main challenge here is the arbitrary wave
shaping to establish the specific initial excitation of counter-
propagating breathers with desired phases in the (ξ, τ) -plane
(more details can be found in Ref. [41]).

To this end, a 20 GHz optical frequency comb passes through
a programmable optical filter (wave-shaper) to precisely control
both amplitude and phase characteristics of each comb line. As a
result, we can synthesize any arbitrary perturbation of a
continuous wave background in a time-periodic pattern
whose frequency is equal to the comb spacing. This temporal
pattern is then amplified by erbium-doped fiber amplifier
(EDFA) to achieve the exact excitation of the two-breather
solution in terms of average power for nonlinear propagation
into our single-mode optical fiber (SMF). The corresponding
temporal and spectral power profiles of the light-wave are
presented in Figures 2B–C. Note that the initial condition
for the breather pair is time-periodic with a period of 50 ps.
Hereafter, we select the center time slot (−25 ps< t < 25 ps) to
investigate the collision dynamics of the breather pair as shown
in gray shaded area in Figure 2B. The nonlinear propagation is
studied with different lengths of the same fiber and
characterized by means of an optical sampling oscilloscope
(OSO) with sub-picosecond resolution in the time domain
and a high dynamics-range optical spectrum analyzer (OSA)
in the Fourier domain. The maximum propagation distance
fixed was chosen to limit the impact of linear propagation losses
in our optical fiber as well as possible interaction occurring
between neighboring elements of the periodic pattern. Our fiber
properties are the following: group velocity dispersion
β2 � −21.1 ps2km− 1, linear losses α � 0.2 dB km− 1, and
nonlinear coefficient c � 1.2W−1km− 1.

RESULTS

We present our experimental results on the nonlinear space-time
evolution of the breather pair studied in the above theoretical
section, for the specific temporal phases θ1 � θ2 � π. To this
purpose, we fixed the average power to P0 � 0.74W. Then, we

FIGURE 2 | Experimental setup and generation of initial conditions. (A) Schematic diagram of the experimental setup. EDFA: erbium-doped fiber amplification;
SMF: single mode fiber; OSA: optical spectral analyzer; OSO: optical sampling oscilloscope. Shaded-green box represents the home-made frequency comb source with
a repetition rate of 20 GHz. (B–C) Designed initial conditions at 20 GHz repetition rate for a pair of contra-propagative breathers in both temporal and spectral domains.
Solid blue lines are theoretical curves; Solid red lines are experimental measurements. Here breather parameters are: R1,2 � 1.5, α1 � −α2 � 0.5, μ1,2 � 0, θ1,2 � π.
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gradually increase the propagation distance (i.e., the fiber length)
by a step of 100 m. The correspondence between normalized and
physical units can be retrieved by making use of the following
relations between dimensional distance z (m) and time t (s) with
the previously mentioned normalized units: z � ξLNL and t � τt0.
In these expressions, the characteristic (nonlinear) length
and time scales are LNL � (cP0)− 1 ∼ 1216 m and
t0 �

������∣∣∣∣β2∣∣∣∣LNL√
∼ 4.74 ps, respectively. The dimensional optical

field A(z, t)(W1/2) is A � ��
P0

√
ψ.

Figures 3A1–A2 presents the concatenation of temporal
(amplitude) profiles and power spectra which were recorded at
the output of the distinct fiber segments with increasing length.
The careful control of phases allows to observe the ghost
interaction between the counter-propagating breathers. The
full space-time dynamics is indeed in excellent agreement with
theory shown in Figures 3B1–B2. We can notice the five mains
peaks appearing during the whole evolution studied in
Figure 3A1: two peaks at ξ1 ∼ − 2.2 for the two breathers
before collision; one peak at ξ2 ∼ 0 at the collision point; and
two peaks at ξ3 ∼ 2.2 for the two breathers after the collision.
Correspondingly, we observe the maxima of spectral
broadening for respectively ξ � ξ1, ξ � ξ2 and ξ � ξ3 (shown
in Figure 3A2), thus, confirming the different nonlinear
temporal focusing patterns. Figure 3C1 presents the
comparison of the recorded temporal waveforms for
|ψ(ξ � ξ1, τ)|, |ψ(ξ � ξ2, τ)| and |ψ(ξ � ξ3, τ)|. Strikingly, all
these five peaks are found to nearly exhibit similar
waveforms and maximum amplitudes, this is also
corroborated by the spectral analysis reported in
Figure 3C2. Only very minor discrepancies can be noticed
mainly ascribed to the linear propagation losses in our optical
fiber and some artifacts of the initial wave shaping.

DISCUSSION

As shown above, during the ghost interaction of two
breathers, only a single breather peak remains occurrent at
the collision point. The reason for this intriguing
phenomenon is related to the fact that there is a
continuous and varying power exchange between the
background and each localized perturbation all along the
propagation, which is an intrinsic property of breathers.
Therefore, when these two breathers nonlinearly interact
near the collision point, for a given particular phase-
collision-interaction, one of the breather peaks appears to
be almost hidden in the background and then emerges again
after the collision by following the energy conservation.
Moreover, the breather pair keeps the spatial and temporal
symmetry during the whole evolution. It is also worth to
mention that such peculiar ghost interaction does not occur in
conventional soliton-soliton collision scenarios because of the
lack of pulse-background energy exchange [see Figures
1A1–D1].

In summary, we performed a systematic theoretical
comparison between the phase-sensitive soliton-soliton
collisions and breather-breather collisions. All different
configurations are fully described by the exact N-breather
solution of the NLSE. More importantly, we provided the
first experimental observation of the very fascinating type of
ghost interaction of breathers, which confirms our theoretical
predictions. We also point out that our study is here restricted
to the interaction of two identic counter-propagating breathers,
while much more complicated many-body interactions of
breathers with asymmetric conditions, including different
amplitudes and/or oscillating frequencies, still require

FIGURE 3 | Experimental observation of ghost interaction of two breathers. Color maps showing the evolution of temporal amplitude (A1) and power spectrum
(A2) for the two breathers observed in experiment. Dashed white lines indicate the position of local maximum amplitudes, which are also the position of largest spectral
broadenings, before collision (ξ1 ∼ − 2.2), during collision (ξ2 ∼ 0) and after collision (ξ3 ∼ 2.2). (B1–B2) Corresponding theoretical predictions based on the two-
breather solution of NLSE. (C1) Comparison of the amplitude profiles measured at ξ � ξ1 (blue curve), ξ � ξ2 (red curve) and ξ � ξ3 (green curve). (C2) Comparison
of power spectra recorded at ξ � ξ1 (blue curve), ξ � ξ2 (red curve) and ξ � ξ3 (green curve). Thin dark curve is the theoretical spectrum at ξ � 0. Key parameters of the
breather pair: R1,2 � 1.5, α1 � −α2 � 0.5, μ1,2 � 0, θ1,2 � π.
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further investigations. Our current results concede a novel step
toward the understanding of interactions between localized
waves in nonlinear physics. These may naturally lead to
encourage further relevant experimental studies and
theoretical investigations in various fields of nonlinear wave
physics.
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