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Ion therapy has emerged as one of the preferred treatment procedures in some selective
indication of cancer. The actual dose delivered to the target volume may differ from the
planned dose due to wrong positioning of the patient and organ movement during beam
delivery. On the other hand, some healthy tissues outside the planned volume may be
exposed to radiation dose. It is necessary to determine the primary particle range and the
actual exposed volume during irradiation. Many proposed techniques use secondary
radiation for the purpose. The secondary radiation consists mainly of neutrons, charged
fragments, annihilation photons, among others, and prompt gammas. These are
produced through nuclear interaction of the primary beam with the beam line and the
patient’s body tissue. Besides its usefulness in characterizing the primary beam, the
secondary radiation contributes to the risk of exposure of different tissues. Secondary
radiation has significant contribution in theranostics, a comparatively new branch of
medicine, which combines diagnosis and therapy. Many authors have made detailed
study of the dose delivered to the patient by the secondary radiation and its effects. They
have also studied the correlation of secondary charged particles with the beam range and
the delivered dose. While these studies have been carried out in great detail in the case of
proton and carbon therapy, there are fewer analyses for theranostics. In the present
review, a brief account of the studies carried out so far on secondary radiation in ion
therapy, its effect, and the role of nuclear reactions is given.
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INTRODUCTION

In the growing incidence of malignant diseases, ion therapy has emerged as a preferred choice of
treatment in the case of some selective indications [1–4]. During the passage of charged particles
through the patient’s body, electronic interactions contribute to the major part of energy deposition,
while nuclear reactions lead to the production of neutrons, gamma rays, and secondary charged
particles (SCPs). The energy deposition characteristics and the depth dose profile of the charged
particle beams help to have high-dose conformity in the target volume in a static patient in an ideal
situation. But variation in patient positioning and organmovement during treatment cause a fraction
of the dose to be delivered outside the planned target volume [5, 6]. The problem can be
circumvented if the actual volume of dose distribution can be dynamically imaged. This is
achieved to some extent in image-guided radiotherapy (IGRT) [7] whence the target volume is
imaged during treatment. Proposed techniques also use the SCPs to determine the primary particle
range and the delivered dose during patient irradiation. Theranostics is an improved version of
therapy [8] which combines treatment with simultaneous imaging of the region of interest. This is
gradually emerging as a targeted and efficient mode of treatment.
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Secondary particle dose is clinically important because
neutrons can result in radiation dose to a distant organ, while
heavy fragments can locally deposit a high dose. Both neutrons
and SCPs have high radiobiological effectiveness (RBE). So
measurement of yield, flux, and dose of the secondary particles
is crucial for assessing the probability of radiogenic cancer [9] at a
later stage. As the prospect of new beams is being studied, benefits
as well as risks from secondary radiation need to be investigated
thoroughly.

This is a review work of the studies carried out by different
authors on secondary radiation in ion therapy and in
theranostics, its effect, and the role of nuclear reaction. Yield
and dose distribution of charged particles and neutrons from ion-
induced reaction in tissue, their correlation with the primary ion
range, and contribution to the total dose will be discussed.

SECONDARY RADIATION IN ION
BEAM THERAPY

In radiotherapy, exposure to the healthy tissues is lesser in the
case of charged particle therapy (CPT) compared to that in the
case of photon therapy due to the characteristic of interaction and
energy deposition of charged particles in matter. In charged
particle therapy, the energy of the carbon beam is in the range
of ∼80–430 MeV/u, while the proton energy is in a lower range.
For these moderately relativistic particles, the energy loss takes
place through Coulomb and nuclear interaction. Nuclear
interaction results in the loss of beam intensity contributing to
both longitudinal and lateral dose profile [10, 11]. Multiple elastic
scattering on the target nuclei contributes to the lateral profile and
results in a broadening of the beam. Inelastic scattering with the
atomic electrons contributes to the longitudinal profile. In CPT,
nuclear reaction of the primary beam takes place both with the
beam line components and within the patient’s body. This leads
to the production of neutrons, protons, heavier nuclear
fragments, and deexcitation gamma rays. The nuclear
fragments may consist of positron emitters and other
radioactive isotopes. The former will give rise to annihilation
gamma rays. Annihilation gammas, prompt gamma rays,
neutrons, and the SCPs may help in dynamic imaging of the
dose distribution. In proton therapy, nuclear fragmentation
results in target fragments which consist mainly of secondary
protons and neutrons. In heavy ion therapy, both target and
projectile fragments are produced. Both the projectile and the
target fragments contribute to the increase in the RBE. The
projectile fragments enhance the lateral spread of the beam
and add to the dose in the tail region of the Bragg peak. The
dose distribution due to SCPs, neutrons, and gammas needs to be
determined accurately to assess the biological effect.

Proton and carbon beams are most widely investigated for ion
beam therapy. New beams like 4He, 16O are being studied to
assess their possible advantages in ion beam therapy. 4He ions
might turn out to be a good choice, as projectile fragmentation
and neutron production are expected to be lower than in the case
of 12C beams while having good localization of the energy
deposition [12, 13]. For 16O, fragmentation is higher and

in vitro studies had also provided a slightly larger RBE value
[14, 15] compared to 12C, but carbon beam has a higher impact
on cell survival. However, in all the cases, actual volume which is
exposed to primary and secondary radiation strongly depends on
patient positioning and on anatomical variation of the target
organ during treatment [5, 6]. This necessitates determination of
the actual volume where the dose is released. The SCPs produced
in the nuclear reaction, particularly the secondary protons, can be
well used as a tool for imaging in CPT [16, 17].

Secondary Charged Particles
Experimental Studies
Cross-section, total yield, fluence distribution of SCPs, and their
contribution to the total dose had been investigated by several
authors [12–39]. Target fragmentation for proton induced
reactions in tissue equivalent targets like water, PMMA, C,
and CH2 was studied in the energy range of 40–250 MeV
[19–21]. A study on 250 MeV proton on water showed that
around 40% of the primary particles were lost in inelastic collision
on their way up to the Bragg peak. The LET value and the range of
the target fragments produced in these interactions were between
983 keV/μm down to 14 keV/μm and 2.3–68.9 μm, respectively.
This resulted in the alteration of the fixed RBE of 1.1 used for
proton therapy beam and contributed to the dose beyond the
planned target volume [21]. For an unmodulated 160 MeV
proton beam and a target volume of 3 × 3 × 3 cm3, the dose
from secondary protons to the proximal part of the Bragg peak
was ∼10% [19]. The dose contribution from d, t, α, and 3He was
less than 0.1% of the total dose proximal to the Bragg peak.

Nuclear fragmentation in carbon-induced reaction in tissue
equivalent targets at 80–430 MeV/u wasmeasured in many works
[22–39] to determine the actual dose and range. The total [22–26]
and partial (ΔZ � 1, 2, 3 for the formation of B, Be, and Li,
respectively) [22, 23] charge-changing cross-sections in the
interaction of 12C in water were determined between 110 and
600 MeV/u. The total SCP production cross-section was found to
decrease as the beam energy increased in the work of
Golovchenko et al. [22], while no such trend was observed in
[23]. Production of B was measured to be ∼2.3–3 times that for Be
[22, 23]. Charge-changing cross-sections for 16O beam incident
on thick targets of water and carbon were also measured [24].

Kinetic energy of the secondary protons emitted in the
interaction of therapeutic 12C beams extended beyond the
primary beam energy per nucleon [27, 28]. At 80 MeV/u
beam energy, yield of protons with Ep � 83 MeV was found to
be ∼2.7 × 10−4 sr−1 [27]. At 200 MeV/u, energy of emitted protons
extended beyond twice the beam energy per nucleon [28] and the
yield of protons with Ep � 350 MeV was ∼ 5 ×
10−5 ion−1 sr−1 MeV−1.

Production of secondary fragments for carbon-induced
reactions at 95 MeV/u [25, 29] and for 200–400 MeV/u was
measured and discussed in several works [28, 30–39]. Among
all the fragments, yield of H and He was highest [28, 30, 31] and
was similar or higher than the primary ions near the end of range.
The yield fell off rapidly as the fragment charge increased [28].
Beyond the Bragg peak, light fragments H, He, Li, Be, and B had
significant contribution. At 400 MeV/u beam energy, the
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fragments penetrated few centimeters after the Bragg peak [30,
33]. These fragments would thus contribute to the delocalization
of dose.

The angular distribution of the fragments was forward peaked
for all fragments, was broad for light fragments, and became
narrower as nuclear charge increased [30, 33]. At 219 and
280 MeV/u beam energy, protons had a broad angular range
(up to 10o), but the primaries were confined within a narrow cone
[34]. At 200 MeV/u, fragments heavier than He were confined in
a cone of about 5o width. This suggested that the angular
distribution was governed by the fragmentation process and
not affected much by Coulomb scattering. The yield of
secondary fragments integrated between 0 and 10° was highest
for protons and lowest for Be [28]. At 400 MeV/u beam energy,
the FWHM for H, He, and B was 10, 5.3, and 3o, respectively [30].
Higher FWHM was measured in the works of G. D. Lellis et al.
[32] and K. Gunzert-Marx et al. [28].

The contribution of the secondary fragments to the dose
equivalent within the Bragg peak was ∼20%, 13%, and less
than ∼8% of the total dose for 157 MeV proton, 145 MeV/u
4He, and 219–383 MeV/u 12C beams, respectively [12, 13, 34].
Beyond the Bragg peak, the total dose was contributed by the
secondary fragments only. This dose in the tail regionmight affect
the healthy tissue [30, 33].

At therapeutic energies, the target fragmentation rate was
∼3.62 times higher for carbon ion compared to that for proton
beam [12]. But the absorbed dose and dose equivalent due to the
secondary target fragments (STFs) were 0.22% and 4%,
respectively, of the primary ion dose for 12C, compared to
1.2% and 20%, respectively, for proton beam. This was
explained from the fact that though the yield of STFs
increased with Z/β (β � velocity of primary ion), the number
of primary ions required to produce a given dose decreased as Z2

[40]. These results excluded the dose contribution due to
secondary neutrons produced in the reaction. Among the
secondary fragments, the highest dose was contributed by the
light fragments H and He [30, 31] in the tail region behind the
Bragg peak. They caused delocalization of the dose, followed
by Li.

Besides proton and carbon, performance of ions like 4He, 16O,
and 20Ne in heavy ion therapy was investigated in several works
[14, 15, 41–49]. The total number of secondary protons produced
by 220 MeV 12C beam in PMMA target at 90o was (4.49 ±
0.13±0.59)x10−3 sr−1 which was ∼4.5 times that produced by
125 MeV 4He (having the same range as 220 MeV 12C in
PMMA) [41, 42]. Production of 2H and 3H was ∼5%–10%
and ∼1%–2%, respectively, of the total production of
1H+2H+3H. For 125 MeV/u 4He projectile, the energy of the
emitted 1H extended beyond 240 MeV at 5o [42]. Significant
production of β+ was also reported for 4He ion on PMMA
target [43]. Secondary proton fluence from 300 MeV/u 16O
induced reaction on PMMA target was measured to be
(74.18 ± 0.40±13.02)x10−3 sr−1 at 60o and was ∼6.5 times
lower at 90o [14]. At 210 MeV/u 16O beam energy, these
values were ∼3.3–3.6 times lower. For the interaction of
670 MeV/u Ne beam in water, oxygen, and fluorine had the
highest yield among the target fragments with Z ≥ 3, while at

400 MeV/u in PMMA target, oxygen had the highest yield
followed by carbon and nitrogen [31]. Boron was found to
have significant contribution at both the energies [31, 46]. In
studying the efficacy of intensity modulated composite particle
therapy (IMPACT), influence of the secondary particles on LET
distribution was assessed [47, 48].

In CPT, annihilation gammas from positron emitters
produced in nuclear fragmentation can be used for imaging
during therapy. In measuring the mean range of different
stable beams in water, polyethylene, and PMMA, from activity
distribution using annihilation gammas, highest amount of
information was obtained in the case of 16O beam to
determine the mean range of the beam accurately. Thus, 16O
turned out to be the optimum among stable beams for
monitoring the range from annihilation gammas [50]. In
proton therapy, annihilation gammas could be used to achieve
a dose-volume guided radiotherapy system with a 2 mm spatial
resolution [51, 52]. The profile of the prompt gamma rays
produced in the interaction of the ion beam was also used to
establish a relation between the gamma ray profile and the
primary ion range [53–58]. Time-of-flight (TOF) technique
was used to discriminate between prompt gammas, neutrons,
and neutron-induced gamma rays. With less background and
higher contrast, the peak and the dose fall off position could be
measured with millimetric precision for proton beams [58].

The tracks of SCPs, their flux, velocity, and spatial distribution
were analyzed and reviewed for monitoring in hadron therapy
[16, 17, 19, 59, 60]. The Bragg peak position could be determined
from the emission profile of the SCPs with high accuracy. A linear
correlation was observed between the position of the distal edge of
the secondary particle tracks and the Bragg peak position [19].
Accuracy of the method depended on several factors like multiple
scattering of the SCPs, inherent fluctuation in the number of
emitted charged particles, and overall statistics of the measured
data. Feasibility study of range monitoring of carbon ions with
secondary protons was carried out using interaction vertex
imaging [17, 59] which showed that single proton detection in
coincidence with the incoming beam was more promising.

Simulation Studies
Simulation studies of 12C interaction in water, with the Monte
Carlo Geometry and Tracking 4 (GEANT4) [61] code, showed
that, at a beam energy of 155 MeV/u, more than 6% of the total
dose was deposited by the SCPs and gamma rays from the
phantom surface to 90% of the distal edge of the Bragg peak
[62]. At beam energies of 262 and 369 MeV/u, these contributions
were, respectively, ∼14% and 23%. As the primary dose sharply
fell off beyond the Bragg peak, the secondary radiation played a
much more important role. From 90% of the distal edge to 5 cm
after the Bragg peak, the SCPs along with the gamma radiation
contributed ∼71%, 82%, and 87% to the total dose, at beam
energies of 155, 262, and 369 MeV/u, respectively [62]. The major
contributor to the secondary dose was 11B along with H and He
near and beyond the Bragg peak [63]. At 290 MeV/u,
contribution from H and He ions extended more than
160 mm beyond the Bragg peak. This could affect healthy
tissues outside the target volume. In the initial part of the
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primary beam path, LET of the primary 12C beam was ∼33.6 keV/
μm while those for 14N, 15N, and 16O were almost 30 times more.
However, this pattern drastically changed near and beyond the
distal end of the Bragg peak. Here, 11,12C, 16O, and 13,14,15N had
almost comparable LET [62]. Experimentally measured LET
distribution of SCPs, for 380 MeV/u 12C beam, was compared
with the GEANT simulation [64, 65]. The measured values were
well reproduced by the simulation [65]. In a benchmark analysis
of the reaction models available in GEANT4 simulation kit for
fragmentation studies [66, 67], it was observed that the measured
fragment yields were reproduced by the models within 5–35%.
The QMD model with Frag option gave the best agreement. The
kinetic energy and the angular distributions were best reproduced
by the QMD and INCL++ models, respectively [67]. GEANT4
simulation was used to compare the mixed radiation field
produced by 162, 290 MeV/u 12C beam and 192, 245 MeV/u
16O beam in water [68]. At these energies, the ranges of the C and
O beams were the same in the target. Production of nuclear
fragments was higher for 16O compared to that for 12C. As a
result, energy deposition beyond the Bragg peak and out of the
field would be more for 16O.

The PHITS code [69] was used to investigate the role of
nuclear fragmentation and secondary radiation in carbon
therapy [70, 71]. In the PHITS simulation, the Bragg curve
peaked at a depth slightly lower than that given by the
measured data. This was attributed to PHITS underestimating
the probability of fragment production [70]. Using the Monte
Carlo particle transport code FLUKA [72], the energy
distribution, range distribution, and fragment fluence were
studied for H, He, Li, B, Be, C, N, and O in proton-induced
reaction on water between 40 and 200 MeV [73]. The energy
distribution was highly asymmetric. For Li and heavier fragments,
the energy distribution extended only well below 20 MeV. Proton
energy spectrum had a broad shoulder and extended above
20 MeV.

Dedes and Parodi had reviewed the status of Monte Carlo
simulation of particle interaction in tissue in carbon ion
therapy [74].

Neutrons
Experimental and simulation studies were carried out by several
authors [28, 75–91] to investigate the fluence and dose of
secondary neutrons in proton and carbon ion therapy.
Production of secondary neutrons and their dose profile were
found to strongly depend on the irradiation facility [75–79].
Epidemiological studies were also undertaken to analyze the
significance of the neutron dose in proton therapy [92].

The incident beam energy in ion therapy is high but gradually
decreases in tissue. For carbon beam from therapeutic energy
down to ∼12 MeV/u, the reaction cross-section is highest at the
latter point [80]. At these energies, the neutron field consists of
both thermal and high-energy neutrons. Thermal neutrons have
isotropic distribution while the fast neutrons produced have a
strong energy dependence and forward peaked angular
distribution. Neutrons with energy above 20 MeV were
observed only close to the beam axis [81]. The high-energy
neutrons, above 20 MeV, could contribute as high as 53% of

the total dose at the position of highest neutron dose. The
scattered neutron distribution was highly complex and
depended on the spatial characteristics of the treatment
facility. This necessitated a detailed Monte Carlo simulation of
the secondary neutron field [82].

In proton radiotherapy at ∼172 MeV, the largest neutron dose
was obtained at a distance of 115 cm from the isocenter. The
finding conformed to the fact that neutrons could significantly
contribute to the dose outside the target volume [83].

From a comparison of the secondary neutron ambient dose
equivalent (H*n (10)) in passive particle radiotherapy, it was
confirmed that, for passively scanned beams, H*n (10) was less in
carbon therapy than in proton therapy [84]. This dose depended
on the operational beam setting but not on the method for
making a laterally uniform field. H*n (10) for active scanned
beam was similar for carbon and proton beams. For an active
scanned carbon beam, this dose was at the most 15% of passive
beam [85]. The observation could be attributed to the fact that the
contribution to the total neutron dose from external neutrons was
much reduced by an active scanned beam compared to a passive
one. For a 250 MeV passively scanned proton beam, ∼35% of the
total neutron dose was due to neutrons with En≥ 20 MeV [86].
The neutron dose in passive particle radiotherapy was either
similar to or less than that in photon therapy [84]. Comparison of
the neutron yield in CPT and in high-energy photon therapy
showed that, at therapeutic energies, the yield of most effective
neutrons (∼1MeV with wR of 20) was much lower in ion therapy
[87]. This was one of the main advantages of ion therapy over
photon therapy.

A FLUKA Monte Carlo simulation was used to model a
neutron tracker developed to track secondary neutrons
produced in proton therapy [93]. This would help in better
modeling of secondary neutrons.

THERANOSTICS USING RADIOACTIVE
ISOTOPES

Feasibility of radioactive ion beams 10,11C, 13N, 14,15O, 17,18F and
18,19Ne was investigated [50, 94–96] and reviewed [97] for in-
beam positron emission tomography imaging in ion therapy. In
the case of 11C and 15O, the difference in the Bragg peak position
and the position of the maximum positron emitting fragments
was negligible for ideal monoenergetic beams, but this difference
increased with and was strongly influenced by the energy spread
of the primary beams [94]. The difference also increased with
energy of the primary beam. For 250 MeV/u 15O and 350 MeV/u
11C beams, the measured differences of 2.0 and 4.4 mm,
respectively, were well reproduced by the PHITS simulations.
Of the radioactive ion beams mentioned above, 15O turned out to
have the best feasibility for in-beam imaging and range
monitoring [50].

Another set of isotopes emerging as potential diagnostic and
therapeutic nuclides are the two radioisotopes of Cu–62,64Cu [95,
96, 98–107]. Cu is one of the most abundant trace transition
elements in human body and plays a key role in various
physiological processes. Among the five radioisotopes of Cu,
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namely, 60,61,62,64,67Cu, 62Cu (half-life 9.67 min) decays by β+
emission and is used for diagnosis. 64Cu with a half-life of 12.7 h
decays by electron capture β+ and β-emission. Electron capture
results in the emission of Auger electrons which can be used for
therapy [100]. So 64Cu is increasingly investigated for use in
diagnosis as well as in therapy. In normal cells, Cu remains in
the cytoplasm, but in tumor cells it migrates to the nucleus [98].
Thus, 64Cu can be used for theranostics without causing toxicity to
the normal cell. The effect of 64CuCl2 on human glioblastoma
multiforme cell lines was studied by Catalogna et al. [101]. This
study supported the theranostic potential of 64CuCl2 in this tumor.
64CuCl2 could be efficiently used for PET imaging in glioblastoma
multiforme [102] which supported the prospect of 64Cu as a
diagnostic isotope for tumors of central nervous system. 64CuCl2
as a PET probe with PET-CT imaging could be efficiently used for
determining the stage of prostate cancer in the works of Capasso
et al. [103]. 64Cu-ATSM radiopharmaceutical was studied for
imaging of hypoxic tumor tissue. A difference between normal
and hypoxic cells was revealed around 10–15min after
administration of the compound [104]. Efficacy of 64Cu-labelled-
DOTATATE was investigated for imaging of neuroendocrine
tumors. High spatial resolution, very good image quality, and
significantly improved lesion detection capability were observed
compared to 111In-DTPA-octreotide [105] and 68Ga-DOTATOC
[106], respectively. 64Cu was also used to study the uptake of specific
antibody in patients with metastatic or advanced primary colorectal
cancer. It showed higher specificity than 18F-FDG for detection of
colorectal tumors [107]. Feasibility of 64Cu-labelled receptor
antibody was studied for early detection and image-guided
surgery of pancreatic cancers and gastrointestinal cancer using
PET imaging [94, 95]. It was observed that pancreatic tumors
larger than 3mm could be detected and well resected [94].
Biodistribution and radiation dosimetry studies of 64CuCl2
showed that liver has the highest uptake of 64Cu in this form
[108]. This was followed by intestine and pancreas. It was
suggested that therapeutic activity with 64Cu (in chloride form)
up to several GBq would be safely feasible for these organs.

Several nuclides mentioned above are prospective candidates
for theranostic applications–there are a few bottlenecks though.
For radionuclides, the specific characteristics required for good
imaging are different from those required for treatment. So only a
few isotopes, for instance, 64Cu, offer a combination of diagnostic
and therapeutic capability. Secondly, phenotype-specific
radiopharmaceutical is required for theranostic applications
[109]. There are difficulties also related to dosimetry and
delivery of the radionuclides to the target tissue. The drug
compound may not be distributed uniformly in the target
volume, and dose assessment is a complex task [110].
Moreover, theranostic application requires cost-effective supply
of radioisotopes, clinical and regulatory approval of
radiopharmaceuticals, and trained, competent manpower.

CONCLUSION

Ion therapy has emerged as one of the preferred methods of
treatment in certain indications of malignancy. Detailed studies

by different authors showed that the secondary radiation
produced by the beam interaction in the patient’s body can be
used for range correlation and fine tuning of the primary beam. 16O
was detected to be the optimum among stable beams for range
monitoring using annihilation gammas from positron emitting
fragments. Prompt gammas and SCPs could be employed for
monitoring the range of the primary beam with millimetric
precision. This will help to determine the actual volume where
the dose is deposited. On the other hand, the secondary radiation
also causes dose deposition outside the target volume. This
secondary radiation includes SCPs (from projectile and target
fragmentation and particle emission), neutrons, and prompt
gamma radiation. Neutrons produced in the patient’s body may
cause exposure to some healthy tissue well outside the target volume,
though the dose would be small, whereas in photon therapy a large
volume of healthy tissue is exposed to significant amount of
radiation dose from the primary beam itself. Thus, the
probability of secondary radiogenic cancer is decreased in ion
therapy compared to that in the case of photon therapy. The
neutron ambient dose equivalent H*n (10) in passive scanning
method is substantially higher than that for active scanned beam.
Among all the SCPs produced, light charged particles have the
highest yield and show a broad angular distribution. Heavier
fragments have lower yield and are confined to a narrow cone.
In theranostics using radioactive beam, new isotopes are being
investigated in detail by several authors. Of these, 15O has
appeared as a good candidate for in-beam PET imaging and
range monitoring. 64Cu in its ionic form as 64CuCl2 has good
prospect as a diagnostic agent for tumors of central nervous
system, hypoxic tumors, and prostate cancer. 64Cu-labelled
radiopharmaceuticals are effective in imaging of neuroendocrinal
tumors and colorectal cancer. Annihilation gammas from the
positron emitting isotope 64Cu could be efficiently used for
image-guided surgery in pancreatic and gastrointestinal cancer.
Prospective isotopes for theranostics need to be studied in great
detail in order to come up with the most effective choices.
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