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The ongoing COVID-19 pandemic has led to a serious health crisis, and information
obtained from disease transmission models fitted to observed data is needed to inform
containment strategies. As the transmission of virus varies from city to city in different
countries, we use a two-level individual-level model to analyze the spatiotemporal SARS-
CoV-2 spread. However, inference procedures such as Bayesian Markov chain Monte
Carlo, which is commonly used to estimate parameters of ILMs, are computationally
expensive. In this study, we use trained ensemble learning classifiers to estimate the
parameters of two-level ILMs and show that the fitted ILMs can successfully capture the
virus transmission among Wuhan and 16 other cities in Hubei province, China.
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INTRODUCTION

The COVID-19 epidemic [1, 2] has caused the most serious threat to global health since the early
20th century; the exponential spread of the SARS-CoV-2 virus around the world has caused over 26
million confirmed cases and 860 thousand deaths worldwide as reported by the John Hopkins
University COVID-19 web dashboard (https://coronavirus.jhu.edu/map.html) at the time of writing
[3]. The spread of the SARS-CoV-2 virus, which causes COVID-19, has varied considerably in
different areas, in part depending on the control different measures taken. Intensive testing, tracing,
and isolation of infected cases have enabled control of transmission in some places, such as China
and Singapore [4]. At the opposite extreme, many countries lack the testing and public health
resources to take similar measures to control the COVID-19 epidemic, which can result in
unhindered spread. Between these extremes, many countries have taken measures that facilitate
“social distancing”, such as closing schools and workplaces and limiting the size of gatherings. In
order to analyze the dynamics of COVID-19 outbreak, we build an epidemic model based on the
individual-level model (ILM) of Deardon et al (2010) [5] to catch the spread of SARS-CoV-2 virus
within and among cities.

The individual-level model (ILM) framework enables us to express the probability of a susceptible
individual being infected at a point in discrete time, as a function of their interactions with the
surrounding infectious population, while also allowing the incorporation of the effect of individually
varying risk factors. Here, we consider an extension of the Deardon et al (2010) framework of ILMs,
to allow the probability of infection to depend upon two levels of transmission dynamics. The first is a
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within-city (or region) level; the second is a between-city level.
Infectious diseases are generally modeled through compartmental
frameworks, and here we place our ILMs within the susceptible-
infectious-removed (SIR) framework [6]. In the SIR framework,
infected individuals become instantly infectious upon exposure,
with no dormant or latent period. Since, in reality, infection is not
observed instantaneously, and many infected individuals are not
recorded at all in the data, we add an “observation model” which
ties the epidemic generating model above to the observed data.
This consists of a geometric distribution-based “delay model” and
a “reporting model” which assumes that the probability of a true
case being reported follows a Bernoulli distribution.

ILMs are intuitive and flexible due to being expressed in terms
of individual interactions [7–9], but the cost of computation to
parameterize them using observed data is often expensive,
especially when dealing with a disease spreading in large
populations. Traditional parameter estimation methods, such
as Bayesian Markov chain Monte Carlo, have an associated
high computation cost. Recent works by Nsoesie et al (2011)
[10], Pokharel et al (2014) [11], and Augusta et al (2019) [12]
have shown how to bypass the likelihood calculations by using
machine learning classifiers to fit ILMs to data. In this work, we
develop this approach to explore the use of ensemble learning
classifiers to accurately and efficiently find the parameters for our
two-level ILM, which incorporates a delay and reporting
mechanism.

GENERATING MODEL

In this section, we present the two-level epidemic ILM [13] and
observation model (delay model and reporting model) which ties
the epidemic model to observed data. We denote the set of
individuals who are susceptible, infectious, or removed at time
t in city/region k as Sk,t , Ik,t , or Rk,t , respectively. Note, for given t,
these sets are mutually exclusive, so individuals cannot be in
multiple states, or multiple cities. Here, we assume time is
discretized so that time point t, for t � 1, 2, ...n, represents a
continuous time interval [t, t + 1).

Two-Level Individual-Level Model
The number of newly infectious persons in city k at time point
t + 1 is given by

Inewk,t+1 � binomial(∣∣∣∣Sk,t ∣∣∣∣;Pk,t) (1)

where
∣∣∣∣Sk,t ∣∣∣∣ is the number of susceptible individuals within city k

at time t, and Pk,t is the probability of each susceptible individual
in the kth city being infected at time t. Here, Pk,t is given by

Pk,t � 1 − e
[−α0|Ik,t|−α1∑

j ∈ (1,2,...,n)/kd
− β
k,j |Ij,t|] (2)

where n is the number of cities in the population;
∣∣∣∣Ik,t ∣∣∣∣ is the

number of infectious individuals within city k at time t; α is a
parameter representing the risk of infection within cities; and α1
and β are parameters representing the risk of infection between
cities, with β capturing the decay rate of a power-law distance-
based kernel, d−βk,j . Note, decreasing β will lead to a lower rate of

decay in the infection kernel and thus more long-distance
infections.

In the two-level ILM-SIR model, the transitions from
susceptible to infectious and from infectious to recovered are
treated as events of interest. In this work, the number of time
points (days) between I and R is referred to as the infectious
period, denoted by c. The constant infectious period expresses the
number of days over which an infectious individual is capable of
transmitting the disease.

Observation Model
Here, we consider adding an observation model which ties
epidemics generated by epidemic model to observed data.

Delay Model
Since there is a delay between infection and observation of that
infection (reporting), we use a delay model to better represent
reality. Specifically, given true infection times τi ∈ Ζ+ for each
infected individual i, we let the potential observation time for
individual i to be

τDi � τIi + zi, where zi ∼ Geometric(PD) (3)

where PD is the delay rate parameter. Note τDi is a potential
observation time, since case i may not be observed at all.

Reporting Model
The second component of the observation model, the “reporting
model”, accounts for asymptomatic, or otherwise unreported,
cases of COVID-19. Here, we assume the probability of observing
a case and it being recorded in the data (at time τDi ) follows a
Bernoulli distribution, such that

δi ∼ Bernoulli(PR), δi � { 1, infected i is reported
0, infected i is unreported

(4)

where PR is the reporting rate parameter.

ENSEMBLE LEARNING CLASSIFIERS

In supervised learning algorithms, the goal is to learn a stable
classification (or regression) model that performs well across a
wide range of data scenarios. Often, however, this is a difficult
goal to achieve. Ensemble learning is the process by which
multiple models are strategically “learned” and combined to
solve a computational intelligence problem. Ensemble learning
is primarily used to provide for an improved performance over
any single model, or to reduce the likelihood of the selection of a
poor single model. Bagging, boosting, and stacking are common
ensemble learning algorithms. Note, here, we are concerned with
classification rather than regression problems.

Bagging
Bagging, which stands for bootstrap aggregating, is one of the
earliest, most intuitive, and perhaps the simplest ensemble based
algorithms, with a surprisingly good performance [14]. A
diversity of classifiers in bagging is obtained by using
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bootstrapped replicas of the training data. That is, different
training data subsets are randomly drawn—with
replacement—from the entire training dataset. Each training
data subset is used to train a different classifier of the same
type. Individual classifiers are then combined by taking a simple
majority vote of their decisions. For any given instance, the class
chosen by the greatest number of classifiers is the ensemble
decision.

The random forest is a bagging method for trees, later
extended to incorporate random selection of features to help
control variance [15, 16].

Boosting
Similar to bagging, boosting also creates an ensemble of classifiers
by resampling the data, which are then combined by majority
voting. However, in boosting, resampling is strategically geared to
provide the most informative training data for each consecutive
classifier.

The gradient boosted decision tree (GBDT) method [17–19]
uses decision trees as the base learner and sums the predictions of
a series of trees. At each step, a new decision tree is trained to fit
the residuals between ground truth and the current prediction.
Many improvements have since been proposed. XGBoost [20]
uses a second-order gradient to guide the boosting process and
improve the accuracy. LightGBM [21] aggregates gradient
information in histograms to significantly improve the training
efficiency; it splits the tree leaf-wise with the best fit, whereas
other boosting algorithms split the tree depth-wise or level-wise
rather than leaf-wise. AdaBoost, short for Adaptive Boosting, can
be used in conjunction with many other types of learning
algorithms to improve performance; the output of the other
learning algorithms (weak learners) is combined into a
weighted sum that represents the final output of the boosted
classifier. Finally, CatBoost [22] proposed a novel strategy to deal
with categorical features.

Stacking
Stacking, sometimes called stacked generalization, is also an
ensemble learning method that combines multiple
classification (or regression) models via a metaclassifier or a
metaregressor. The base level models are trained based on a
complete training set; then the metamodel is trained on the
outputs of the base level model as features. Stacking involves
training a learning algorithm to combine the predictions of
several other learning algorithms. Stacking typically yields
performance better than any single one of the trained models
[23]. It has been successfully used on both supervised learning
tasks (regression, classification, and distance learning) and
unsupervised learning (density estimation).

EXPERIMENT

Typically, ILMs are fitted to data using computationally intensive
techniques such as BayesianMarkov chainMonte Carlo methods.
In order to avoid this computational expense, in this study we use
the method of Pokharel et al (2014) to fit our models to data.

Broadly this method involves defining a set of candidate
generating models, each with different parameter values. Then,
epidemics are repeatedly generated from the candidate models
and summarized. Here, we summarize the epidemics using the
number of observed cases per day, what we term the “epidemic
curve”. These epidemic curve summary statistics form the
training set used to build a classifier mapping the epidemic
curve (input features) to the generating model (class). The
classifier can then be used to identify the most likely
generating model for future observed summaries of epidemic
data sets; several ensemble learning classifiers such as random
forest, XGBoost, LightGBM, AdaBoost, CatBoost, and stacking
are used to seek the best fitted parameter for the two-level ILM
model. Here, we verify the accuracy of these ensemble learning
classifiers by testing their performance on data simulated from
the two-level ILM model. In Real Data Case Study: COVID-19 in
Hubei Province, China, we will use such classifiers to estimate the
parameters that give the model of best fit when applied to
COVID-19 data from Hubei province, China.

Simulation Study
We now recap the parameters we need to identify: α0, β, and α1
are the parameters of the two-level epidemic model in Eq. 2; tstop
is the interval of time from the initial infection (unknown) to the
day when the epidemic stopped by external intervention
(lockdown) in Hubei province; c is the infectious period,
assumed to be constant for all individuals; pD is the rate
parameter of the delay model; and pR is the rate parameter of
the reporting model. Here we assume that when day t � tstop is
reached, the rate of new infections becomes negligible, and so
α0 � α1 � 0. Thus, newly observed cases after day t � tstop result
from earlier infections becoming observed through the
delay model.

In the simulation experiment, we suppose there are total 100
cities, where (x,y) coordinates are simulated uniformly across a
100 × 100 unit. Further, the population of each city is set at 1,000.
Each candidate two-level ILM is used to generate 100 epidemics,
summarized as epidemic curves. To initialize the SIR model, we
set the value of I0 to 50 in the one city (chosen randomly), where
the disease originates. Here, a maximum of 12 candidate
epidemic generating models are considered in each analysis
with parameters shown in Table 1. Sets of generated epidemic

TABLE 1 | The parameters of ILM generating model.

α0 α1 β c pD pR

1 0.001 0.8 3 7 0.5 0.6
2 0.005 0.1 2 3 0.3 0.8
3 0.005 0.2 1 6 0.8 0.4
4 0.01 0.5 2 9 0.7 0.5
5 0.05 0.9 1 8 0.8 0.4
6 0.05 0.1 3 6 0.8 0.5
7 0.1 0.6 2 4 0.6 0.8
8 0.2 0.3 1 6 0.7 0.9
9 0.2 0.1 3 4 0.6 0.9
10 0.3 0.5 1 6 0.5 0.5
11 0.4 0.7 3 6 0.3 0.5
12 0.5 0.1 2 3 0.8 0.3
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curves are shown in Figure 1, with different colors denoting
different epidemic generating models.

In order to verify the performance of classifiers, we have
carried out five classification tasks, each consisting of different
numbers of epidemic generating models. These tasks consisted
of the first 4, 6, 8, 10, and 12 models of Table 1, respectively.
The generated data is randomly divided into a training set and
test set, with 70% of the data for the training set, and the rest for
the test set. The results of classification are shown in
Tables 2, 3.

We can see Figure 1 has epidemic curves that overlap
substantially. However, all classifiers achieve quite high
accuracy. We also repeated the simulation study using 200

curves per epidemic generating model (140 training; 60 test).
The results are shown in Table 3, and we can see that accuracy
increases when we have larger training sets.

The details of super-parameters of classifiers used to get the
best classification score are as follows. The parameters in
AdaBoost classifier are as follows: the max depth is 6, the
number of estimators is 1,000, and the learning rate is 0.008;
the parameters in CatBoost classifier are as follows: the depth is 6,
the iteration is 1,200, and the learning rate is 0.05; the parameters
in LightGBM classifier are as follows: the max depth is 8, the
number of estimators is 150, and the learning rate is 0.05; the
parameters in random forest classifier are as follows: the max
depth is 8, the number of estimators is 300; the parameters in

FIGURE 1 | Epidemic curves generated under various training sets.

TABLE 2 | The accuracy of different classifiers for training sets of 70 curves per generating model.

Methods sets Random forest XGBoost LightGBM AdaBoost CatBoost Stacking

4 0.98 0.98 0.98 0.98 0.98 0.99
6 0.98 0.96 0.97 0.99 0.99 0.99
8 0.94 0.91 0.94 0.94 0.94 0.93
10 0.95 0.94 0.95 0.96 0.96 0.95
12 0.97 0.97 0.96 0.98 0.98 0.98
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XGBoost classifier are as follows: the max depth is 10, the number
of estimators is 250, and the learning rate is 0.1.

Real Data Case Study: COVID-19 in Hubei
Province, China
We now consider training a classifier to find the parameters of
best fit for the two-level ILM for COVID-19 data from China. As
the first reported COVID-19 cases happened in the city of
Wuhan, we choose the Hubei province in China as the
example in this study. There are in total 17 cities in Hubei
province, and we utilize information on the population of
each city and the distance between cities for the two-level
epidemic ILM.

For the distance between each city, we use the center of each
city as its coordinate point, and then we choose to use the shortest
road traffic distance based on Baidu map (https://map.baidu.
com). Rather than using the total population size to calculate the
terms

∣∣∣∣Sk,t ∣∣∣∣ and ∣∣∣∣Ik,t ∣∣∣∣, we consider using the population in the
central urban area (where most citizens live). Further, we scaled
the population of each city based on the ratio of population
density in central urban area relative to that in Wuhan. Thus, the
population measure of each of the other 16 cities in Hubei will be
greater or less than one depending on whether their population
density in central urban area is greater or less than that ofWuhan.
These measures of population density are shown in Table 4
(adjusted population column).

The reported case data had some anomalies, and so some
preprocessing was carried out. For example, the number of new
cases in Wuhan on February 12, 2020, was recorded as more than
ten thousand, which is much larger than on other days. Also,
there were two other cities which had a two-day spike of an
excessively large magnitude. We believe these spikes represent
retrospectively found cases, which should have been recorded as
cases on earlier days, “dumped into the data” on those “spike”
days. Further, some values in the reported data were negative
because the health agencies subtracted retrospectively discovered
false positives from the date on which the false positives were
discovered, rather than the day on which they were initially
recorded. For the large one-day spike, we took the average of
values of three days before and three days after the spike and used
this average value to replace the spike case count. Then we
“scattered” the excess cases onto past days, at a rate
proportional to the previously observed cases recorded on
each day. The two-day spikes were replaced in a similar
manner, the difference being that in this case two spikes were
replaced by the average value. For negative values, we simply
replaced them with zero. Our preprocessed data can be found in
the Supplementary Tables S1, S2.

We build our classifier in the following way. To begin, we
consider epidemic generating models that are relatively spaced
out in the parameter space.We initially set the range of parameter
α0 from 5 × 10− 8 to 5 × 10− 6, the range of α1 from 0.0005 to 0.05,
the range of β from 1 to 9, the range of tstop from 40 to 100, the

TABLE 3 | The accuracy of different classifiers for training sets of 140 curves per generating model.

Methods sets Random forest XGBoost LightGBM AdaBoost CatBoost Stacking

4 1.00 1.00 0.99 1.00 1.00 1.00
6 0.98 0.98 0.98 0.98 0.98 0.98
8 0.97 0.95 0.96 0.96 0.96 0.96
10 0.97 0.96 0.96 0.97 0.97 0.97
12 0.96 0.96 0.96 0.97 0.97 0.97

TABLE 4 | Adjusted population of 17 cities in Hubei.

City Population in central
urban area (10,000)

Central
urban area (km2)

Density ratio Adjusted population (10,000)

Wuhan 918 917.5 1 918
Huangshi 85.99 260.36 0.3303 28.4
Shiyan 73.44 28.09 2.6145 192.01
Yichang 93.13 35.11 2.6525 247.03
Xiangyang 132.57 78.11 1.6972 225
Ezhou 45.97 208.95 0.22 10.11
Jingmen 57.17 30.83 1.8544 106.02
Xiaogan 57.38 109.02 0.5263 30.2
Jingzhou 87.05 52.62 1.6543 144.01
Huanggang 33.8 102 0.3314 11.2
Xianning 41.32 105.91 0.3901 16.12
Suizhou 50.25 26.58 1.8905 95
Xiantao 40.5 90.12 0.4494 18.2
Qianjiang 43.74 103.98 0.4207 18.4
Tianmen 29.92 49.19 0.6083 18.2
Enshi 28.39 20.28 1.3999 39.74
Shennongjia 3.6 1.62 2.2222 8
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range of c from 10 to 30, the range of pR from 0.1 to 0.7, and the
range of pD from 0.4 to 1. Specifically, for α0, we consider values of
5 × 10− 8, 5 × 10− 7, and 5 × 10− 6; for α1, we set the values to be
0.0005, 0.005, and 0.05. We set the step size of β to be 4 (i.e., we
considered values 1,5, and 9), the step size of tstop to be 30, the step
size of c to be 10, and the step size of pD and pR to be 0.3. Thus, we
have 37 epidemic generating models.We build our classifier based
upon epidemics generated by each model and then use the
Adaboost classifier to identify which of the candidate models
is the most likely generating model for the real data.

After the first round of classification, the most likely
generating model is found to be one with parameters:
α0 � 5 × 10− 8, α1 � 0.005, β � 1, tstop � 70, c � 20, pD � 0.4,
and pR � 0.7. Next, a less spaced-out set of parameter values
are considered to define the generating models. We set the range
of α0 from 2 × 10− 8 to 8 × 10− 8, the range of α1 from 0.002 to
0.008, the range of β from 0.5 to 3.5, the range of tstop from 55 to
85, the range of c from 15 to 25, the range of pD from 0.2 to 0.6,
and the range of pR from 0.5 to 0.9. We set the step size of α0 to be
3 × 10− 8, the step size of α1 to be 0.003, the step size of β to be 1.5,
the step size of tstop to be 15, the step size of c to be 5, the step size
of pD to be 0.2, and the step size of pR to be 0.2. The parameters of
the most likely generating model we get in this second round are

α0 � 2 × 10− 8, α1 � 0.002, β � 2, tstop � 70, c � 15, pD � 0.4, and
pR � 0.7. As the approach continues, parameters of candidate
generating models obviously get closer and closer to each other,
with generated curves overlapping more and more and
classification becoming less well defined. After six rounds of
classification, we converge on estimates of the parameters of the
most likely epidemic generating model for the real data:
α0 � 2.1 × 10− 8, α1 � 0.002, β � 2.5, tstop � 64, c � 16,
pD � 0.25, and pR � 0.85.

Recall that tstop denotes the interval of time from the initial
infection to the day when the epidemic was severely curtailed due
to lockdown. Given that the report of first suspected cases was in
early December 2019, the estimate of tstop � 64 matches quite
closely to real circumstances (note,Wuhan had severe restrictions
on Jan 23, 2020, and the other cities in Hubei were similarly
“closed down” within two or three days).

Figures 2A to Figure 2D show generated epidemic curves
from our chosenmodel for four cities in Hubei; one isWuhan and
the other three are chosen arbitrarily. Given the stochasticity
inherent in our model, and the complex population structure the
epidemic is being transmitted/simulated through, we get a lot of
variability in the epidemic curves generated. We can see that the
“fitted” two-level ILMmodel captures the dynamics of the SARS-

FIGURE 2 |Observed and simulated epidemic curves under final model for four cities in Hubei. Real data shown in red; light gray and yellow curves represent 15%
strongest and weakest epidemics simulated from the final model, respectively; remaining dark gray curves represent remaining 70% of simulated epidemics.
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CoV-2 spread reasonably well, especially in Wuhan. However,
there is a tendency for the epidemic peak under our model to be
overestimated and arrive a little late in other cities.

Of course, our model is relatively simple, assuming
homogeneity between cities in terms of both the transmission
process (after accounting for population dynamics) and the
observation model. Our suspicion is that the observation
model may be a major issue here. For example, note that the
delay mechanism is mimicking both a biological process (the
incubation period of the disease) and a bureaucratic process
(diagnosis and processing and publication of numbers of cases
per day). It therefore seems perfectly plausible that the delay
between infection and reporting of cases could differ between
different jurisdictions, in this case, cities.

Since the epidemic observed in Wuhan was by far the most
substantial, it makes sense that theWuhan data would be driving the
inference process for the finalmodel. It thereforemakes sense that the
model ends up parameterized in such a way that the data in Wuhan
are mimicked well by the fitted model, and the other cities less so.
Also, since Wuhan was the first city infected, it also makes sense that
the delay between infection and reportingwould be larger for that city
and others, since it was operating with less information than other
cities which had to deal with their infections a little later on.

In Figure 3, we see the “gray epidemic curves” (the 70% closest
to the observed epidemic) for Wuhan. Figures 4, 5 show these
“gray curves” for other cities. We can see that in Huangshi in

FIGURE 3 | Observed and simulated epidemic curves under final model
for Wuhan. Real data shown in red; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.

FIGURE 4 |Observed and simulated epidemic curves under final model for four cities in Hubei (other 12 cities in Figures 5, 6; for Wuhan, see Figure 3). Real data
shown in red; shifted real data accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.
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FIGURE 5 | Observed and simulated epidemic curves under final model for eight cities in Hubei (other four cities in Figure 6; for Wuhan, see Figure 3). Real data
shown in red; shifted real data accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves
simulated from the final model closest to the true curve.
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Figure 4A, if we shift the epidemic curve based on the observed
cases (shown in red) by a few days (shown in blue), the epidemic
curves produced by the fitted model much better match the
observed curve. Throughout Figures 4–6, we see a similar pattern
for the other cities in the province.

This would imply that the next step we might want to take in
refining our model is to allow for heterogeneity in the observation
model parameters between cities, probably starting with the delay
mechanism rate parameter, pD.

Overall, these results show that the two-level ILM model fitted
using an ensemble classifier can reasonably well reflect the spread of
SARS-CoV-2 among cities; this is especially true for Wuhan, and we
can see the potential for better capturing the dynamics of COVID-19
transmission among other cities through furthermodel development.

CONCLUSION

We construct a statistical inference framework that allows us to fit
a two-level individual-level epidemic model to data. We use
several ensemble learning classifiers to successfully estimate
model parameters, avoiding the high computation costs

exhibited by traditional methods of inference. The simulation
study shows good performance of the fitted model, and we
successfully fit our model to real data on COVID-19
transmission among 17 cities in Hubei province, China.

FUTURE WORK

In this study, we focus on analyzing the transmission of SARS-
CoV-2 among 17 cities in Hubei province, China. It would
certainly be of interest to see how our model performs on
COVID-19 data from different countries and indeed data on
other diseases. Here, also we choose to model disease
transmission within an SIR framework. In many scenarios,
more complex compartmental frameworks such as SEIR or
SIRS would be more appropriate. It would therefore be
desirable to test if classification-based inference for our model
works similarly well, as well as considering such frameworks for
COVID-19 transmission itself. An additional limiting factor was
that we made the simplifying assumption that the infectious
period was the same for all individuals. This is obviously not true
in practice, and so it would be desirable to relax this assumption.

FIGURE 6 | Observed and simulated epidemic curves under final model for four cities in Hubei (for Wuhan, see Figure 3). Real data shown in red; shifted real data
accounting for potential differences in delays to reporting in different cities shown in blue; dark gray curves represent 70% of curves simulated from the final model closest
to the true curve.
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There are also likely other risk factors, in addition to population
size/density, we might want to include within models of COVID-
19 spread to improve them. These could include demographic
descriptors of age distribution within cities, knowledge about
traffic flows between cities, and socioeconomic covariates.

As discussed previously, we might well wish to allow the
parameters of the observation model to vary between cities, to
allow for differences in recording and reporting procedures. In
addition, we may want to think about allowing these parameters
to change over time in line with jurisdictional government policy.

Finally, we will explore more classification methods, such as deep
learning methods, to attempt to build even more accurate classifiers,
especially for more complex models and populations structures.
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