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This study reviews the Peregrine solitons appearing under the framework of a class of
nonlinear Schrödinger equations describing the diverse nonlinear systems. The historical
perspectives include the various analytical techniques developed for constructing the
Peregrine soliton solutions, followed by the derivation of the general breather solution of
the fundamental nonlinear Schrödinger equation through Darboux transformation.
Subsequently, we collect all forms of nonlinear Schrödinger equations, involving
systematically the effects of higher-order nonlinearity, inhomogeneity, external potentials,
coupling, discontinuity, nonlocality, higher dimensionality, and nonlinear saturation in which
Peregrine soliton solutions have been reported.
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1 INTRODUCTION

In 1834, the British engineer J. S. Russell observed a hump of water propagating in a narrow canal
created by a boat that maintained its speed and shape for several miles. Unlike a repeated pattern of
sinusoidal waves or a spreading out of water wave pulses, the most remarkable feature of the observed
single hump is that it was not a series of peaks and troughs wave; instead, it has a “solitary wave”
structure with only one peak oscillating with a constant velocity and unchanging profile with time
which led him to advert it a “wave of translation”. He followed his observations by intensive
experiments in a water wave tank leading to demonstrating that, in contrast with the linear case
where increasing the amplitude has nothing to do with the wave speed, the speed of the solitary wave
is related to its height through v � �������

g(d + h)√
and its envelope profile can take the form of

h sech2[k(x − vt)], where h, d, k, g, x, and t denote the wave height, the tank depth, the
wavenumber, the gravitational acceleration, the propagation direction, and the time, respectively [1].

The conclusions made by Russell were argued by many mathematical theories such as the wave
theory of G. B. Airy which indicates that the crest of a wave of a finite amplitude propagates faster
than its remaining structure and eventually breaks [2] and G. G. Stokes theory which states that only
the periodic waves can be in a finite and permanent profile [3]. In contrast to these mathematical
arguments, in 1895 the Dutch mathematician D. Korteweg and his student G. de Vries came up with
a model that describes the propagation of long surface waves in a narrow water channel [4]. A
considerable conclusion of Korteweg and de Vries’s model was its admissibility of a special solution
that travels with constant speed and amplitude, which was in an exact match with Russel’s
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description. Currently, this model is known as the Korteweg–de
Vries (KdV) equation. Disappointedly, the significance of this
solution and Russell’s observations were overlooked and not
understood until 1965 when N. J. Zabusky and M. D. Kruskal
pioneered numerical solutions to the KdV equation [5] and
observed solitary wave pulses interact between themselves
elastically as if they are real particles and return to their initial
properties after the collision, except for some phase shifts. This
results in a localized solution that remains stable and constant
during the propagation which is now referred to as a bright
soliton or briefly as a soliton. Nowadays, it is well known that
solitons are constructed due to a dynamic balance between the
group velocity dispersion and the nonlinearity of the system.

Nonlinear systems have attracted increasing interest after C. S.
Gardner and his colleagues J. M. Greene, M. D. Kruskal, and R. M.
Miura in 1967 introduced a method [6] now known as the inverse
scattering transform (IST) that yields a solution to initial value
problems (IVPs) for nonlinear partial differential equations
(NPDEs). The IST method may be seen as an extension to the
Fourier transform for NPDEs. The integrability of the nonlinear
Schrödinger equation (NLSE) was discovered in 1972 when V.
Zakharov and A. B. Shabat generalized the IST method and
derived, for the first time, its soliton solution upon associating
the NLSE to a linear system of differential equations [7]. The
integrable NLSE equation is, in principle, admitting infinitely
many independent solutions. Later on, the IST method was
adopted to find a wide class of solutions to the NLSE and its
various versions. Recently, all known solutions of the fundamental
NLSE and its different versions were collected by [8].

The first breather type solution on a finite background of the
NLSE was achieved in 1977 by E. A. Kuznetsov [9] and
independently by Y. C. Ma [10] in 1979; now it is accordingly
named Kuznetsov-Ma breather. Such a solution is periodic in
time and localized in space. The Kuznetsov-Ma breather was
derived by solving the initial value problem of the NLSE where
the initial profile is a continuous wave (CW) on a background
superposing with a soliton solution. The soliton profile in this
context can be considered as a perturbation source on the CW.
The modulational instability analysis is used to study the
dynamics of the Kuznetsov-Ma breather when the amplitude
of the soliton is much smaller than the background of the CW.
The Kuznetsov-Ma breather solution can be also seen as a soliton
on a finite background. In 1983, D. H. Peregrine [11] derived an
exact solution to the focusing NLSE equation that is localized in
both time and space domains, on a nonzero background. As a
result of its dual localization which is the feature of a solitary
wave, currently, this solution is known as Peregrine soliton.
Physically, the Peregrine soliton models the closet prototype of
rogue waves and thus usually takes the full name Peregrine rogue
waves [12–14]. Rogue waves have been first studied in the context
of oceanography [12, 15, 16]. Peregrine soliton is the lowest order
rational solution of the NLSE that takes the form of one dominant
peak, appears from “nowhere”, causes danger, and “disappears
without a trace” [17, 18]. Its dominant peak is accompanied by
two side holes that exist as a result of energy conservation. Due to
its danger, oceanographers often call it using some other names
such as the “freak waves”, the “killer waves”, the “monster waves”,

the “abnormal waves”, and the “extreme waves” and rarely use the
words “rogon waves”, “giant waves”, or “steep waves”. The
highest amplitude of the Peregrine soliton equals two to three
times the amplitude of the surrounding background waves.

Shortly, after the revelation of the Peregrine soliton, N.
Akhmediev et al., in 1985, found another breather type
solution on a finite background to the NLSE which is,
contrary to the Kuznetsov-Ma breather, breathing periodically
in space and localized in time domain [19]. This solution is now
referred to as Akhmediev breather. In relation to the
modulational instability analysis, when the frequency of the
applied perturbation tends to zero (the soliton’s frequency
approaches zero), the Kuznetsov-Ma breather tends to a
Peregrine soliton. More precisely, taking the temporal period
of the Kuznetsov-Ma breather solution to infinity results in a
Peregrine soliton. Interestingly, the Akhmediev breather solution
also turns out into a Peregrine soliton when the spacial period
tends to infinity.

Together with the Kuznetsov-Ma and the Akhmediev
breathers, the Peregrine soliton belongs to the family of the
solitons on a nonzero background. This family can be
represented in one general breather solution form in which
the Peregrine soliton can be recovered. The Peregrine soliton,
particularly, is considered as the first-order rational solution of a
series of infinite recurrence orders of rational solutions. The
second-order Peregrine soliton appears with a higher
amplitude than the first-order Peregrine soliton [17, 20].
Higher-order of rational solutions and Peregrine soliton
hierarchy are also revealed in Refs. 21 and 22.

Although the formation of Peregrine soliton requires ideal
mathematical conditions which could be practically impossible,
earlier intensive experiments are performed to randomly observe
optical rogue waves [23, 24], acoustic rogue waves [25], and rogue
waves in parametrically excited capillary waves [26]. In 2010, B.
Kibler et al. succeeded for the first time in demonstrating
experimentally the dynamics of the Peregrine soliton in
nonlinear fiber optics under nonideal excitation condition
modeled by the NLSE [27]. Soon after, Peregrine solitons have
been observed in deep water wave tanks [28].

Rogue waves can be naturally created via various generating
mechanisms. From the perspective of the MI analysis, there is
always a chance for these modulations on the CW background to
create multiple breathers that are scattering in random directions.
Collisions between these grown breathers probably proceed a
formation of wave amplification. Higher peaks than the ones
associated with the breathers can be generated from the growth of
Akhmediev breathers [18, 29–31]. A similar result can be
obtained when the collided breathers are Kuznetsov-Ma
breathers [20]. Another possible mechanism for the rogue
waves’ creation is when the collision occurs between multiple
solitons carrying different heights and propagating with different
phases [32–36]. At the collision point, the amplitude of the peak
becomes higher than the solitons individually, thanks to the
nonlinear interaction between them. For other scenarios, see
also [20, 30, 37–42].

Considerable efforts have been directed toward testing the
stability of the Peregrine soliton behavior, analytically and
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numerically, against external perturbations [43–46, 46, 47,
47–54]. The stability issue is of important interest to
experimentalists, as they seek to reproduce or generate
solutions under a laboratory setting. Determining the stability
of the solution allows the estimation of the range of practical
applications that the solution can occupy. Generally, the studies
reveal that, due to the high double localization and sharp
structure associated with the Peregrine soliton solution, it,
consequently, exhibits high sensitivity to small perturbations
or changes in the initial conditions and thus reveals unstable
characteristics. Other interesting works on the stability of the
Peregrine soliton can be found for instance in [55–65].

Peregrine soliton is of crucial importance due to its doubly
dimensional localization in space and time and because it defines
a limit case of a wide range of solutions to the NLSE. Thus, it has
received huge attention from mathematicians, physicists, and
engineers. Its investigations have been rolled up through many
contexts such as observation of Peregrine solitons in a
multicomponent plasma with negative ions [66, 67], phase
properties of Peregrine soliton in the hydrodynamic and
optical domains [68], implementation of breather-like solitons
extracted from the Peregrine rogue wave in the nonlinear fibers
[69], demonstrating experimentally and numerically the
generation and breakup of the Peregrine soliton in
telecommunications fiber [70], optical rogue waves in an
injected semiconductor laser [71], and Peregrine solution in
the presence of wind forcing in deep water wave tank
laboratories [72].

Besides the experimental observations, numerous numerical
simulations and theoretical studies have been performed to
demonstrate and predict the occurrence of such a unique type
of soliton on a finite background in diverse physical media, for
example, in Bose-Einstein condensates [73], freak waves as
limiting Stokes waves in the ocean [74], in a mode-locked
fiber laser [75], in singly resonant optical parametric
oscillators [76], Peregrine solitons and algebraic soliton pairs
in Kerr nonlinear media [77], the interaction of two in-phase and
out-of-phase Peregrine solitons in a Kerr nonlinear media [41],
and recently in lattice systems [78]. For other studies, see also [18,
21, 29, 79–85].

In this work, we aim at reviewing the theoretical studies that
have been performed for Peregrine solitons of NLSEs with
different setups and conditions. The work is arranged as
follows. In Section 2, we derive the general breather class of
the NLSE via the Darboux transformation and Lax pair method.
We show that the Peregrine soliton solution is a limiting case of
the general breather solution. An alternative route is then
presented where we implement a specific seed solution to
derive directly the Peregrine soliton solution. Section 3 is
devoted to reviewing the Peregrine solitons of higher-order
and inhomogeneous NLSEs. In Section 4, the Peregrine
solitons of NLSEs with external constant and variable
potentials are reviewed. Section 5 discusses the Peregrine
solitons in coupled NLSEs, known as the Manakov system or
the vector NLSE (N-coupled NLSEs), the coupled Gross-
Pitaevskii equations, the coupled Hirota equations, the coupled
cubic-quintic NLSEs, the PT-symmetric coupled NLSEs, and the

higher-order coupled NLSEs. In Section 6, we review the works
done on Peregrine solitons of the discrete NLSEs, the Ablowitz-
Ladik equations, the generalized Salerno equation, and the Hirota
equations. In Section 7, the Peregrine solitons in nonlocal NLSEs
are presented. The nonlocal NLSE is a non-Hermitian and PT-
symmetric equation with the nonlinearity term potential
V(x, t)u(x, t) � u(x, t)up(−x, t)u(x, t), where u(x, t) is the
mean field wavefunction, satisfying the PT-symmetric
condition, V(x, t) � Vp(−x, t). The nonlocality can also be
seen in the presence of the reverse time dependency where
V(x, t) � Vp(x,−t) or with the combination of spatial and
temporal nonlocalities V(x, t) � Vp(−x,−t). In Section 8, we
discuss the Peregrine solitons of higher dimensional and mixed
NLSEs. In Section 9, the Peregrine solitons in saturable NLSEs
will be discussed. We end up in Section 10 by the main
conclusions and outlook for future work. The solutions for all
the NLSEs considered are provided in the Supplementary
Material.

2 ANALYTICAL DERIVATION OF THE
FUNDAMENTAL PEREGRINE SOLITON

Various analytical methods are used to solve different versions of
the NLSE such as the inverse scattering transform [86–93], the
Adomian Decomposition method [94], the Homotopy Analysis
method [95, 96], the similarity transformation method [97–102],
and the Darboux transformation and Lax pair method [103–106],
just to name a few. This section is devoted to deriving the general
breather solution of the fundamental NLSE using the Darboux
transformation and Lax pair method [107]. We show that, under
certain limits, the general breather solution reduces to the
Akhmediev breather, the Kuznetsov-Ma breather, the
Peregrine soliton, the single bright soliton, or the continuous
wave solution. The Darboux transformation method is an
applicable method for solving only linear systems and cannot
be directly applied for nonlinear systems. A crucial additional
step is required to make it applicable for nonlinear systems as
well. It is to search for an appropriate pair of matrices that
associates the nonlinear equation to a linear system. This pair was
introduced firstly in 1968 by P. D. Lax [108] and now named Lax
pair. The Lax pair should be associated with the nonlinear system
through what is called a compatibility condition. The next step is
to solve the obtained linear system using a seed solution, which is
a known exact solution to the nonlinear system. This technique
gives remarkable merit which is the applicability to perform new
exact solutions. Each seed solution performs another exact
solution that belongs to the family of the seed solution. The
latter obtained solution could be used as a new seed solution for
the next performance round. All achieved solutions will belong to
the same family of the initial seed solution. It is well known that
using the trivial solution, u(x, t) � 0, as a seed in the Darboux
transformation method for the NLSE will produce the single
bright soliton solution. The single bright soliton solution can act
as a seed solution in the next round to generate the two-soliton
solution. Keeping on the same track, multisoliton solutions can be
generated in this way. In order to generate the general breather
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solution of the NLSE, a nontrivial seed solution is needed, namely,
the continuous wave solution u(x, t) � A eiA

2 t , where A is an
arbitrary real amplitude of the wave. Here we include the final
results. For the details of the mathematical derivation see
Supplementary Appendix.

The fundamental NLSE can be written in dimensionless form
as

iut + 1
2
uxx +

∣∣∣∣u 2u � 0,
∣∣∣∣ (1)

where u � u(x, t) is the complex wave function and the subscripts
denote partial derivatives with respect to t and x. The general
breather solution of Eq. 1 can be compactly written as*

u[1] � A eiA
2 t × 1 −

�
8

√
λ1r
A

(A2 + Γ2) cos(q1) + i (A2 − Γ2) sin(q1)
+ 2A[Γr cosh(q2) − i Γi sinh(q2)]
2A Γr cos(q1) + (Γ2 + A2) cosh(q2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

(2)

where

q1 � δ1 +
�
2

√ [ �2√
x Δi − 2 t (Δi λ1i + Δr λ1r)],

q2 � δ2 +
�
2

√ [ �2√
xΔr − 2 t(Δr λ1i − Δi λ1r)]

Δr � Re[ ���������������2 (λ1r − i λ1i)2 − A2

√ ],Δi � Im[ ����������������2 (λ1r − i λ1i)2 − A2

√ ]
Γr � Δr +

�
2

√
λ1r , Γi � Δi −

�
2

√
λ1i, and Γ �

������
Γ2r + Γ2i
√

FIGURE 1 | The fivemembers of the solution class (2) all at λ1r � 0.07. (A)CWat A � ��
2

√
λ1r , (B) soliton at A � 0, (C) Peregrine soliton at A � − ��

2
√

λ1r , (D) Akhmediev
breather at A � 1.5

��
2

√
λ1r , (E) Kuznetsov-Ma breather at A � ��

2
√

λ1r /1.5.
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This is the general breather solution of the NLSE with five
arbitrary real parameters, λ1r , λ1i, δ1, δ2, and A, which can be,
with certain sets of parameter’s values, reduced to different types
of solutions within the same family. For the sake of obtaining the
Akhmediev breather, the Kuznetsov-Ma breather, the Peregrine
soliton, the single bright soliton, and the continuous wave
solution as limiting cases of solution Eq. 2, the first four free
parameters are held on λ1r � 0.05, λ1i � 0, δi � 0, and δr � 0, while
we choose A to be the variable parameter.

(1) Continuous wave: In the limitA→
�
2

√
λ1r , the general breather

solution returns back to the seed solution with an amplitude
A � − �

2
√

λ1r (Figure 1A)

u[1] � − �
2

√
λ1r e

2iλ21r t . (3)

(2) Soliton: In the trivial limit, whenA→ 0, the general breather
solution reduces to a soliton solution which is localized in x
and does not change as it propagates, fixed shape along t
direction (Figure 1B)

u[1] � −2 �
2

√
λ1r e

4iλ21r t sech(2 �
2

√
λ1rx). (4)

(3) Kuznetsov-Ma breather:When
∣∣∣∣A∣∣∣∣< �

2
√

λ1r the general breather
solution becomes periodic only in t and localized in x, which is
referred to as a KM breather (Figure 1E).

(4) Akhmediev breather: When
∣∣∣∣A∣∣∣∣> �

2
√

λ1r the general breather
solution becomes periodic in x and localized in t, which is
currently known as an Akhmediev breather (Figure 1D).

(5) Peregrine soliton: In the nontrivial limit, when
A→ − �

2
√

λ1r , the period goes to infinity and the breather
solution reduces to the Peregrine soliton which is localized
in both x and t and given by the rational expression
(Figure 1C)

u[1] � �
2

√
λ1r e

2iλ21r t(−3 − 16iλ21rt + 8λ21rx
2 + 16iλ41rt

2

1 + 8λ21rx
2 + 16λ41rt

2
). (5)

*There are different forms of the general breather solution in the
literature. Three more expressions are listed in [8].

3 PEREGRINE SOLITONS OF
HIGHER-ORDER AND INHOMOGENEOUS
NLSES
This section is dedicated to review existing Peregrine soliton
solutions of the inhomogeneous NLSE with higher-order effects
and potentials reported in the literature. In general, the higher-
order NLSE (HNLSE) encompasses the effects of the higher-order
dispersion, the higher-order nonlinearity, the stimulated Raman
self-frequency shift, and the self-steepening effects in addition to
group velocity dispersion (GVD) and cubic nonlinearity of

fundamental NLSE. Such HNLSEs play a significant role in
describing the dynamics of the ultrashort pulse propagation,
supercontinuum generation [109], Heisenberg spin chain [110],
ocean waves [16], and so forth. However, our context will be
adhering to the Peregrine soliton solutions realized for such
HNLSEs with different higher-order dispersive and nonlinear
effects under certain circumstances. Diverse HNLSEs have been
reported in the literature, namely, the Hirota equation [111], the
Lakshmanan-Porsezian-Daniel equation [110], the quintic NLSE
[22], the sextic NLSE [112, 113], heptic NLSE [112], and octic
NLSE [112]. This section attempts to review the occurrence of the
Peregrine solution reported in the aforementioned HNLSEs.
Additionally, the inhomogeneous NLSE which is commonly
termed as variable coefficient NLSE is also explored for the
occurrence of Peregrine solutions [114, 115]. Understanding
such inhomogeneous NLSEs plays a significant role in
describing the nonuniform, defective, and irregular space-time
dependence of the physical systems as well as discovering the apt
control parameters required for diverse complex systems [85,
116–118]. The higher-order and inhomogeneous NLSEs, in
which Peregrine solutions are reported, are listed below.

3.1 The Interaction of the Optical Rogue
Waves Described by a Generalized HNLSE
With (Space-, Time-) Modulated
Coefficients [118]

iψz � β(z, t)ψtt + [V(z, t) + ic(z, t)]ψ + g(z, t)|ψ|2ψ

+ i[α1(z)ψttt + α2(z) z(|ψ|2ψ)
zt

+ α3(z)ψ z|ψ|2
zt
] + [μ(z)

+ iσ(z, t)]ψt .

(6)

In the above equation, β(z, t), V(z, t), c(z, t), and g(z, t)
represent the (space-, time-) modulated coefficients of GVD,
external potential, gain/loss, and SPM, respectively. α1(z), α2(z),
and α3(z) account for third-order dispersion, self-steepening, and
stimulated Raman scattering coefficients, respectively. μ(z) and
σ(z, t) denote the coefficients of differential gain or loss parameter
and (space-, time-) modulated walk-off, respectively. (Solutions:
See S1 & S2.)

3.2 The Fourth-Order Integrable
Generalized NLSE With Higher-Order
Nonlinear Effects Describing the
Propagation of Femtosecond Pulse
Through a Nonlinear Silica Fiber [119]

iψt + ψxx + 2
∣∣∣∣ψ|2ψ + c1(ψxxxx + 6ψ2

xψ
* + 4

∣∣∣∣ψx|2ψ
+ 8
∣∣∣∣ψ 2ψxx + 2ψ2ψ*

xx + 6
∣∣∣∣ψ 4ψ) � 0.
∣∣∣∣∣∣∣∣ (7)

Here c1 indicates the strength of higher-order linear and
nonlinear effects. (Solution: See S3.)
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3.3 The Fifth-Order NLSE Describing
One-Dimensional Anisotropic Heisenberg
Ferromagnetic Spin Chain [120]

iψt +
1
2
(ψxx + 2|ψ|2ψ) − iα(ψxxx + 6|ψ|2ψx)

+ c[ψxxx + 6|ψ|4ψ + 2ψ2ψ*
xx + 4ψ|ψx|2 + 6ψ*(ψx)2

+ 8|ψ|2ψxx] − iδ[ψxxxxx + 30|ψ|4ψx + 20ψ*ψxψxx

+ 10|ψ|2ψxxx + 10(ψ∣∣∣∣ψx
2)x] � 0,
∣∣∣∣∣

(8)

where the parameters α, γ, and δ are the coefficients of third-order
dispersion, fourth-order dispersion, and fifth-order dispersion,
respectively. (Solution: See S4.)

3.4 The Dynamics of Ultrashort Optical
Pulses Propagating Through an Optical
Fiber Described by a Higher-Order NLSE
[121]

iψx + α2 K2(ψ) − iα3 K3(ψ) + α4 K4(ψ) − iα5 K5(ψ) � 0, (9)

where K2, K3, K4, and K5 are cubic, Hirota, Lakshmanan-
Porsezian-Daniel, and quintic operators, respectively.

K2 � ψtt + 2ψ
∣∣∣∣ψ|2,

K3 � ψttt + 6ψt

∣∣∣∣ψ|2,
K4 � ψtttt + 8

∣∣∣∣ψ|2ψtt + 6
∣∣∣∣ψ|4ψ + 4

∣∣∣∣ψt |2ψ + 6ψψ2
t + 2ψ2ψtt ,

K5 � ψttttt + 10
∣∣∣∣ψ 2ψttt + 10(ψ∣∣∣∣ψt

2)t+20ψψtψtt + 30
∣∣∣∣ψ 4ψt .
∣∣∣∣∣∣∣∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αi(i � 1, 2, 3, 4, 5) are real constants. (Solution: See S5.)

3.5 The Sixth-Order NLSE With a Single
Higher-Order Dispersion Term Describing
the Dynamics of Modulation Instability,
Rogue Waves, and Spectral Analysis [122]

iψz + δ2Γ2(ψ) + δ6Γ6(ψ) � 0, (10)

where δ2 and δ6 are the second- and sixth-order dispersion
coefficients, respectively. Γ2 and Γ6 are cubic and sextic
operator, respectively. In this analysis, the second-order
dispersion coefficient value is fixed as δ2 � 1/2.

Γ2 � ψtt + 2ψ|ψ|2,
Γ6 � ψtttttt + ψ2[60∣∣∣∣ψt

∣∣∣∣2ψ* + 50ψtt(ψ*)2 + 2ψ*
tttt]

+ ψ[12ψ*ψtttt + 18ψ*
tψttt + 8ψtψ

*
ttt + 70(ψ*)2ψ2

t + 22
∣∣∣∣ψtt

∣∣∣∣2]
+ 10ψt[3ψ*ψttt + 5ψ*

tψtt + 2ψtψ
*
tt] + 10ψ3[2ψ*ψ*

tt + (ψ*
t)2]

+ 20ψ*ψ2
tt + 20ψ

∣∣∣∣ψ∣∣∣∣6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(Solution: See S6.)

3.6 An Infinite Hierarchy of the Integrable
NLSE [112]

F[ψ(x, t)] � iψx + α2 K2[ψ(x, t)] − iα3 K3[ψ(x, t)]
+ α4 K4[ψ(x, t)] − iα5 K5[ψ(x, t)] + α6 K6[ψ(x, t)]
− iα7 K7[ψ(x, t)] + α8 K8[ψ(x, t)]
− iα9 K9[ψ(x, t)] + . . .� 0,

(11)

where K2, K3, K4, K5, K6, K7, K8, and K9 are cubic,
Hirota, Lakshmanan-Porsezian-Daniel, quintic, sextic, heptic,
octic, and ninth-order operators, respectively.
αj(j � 1, 2, 3, 4, 5, 6, 7, 8, 9, . . .) are real constants. The higher-
order operators up to K8 are provided below

K2 � ψtt + 2ψ|ψ|2,
K3 � ψttt + 6ψt |ψ|2,
K4 � ψtttt + 8|ψ|2ψtt + 6|ψ|4ψ + 4|ψt |2ψ + 6ψ2

tψ
* + 2ψ2ψ*

tt ,

K5 � ψttttt + 10|ψ|2ψttt + 10(ψ|ψt |2)t + 20ψ*ψtψtt + 30|ψ|4ψt ,

K6 � ψtttttt + [60ψ*|ψt |2 + 50(ψ*)2ψtt + 2ψ*
tttt]ψ2

+ ψ[12ψ*ψtttt + 8ψtψ
*
ttt + 22|ψtt |2]

+ ψ[18ψtttψ
*
t + 70(ψ*)2ψ2

t ] + 20(ψt)2ψ*
tt + 10ψt[5ψttψ

*
t

+ 3ψ*ψttt] + 20ψ*ψ2
tt + 10ψ3[(ψ*

t)2 + 2ψ*ψ*
tt] + 20ψ|ψ|6,

K7 � ψttttttt + 70ψ2
ttψ

*
t + 112ψt |ψtt|2 + 98|ψt |2ψttt

+ 70ψ2[ψt[(ψ)2 + 2ψ*ψ*
tt] + ψ*(2ψttψ

*
t + ψtttψ

p)]
+ 28ψ2

tψ
p
ttt + 14ψ[ψp(20|ψt |2ψt + ψttttt) + 3ψtttψ

p
tt

+ 2ψttψ
p
ttt + 2ψttttψ

p
t + ψtψ

*
tttt + 20ψtψtt(ψ*)2] + 140|ψ|6ψt

+ 70ψ3
t (ψ*)2 + 14(5ψttψttt + 3ψtψtttt)ψ*,

K8 � ψtttttttt + 14ψ3[40 |ψt |2(ψ*)2 + 20ψtt(ψ*)3 + 2ψ*
ttttψ

*

+ 3(ψ*
tt)2+ 4ψ*

tψ
*
ttt] + ψ2[28ψ*(14ψttψ

*
tt+ 11ψtttψ

*
t

+ 6ψtψ
*
ttt) + 238ψtt(ψ*

t)2 + 336|ψt |2ψ*
tt + 560ψ2

t (ψ*)3
+ 98ψtttt(ψ*)2 + 2ψ*

tttttt] + 2ψ{21ψ2
t [9(ψ*

t)2 + 14ψ*ψ*
tt]

+ ψt[728ψttψ
*
tψ

* + 238ψttt(ψ*)2 + 6ψ*
ttttt] + 34|ψttt|2

+ 36ψttttψ
*
tt + 22ψttψ

*
tttt + 20ψtttttψ

*
t + 161ψ2

tt(ψ*)2
+ 8ψttttttψ

*} + 182ψtt|ψtt|2 + 308ψttψtttψ
*
t + 252ψtψtttψ

*
tt

+ 196ψtψttψ
*
ttt + 168ψtψttttψ

*
t + 42ψ2

tψ
*
tttt + 14ψ*(30ψ3

tψ
*
t

+ 4ψtttttψt + 5ψ2
ttt + 8ψttψtttt) + 490ψ2

tψtt(ψ*)2
+ 140ψ4ψ*[(ψ*

t)2 + ψ*ψ*
tt] + 70ψ|ψ|8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Solution: See S7.)
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3.7 A Generalized Variable Coefficient
Inhomogeneous NLSE With Varying
Dispersion, Nonlinearity, Gain, and External
Potentials [123]

iψt +
1
2
β(t)ψxx + G(t)|ψ|2ψ − (2α(t)x + 1

2
Ω(t)x2)ψ � i

c(t)
2

ψ.

(12)

Here, β(t) and G(t) are the dispersion and nonlinearity
management parameters. α(t), Ω(t), and c(t) represent linear
and harmonic oscillator potential and gain (c(t)< 0) or loss
(c(t)> 0) coefficients, respectively. (Solutions: See S8 & S9.)

3.8 A Special Case of Eq. 12: The Variable
Coefficient Inhomogeneous NLSE for
Optical Signals [124]

iψx +
1
2
β(x)ψtt + χ(x)|ψ|2ψ + α(x)t2ψ � ic(x)ψ. (13)

Here, β(x), χ(x), α(x), and c(x) denote GVD, nonlinearity,
normalized loss rate, and loss/gain coefficients, respectively.
(Solutions: See S10 & S11.)

3.9 An Electron-PlasmaWave Packet With a
Large Wavelength and Small Amplitude
Propagating Through the Plasma Described
by an Inhomogeneous NLSE With a
Parabolic Density and Constant Damping
Interaction [125]

iψz + ψtt + 2
∣∣∣∣ψ 2ψ − (αt − β2t2)ψ + iβψ � 0,
∣∣∣∣ (14)

where α and β are linear and damping coefficient, respectively. α t
and β2 t2 account for the profiles of linear and parabolic density.
(Solution: See S12.)

3.10 The Propagation of the Femtosecond
Pulse Through an Inhomogeneous Fiber
With Selective Linear and Nonlinear
Coefficients Described by an
Inhomogeneous Hirota Equation [126]

ψz � α1(z)(iψtt +
1
3δ
ψttt) + α4(z)(iδ ψ∣∣∣∣ψ 2 + ∣∣∣∣ψ 2ψt) + α6(z)ψ,

∣∣∣∣∣∣∣∣
(15)

where α6 � α1,z α4 − α1 α4,z

2α1 α4
. Here α1(z), α2(z), and α6 represent the

contribution of the dispersion, nonlinearity, and gain/loss
coefficient, respectively; δ is a constant. (Solution: See S13.)

3.11 The NLSE Describing the Water Waves
in the Infinite Water Depth [127]

i(ψt + cgψx) − ω0

8k20
ψxx −

1
2
ω0k

2
0|ψ|2ψ � 0, (16)

where cg � zω/zk is the group velocity. The angular frequency
ω0 �

����
g k0
√

, where k0 and g are the wave number and the
acceleration due to gravity, respectively. (Solution: See S14.)

4 PEREGRINE SOLITONS WITH EXTERNAL
POTENTIALS

This section deals with reviewing the Peregrine soliton solutions
reported in the NLSE with diverse external potentials. In
nonlinear dynamics, a waveform which can exhibit a localized
translation resulting from the counteracting dispersive and
nonlinear effects is coined as “soliton”. Such classical soliton is
also referred to as autonomous soliton, owing to the role of time
as an independent variable and its absence in the nonlinear
evolution equation. Those autonomous solitons can preserve
their shape and velocity before and after collisions with an
introduction of a phase shift [5]. However, in real
circumstances, physical systems may be subjected to external
space- and time-dependent forces. In such a case, these systems
are known as nonautonomous systems and their corresponding
solitons are known as nonautonomous solitons [128–130].
Furthermore, it is confirmed that solitons in such systems still
have the ability to preserve their profile after collisions and adapt
to the external potentials as well as to dispersive and nonlinear
variations, but sacrificing the stability in amplitude, speed, and
spectra [116, 131, 132]. In addition, such nonautonomous NLSEs
can be generalized to describe the unusual phenomenon of rogue
waves in different situations [85, 105, 123, 133–137]. Those rogue
waves are characterized by spatiotemporal localization and
possess the amplitudes greater than twice as that of the
surrounding background [11, 13, 17, 18]. Further, dynamics of
such rogue waves have been demonstrated experimentally in
nonlinear optics [23, 24, 27, 138], plasma physics [139], Bose-
Einstein condensation (BEC) [73], and atmospheric dynamics
[140]. One of the basic waveforms of the rogue wave is the
Peregrine soliton [11] whose appearance in the nonautonomous
NLSEs under the influence of various external potentials will be
presented below.

4.1 The Gross-Pitaevskii (GP) Equation
Describing Matter Rogue Wave in BEC With
Time-Dependent Attractive Interatomic
Interaction in Presence of an Expulsive
Potential [141]

iψt −
1
2
ψxx + a(t)|ψ|2ψ + 1

2
λ2x2ψ � 0, (17)
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where a(t) is the nonlinear coefficient, defined by a(t) �
|as(t)|/aB with as(t) the s-wave scattering length and aB the
Bohr radius. The aspect ratio is given by λ � |ω0|/ω⊥, where ω0 and
ω⊥ are oscillator frequencies in the direction of cigar and
transverse axes, respectively. (Solution: See S15.)

4.2 A Generic (1 + 1)-Dimensional NLSEWith
Variable Coefficients in Dimensionless
Form [142]

iψt +
D
2
ψxx − g|ψ|2ψ − Vψ � 0, (18)

where D and g represent the coefficient of dispersion and
nonlinearity and V is an external potential denoting the trap
confining the atoms in BECs. (Solutions: See S16 & S17.)

4.3 NLSE Describing the Nonlinear Optical
Systems With the Spatially Modulated
Coefficients in Presence of a Special
Quadratic External Potential in the
Dimensionless Form [143]

iψz + d(x)ψxx + 2c(z, x)∣∣∣∣ψ 2ψ + V(z, x)ψ � 0.
∣∣∣∣ (19)

Here, d(x) and c(z, x) are the diffraction and the nonlinearity
coefficients, respectively. V(z, x) � d(x)(ax2 + b) denotes the
external potential modulated by the diffraction coefficient,
with a and b being the real constants. (Solution: See S18.)

4.4 A GNLSE With Distributed Coefficients
Describing the Amplification or Absorption
of Optical Pulse Propagating Through a
Monomode Optical Fiber [144]

iψz −
1
2
β(z)ψtt + c(z)|ψ|2ψ + id(z)ψ � 0, (20)

where β(z), c(z), and d(z) areGVD, nonlinearity, and amplification/
absorption coefficients, respectively. (Solution: See S19.)

4.5 NLSE Describing the Rogue Wave
Dynamics under a Linear Potential [105]

iψt +
1
2
ψxx + c(t)(x − x0(t)) + |ψ|2ψ � 0, (21)

where c(t) and x0(t) are real arbitrary functions. (Solutions: See
S20 & S21.)

4.6 NLSE Describing Rogue Wave Under a
Quadratic Potential [105]

iψt +
1
2
ψxx +

1
2
( _c2 − €c)x2ψ + ec|ψ|2ψ � 0, (22)

where c(t) is an integrability condition of the above equation,
relating the coefficients of the quadratic potential and the
nonlinearity. (Solution: See S22.)

4.7 AGP EquationWith an External Potential
Describing the Mean Field Dynamics of a
Quasi-One-Dimensional BEC [145]

iψt +
1
2
ψxx + c(t)|ψ|2ψ + V(x, t)ψ − i

2
g(t)ψ � 0, (23)

where the nonlinearity parameter is defined by c(t) � as(t)
aB

, with
as(t) the scattering length and aB the Bohr radius. V(x, t) �
1
2Ω

2(t)x2 + h(t)x denotes the external potential, Ω2(t) � −ω20(t)
ω2⊥

with ω0 and ω⊥ representing the trap frequency in the axial
direction and the radial trap frequency, respectively. h(t) and
g(t) denote the linear potential and gain/loss coefficients for
atomic and thermal cloud. (Solution: See S23.)

4.8 A GNLSE Describing the Pulse
Propagation Through Tapered
Graded-Index Nonlinear Waveguide
Amplifier [146]

iψz +
1
2
ψxx + F(z) x

2

2
ψ − i

2
G(z)ψ + |ψ|2ψ � 0, (24)

where F(z) andG(z) are the dimensionless tapering function and
gain profile, respectively. (Solutions: See S24 & S25.)

4.9 The Propagation of Rogue Waves
Described by a Nonautonomous NLSE With
an External Harmonic Potential [147]

iψt +
α(t)
2

ψxx + (− ic(t) + ω(t)r2
2

+ β(t)|ψ|2)ψ � 0, (25)

where α(t), c(t), and β(t) represent the coefficients of the
dispersion, the distributed gain/loss, and the Kerr nonlinearity,
respectively. ω(t)r2/2 represents the harmonic potential.
(Solutions: See S26 & S27.)

4.10 An Inhomogeneous NLSE With an
External Potential to Tune the Width and
Shape of the Pulse [148]

iψt + ψxx + 2
∣∣∣∣ψ 2ψ + α2x2ψ + iα ψ � 0,
∣∣∣∣ (26)

where α is a real number. (Solution: See S28.)
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4.11 The (1 + 1)-Dimensional
Nonautonomous NLSE With a Linear
Potential [149]

iψz +
β(z)
2

ψtt + χ(z)|ψ|2ψ − 2α(z)tψ − ic(z)ψ � 0, (27)

where β(z) and χ(z) are the coefficients of varying dispersion and
nonlinearity, respectively. The term 2α(z)tψ denotes an
approximate form of self-induced Raman effect. c(z) is the
gain parameter. (Solutions: See S29 & S30.)

4.12 A Nonautonomous NLSE With Variable
Coefficients in Presence of Varying Linear
and Harmonic Potentials Describing the
Optical Pulse Propagation [150]

iψz(z, t) +
d(z)
2

ψtt(z, t) + r(z)|ψ(z, t)|2ψ(z, t)
+ ]1(z)tψ(z, t) + ]2(z)t2ψ(z, t) � 0,

(28)

where d(z) describes the varying dispersion. r(z) is a
transformation coefficient that relates the nonlinear
coefficient with the gain/loss coefficient. ]1(z) and ]2(z)
denote the varying linear and harmonic potential,
respectively. (Solution: See S31.)

4.13 A NLSE Describing Varying Dispersion
With an External Harmonic Oscillator
Potential [151]

iψz +
D(z)
2

ψtt + R(z)|ψ|2ψ + i(α(z)

+ δD(z)P(z)t)ψt −
i
2
Γ(z)ψ � 0.

(29)

Here D(z), R(z), α(z), P(z), and Γ(z) are varying dispersion in a
harmonic oscillator potential form, varying nonlinearity, velocity
of propagation, nonlinear focus length, and gain/loss coefficient,
respectively. (Solutions: See S32 & S33.)

4.14 NLSE With Spatially Modulated
Coefficients and a Special External
Potential in the Dimensionless Form [39]

iψz +
1
2
β(x)ψxx + χ(x)|ψ|2ψ + 1

2
β(x)( − 1

4
x2 +m + 1

2
)ψ � 0.

(30)

Here, β(x) and χ(x) denote coefficients of the diffraction and the
nonlinearity, respectively. The external potential is a simple
quadratic potential modulated by the diffraction coefficient,

where m is a nonnegative integer referred to as the quantum
modal parameter. (Solution: See S34.)

4.15 A Quasi-One-Dimension
Gross-Pitaevskii Equation Describing BEC
With Time-Dependent Quadratic Trapping
Potential [152]

iψt +
1
2
ψxx + σ c(t)|ψ|2ψ + f (t) x

2

2
ψ + h(t)xψ − i

2
g(t)ψ � 0.

(31)

Here c(t) � 2as(t)/aB with as and aB being the atomic scattering
length and the Bohr radius. Further, f (t) � −ω20(t)/ω2⊥,
h(t) � −α(t)/ω2⊥a⊥, and g(t) � η(t)/Zω⊥ are the atoms confined
in a cylindrical trap, time-dependent parabolic trap, and linear time-
dependent potential, respectively, with a⊥ � (Z/mω⊥)1/2. Here, σ �
+1(−1) corresponds to as(t)< 0(> 0) defining attractive
(repulsive) time-dependent scattering length. ω0 and ω⊥ are the
trap frequency in the axial direction and the radial trap frequency,
respectively. α(t) and η(t) represent the interaction of linear time-
dependent potential trap and gain/loss term incorporates the
interaction of condensate with normal atomic cloud through
three body interactions, respectively. (Solutions: See S35 & S36.)

5 PEREGRINE SOLITONS IN COUPLED
NLSES

This section presents the Peregrine soliton solutions reported in
the context of coupled NLSEs (CNLSEs), starting from basic
vector NLSEs or the Manakov model [153] to the CNLSEs with
the effects of higher-order dispersion/diffraction, self-focusing/
defocusing, and other higher-order nonlinear effects [109, 154].
Such CNLSEs play a vital role in describing the interaction of
multiple components of a vector wave or multiple scalar waves in
numerous physical systems. In literature, several reports have
demonstrated the significance of the CNLSEs in nonlinear
science, namely, birefringent optical fibers [155], BEC [156],
oceanic studies [157], biophysics [158], and even finance
[159]. Recently, vector rogue waves featured with more than
one component have been given special attention in nonlinear
science, for their striking dynamics when compared to those of
the scalar systems. A plethora of studies has been reported to
understand such phenomena, which demonstrate new excitation
patterns manifesting the vector rogue waves compared to that of
the scalar rogue waves with well-known eye-shaped patterns [16,
160, 161]. Bludov et al. originally reported the numerical
existence of the rogue waves in a two-component BEC
described by the coupled GP equation with variable scattering
lengths [162], followed with substantial analytical studies
describing the spatiotemporal distribution of dark rogue waves
[163], higher-order solutions [164], and baseband modulation
stability featuring bright-dark and dark-dark rogue waves [165].
Furthermore a multi-rogue wave reveals four-petaled flower in
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spatiotemporal distribution [166] and resonant interactions [167]
in a three-component coupled NLSEs. In addition, these rogue
waves have also been found to demonstrate unusual distribution
of rogue waves in spatiotemporal distribution plane when
compared to the scalar ones. Moreover, integrable mixed
CNLSEs (M-CNLSEs) feature-rich solutions of the multi-rogue
wave structures including rogue wave doublet, bright-dark
composites, bright-dark triplet, and bright-bright and bright-
dark quartets are also constructed to understand the rogue
wave dynamics in multicomponent physical systems [168].
This section will be confined within our aim to present the
Peregrine soliton solution under the framework of CNLSEs.

5.1 A Manakov Model [169–173]

iψ1t + ψ1xx + 2(∣∣∣∣ψ1|2 +
∣∣∣∣ψ2|2)ψ1 � 0,

iψ2t + ψ2xx + 2(∣∣∣∣ψ1
2 + ∣∣∣∣ψ2

2)ψ2 � 0,
∣∣∣∣∣∣∣∣ (32)

(solutions: See S37, S38, S39, S40, S41, S42 & S43.)

5.2 Special Cases of the Manakov System
i. The Manakov system of the form [174]

iψ1t + ψ1xx + 2μ(∣∣∣∣ψ1|2 +
∣∣∣∣ψ2|2)ψ1 � 0,

iψ2t + ψ2xx + 2μ(∣∣∣∣ψ1
2 + ∣∣∣∣ψ2

2)ψ2 � 0,
∣∣∣∣∣∣∣∣ (33)

where μ is a real constant. (Solution: See S44.)

ii. The two-coupled NLSE describing the wave evolution
dynamics through a two-mode nonlinear fiber in
dimensionless form [175]

iψ1z + ψ1tt + 2(|ψ1|2 + |ψ2|2)ψ1 � 0,
iψ2z + ψ2tt + 2(|ψ1|2 + |ψ2|2)ψ2 � 0.

(34)

(Solution: See S45.)

iii. The Manakov model in the normal dispersion regime [63]

iψ1z − ψ1tt + σ(|ψ1|2 + |ψ2|2)ψ1 � 0,
iψ2z − ψ2tt + σ(|ψ1|2 + |ψ2|2)ψ2 � 0,

(35)

where z, t, σ are the propagation distance, retarded time, and the
strength of the cubic nonlinearity, respectively. (Solution: See S46.)

iv. The focusing CNLSE of the form [38, 164]

iψ1t +
1
2
ψ1xx + (|ψ1|2 + |ψ2|2)ψ1 � 0,

iψ2t +
1
2
ψ2xx + (|ψ1|2 + |ψ2|2)ψ2 � 0.

(36)

(Solutions: See S47 & S48.)

v. The Manakov system [165]

iψ1t + ψ1xx − 2s(|ψ1|2 + |ψ2|2)ψ1 � 0,
iψ2t + ψ2xx − 2s(|ψ1|2 + |ψ2|2)ψ2 � 0,

(37)

where the constant s takes the value −1 or +1 for focusing or
defocusing regime, respectively. (Solution: See S49.)

vi. The Manakov system describing the propagation of optical
pulses through the birefringent optical fibers [176]

iψ1x +
D
2
ψ1tt + (|ψ1|2 + |ψ2|2)ψ1 � 0,

iψ2x +
D
2
ψ2tt + (|ψ1|2 + |ψ2|2)ψ2 � 0.

(38)

Dispersion (D) indicates the normal dispersion for (D � −1) and
the anomalous dispersion for (D � 1). (Solution: See S50.)

5.3 The Three-Component CNLSE [177]

iψ1t + ψ1xx + 2(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ1 � 0,
iψ2t + ψ2xx + 2(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ2 � 0,
iψ3t + ψ3xx + 2(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ3 � 0.

(39)

5.4 A Special Case of Eq. (39): The
Three-Component CNLSE [178]

iψ1t +
1
2
ψ1xx + (|ψ1|2 + |ψ2|2 + |ψ3|2)ψ1 � 0,

iψ2t +
1
2
ψ2xx + (|ψ1|2 + |ψ2|2 + |ψ3|2)ψ2 � 0,

iψ3t +
1
2
ψ3xx + (|ψ1|2 + |ψ2|2 + |ψ3|2)ψ3 � 0.

(40)

(Solutions: See S51 & S52.)

5.5 The Three-ComponentManakov System
in the Defocusing Regime [179]

iψ1z + iδψ1t + ψ1tt − σ(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ1 � 0,
iψ2z − iδψ2t + ψ2tt − σ(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ2 � 0,
iψ3z + ψ3tt − σ(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ3 � 0,

(41)

where δ denotes the group velocity mismatch and σ describes the
coefficient of cubic nonlinearity. (Solution: See S53.)

5.6 The CNLSE Describing the Nonlinear
Interaction of the Short Wave (A) and the
Long Wave (U) [180]

i
zA
zξ

+ 1
2
z2A
zτ2

+ UA � 0,

zU
zξ

− z|A|2
zτ

� 0.

(42)

(Solution: See S54.)
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5.7 The Integrable M-CNLSE [168]

iψ(l)
t + ψ(l)

xx + ψ(l)∑M
j�1

δj|ψ(j)|2 � 0, l � 1, 2, . . .M. (43)

Here δj s can be positive (negative) value defining focusing
(defocusing) nonlinearity. (Solution: See S55.)

5.8 A Two-Coupled NLSE in Dimensionless
Form [163]

iψ1z + σ1ψ1tt + [2g1|ψ1|2 + 2g2|ψ2|2]ψ1 � 0,

iψ2z + σ2ψ2tt + [2g1|ψ1|2 + 2g2|ψ2|2]ψ2 � 0, (44)

where σ1 and σ2 define the sign of GVD, taking the value +1 or −1
for anomalous or normal GVD, respectively. g1 and g2 are
nonlinearity parameters determining the properties of Kerr
medium with electrostriction mechanism. (Solution: See S56.)

5.9 The Coupled Derivative NLSE [181]

iψ1t + ψ1xx −
2
3
iϵ [(|ψ1|2 + |ψ2|2)ψ1]x � 0,

iψ2t + ψ2xx −
2
3
iϵ [(|ψ1|2 + |ψ2|2)ψ2]x � 0,

(45)

where ϵ takes the value ± 1. (Solution: See S57.)

5.10 A CNLSE With Negative Coherent
Coupling Describing the Propagation of
Orthogonally Polarized Optical Waves in an
Isotropic Medium [182]

iψ1z + ψ1tt + 2(|ψ1|2 + 2|ψ2|2)ψ1 − 2ψ*
1ψ

2
2 � 0,

iψ2z + ψ2tt + 2(2|ψ1|2 + |ψ2|2)ψ2 − 2ψ2
1ψ

*
2 � 0.

(46)

(Solutions: See S58 & S59.)

5.11 An Integrable Generalization of the
CNLSE [183]

ψ1xt + αβ2ψ1 − 2iαβψ1x − αψ1xx + iαβ2ψ1ψ2ψ1x � 0,
ψ2xt + αβ2ψ2 − 2iαβψ2x − αψ2xx − iαβ2ψ1ψ2ψ2x � 0,

(47)

where α and β are constants. (Solution: See S60.)

5.12 A Coupled NLSE With Special External
Potential in a Parabolic Form [184]

iψ1z + β(x)ψ1xx + 2 χ(x)(|ψ1|2 + |ψ2|2)ψ1 + U(x)ψ1 � 0,
iψ2z + β(x)ψ2xx + 2 χ(x)(|ψ1|2 + |ψ2|2)ψ2 + U(x)ψ2 � 0,

(48)

where U(x) � β(x)(ax2 + b) is a parabolic external potential
modulated by the diffraction coefficient, with real constants a

and b. β(x) and χ(x) denote the effective diffraction coefficient
and the nonlinearity coefficient, respectively. (Solution: See S61.)

5.13 The Gross-Pitaevskii Equations [185]

iψ1t � −ψ1xx + (g1|ψ1|2 + g|ψ2|2)ψ1 + β(t)ψ2,
iψ2t � −ψ2xx + (g|ψ1|2 + g2|ψ2|2)ψ2 + β(t)ψ1,

(49)

where g1 and g2 are the dimensionless nonlinear coefficients for
the quasi-one-dimensional condensate. The factor g can take two
values g � ± 1. The β(t) in the last term can be used to switch
between the two hyperfine states, originated from the external
magnetic field. (Solution: See S62.)

5.14 A Coupled GNLSE [186]

iψ1t + ψ1xx − 2ψ2
1ψ2 + 4β2ψ3

1ψ
2
2 + 4iβ(ψ1ψ2)x ψ1 � 0,

iψ2t − ψ2xx + 2ψ1ψ
2
2 − 4β2ψ2

1ψ
3
2 + 4iβ(ψ1ψ2)x ψ2 � 0,

(50)

where β is a constant, describing the strength of higher-order
terms. (Solution: See S63.)

5.15 A CNLSE [187]
iψ1t + ψ1xx + 2(|ψ1|2 + 2|ψ2|2)ψ1 − 2ψ*

1ψ
2
2 � 0,

iψ2t + ψ2xx + 2(|ψ2|2 + 2|ψ1|2)ψ2 − 2ψ*
2ψ

2
1 � 0.

(51)

(Solution: See S64.)

5.16 The Two-Component CNLSE With
Four-Wave Mixing Term [188]

iψ1t +
1
2
ψ1xx + σ(|ψ1|2 + 2|ψ2|2)ψ1 + σψ2

2ψ
*
1 � 0,

iψ2t +
1
2
ψ2xx + σ(2|ψ1|2 + |ψ2|2)ψ2 + σψ2

1ψ
*
2 � 0,

(52)

where σ � ± 1 accounts for attractive (+) or repulsive (−)
interactions.

5.17 A Special Case of Eq. 52: An Integrable
CNLSE [189]

iψ1t + ψ1xx + 2|ψ1|2ψ1 + 4|ψ2|2ψ1 + 2ψ2
2ψ

*
1 � 0,

iψ2t + ψ2xx + 2|ψ2|2ψ2 + 4|ψ1|2ψ2 + 2ψ2
1ψ

*
2 � 0.

(53)

(Solutions: See S65 & S66.)

5.18 The Evolution of Two Orthogonally
Polarized Components in an Isotropic
Medium Described by the Normalized
CNLSE [190, 191]

iψ1z + ψ1tt + 2(|ψ1|2 − 2|ψ2|2)ψ1 − 2ψ*
1ψ

2
2 � 0,

iψ2z + ψ2tt + 2(2|ψ1|2 − |ψ2|2)ψ2 + 2ψ*
2ψ

2
1 � 0.

(54)

(Solutions: See S67 & S68.)
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5.19 A System of Linearly Coupled NLSEs
for Field Variables [60]

iψ1z � −ψ1xx + (χ1|ψ1|2 + χ|ψ2|2)ψ1 + icψ1 − ψ2,
iψ2z � −ψ2xx + (χ|ψ1|2 + χ1|ψ2|2)ψ2 − icψ2 − ψ1,

(55)

where χ1 and χ denote the SPM and XPM coefficients,
respectively. γ represents the PT-balanced gain. (Solution:
See S69.)

5.20 A CNLSE Describing the Dynamics of
Light Propagation Through PT-Symmetric
Coupled Waveguides [192]

iψ1z +
1
2
ψ1xx + (χ1|ψ1|2 + χ|ψ2|2)ψ1 � −ψ2 + icψ1,

iψ2z +
1
2
ψ2xx + (χ|ψ1|2 + χ1|ψ2|2)ψ2 � −ψ1 − icψ2,

where the parameters χ (or χ1 > 0) and χ (or χ1 < 0) correspond to
the focusing and defocusing case, respectively. The γ in the last
term describes PT-balanced gain in the first and loss in the second
waveguide. The relation ψ2(x, z) � ± ψ1(x, z)exp( ± iθ) is used
which casts above equations into the single equation of the form

iψz +
1
2
ψxx + (χ1 + χ|)ψ|2ψ ± cos(θ)ψ � 0. (56)

(Solutions: See S70 & S71.)

5.21 A CNLSE With the Four-Wave Mixing
Term Which Describes the Pulse
Propagation in a Birefringent Fiber
[193–196]

iψ1t + ψ1xx + 2(a|ψ1|2 + c|ψ2|2 + bψ1ψ
*
2 + b*ψ*

1ψ2)ψ1 � 0,
iψ2t + ψ2xx + 2(a|ψ1|2 + c|ψ2|2 + bψ1ψ

*
2 + b*ψ*

1ψ2)ψ2 � 0.
(57)

Here a and c are real constants, describing the self-phase
modulation and cross-phase modulation effects, respectively. b
is a complex constant, describing the four-wave mixing effects.
(Solutions: See S72, S73, S74 & S75.)

5.22 A Focusing-Defocusing Type CNLSE
[197]

iψ1t + ψ1xx + 2c(|ψ1|2 − |ψ2|2)ψ1 − c(ψ2
1 + ψ2

2)ψ*
1 � 0,

iψ2t + ψ2xx + 2c(|ψ1|2 − |ψ2|2)ψ2 + c(ψ2
1 + ψ2

2)ψ*
2 � 0,

(58)

where γ denotes the strength of nonlinearity. (Solution: See S76.)

5.23 A CNLSE With Variable Coefficients
[198]

iψ1t + ψ1xx + v(x, t)ψ1 + g(t)(|ψ1|2 + |ψ2|2)ψ1 + ic(t)ψ1 � 0,
iψ2t + ψ2xx + v(x, t)ψ2 + g(t)(|ψ1|2 + |ψ2|2)ψ2 + ic(t)ψ2 � 0,

(59)

where v(x, t), g(t), and c(t) are the coefficients of the external
potential, nonlinearity, and gain, respectively. (Solutions: See
S77 & S78.)

5.24 The Generalized CNLSE for Two
Components [199]

iψ1z + α1(z)ψ1xx + β1(z)|ψ1|2ψ1 + δ1(z)|ψ2|2ψ1 + ]1(x, z)ψ1

+ ic1(z)ψ1� 0, iψ2z + α2(z)ψ2xx + β2(z)|ψ1|2ψ2

+ δ2(z)|ψ2|2ψ2 + ]2(x, z)ψ2 + ic2(z)ψ2 � 0,
(60)

where α1(z) and α2(z) are diffraction (dispersion)
coefficients. β1(z) and β2(z) are nonlinear coefficients.
δ1(z) and δ2(z) are the coefficient of gain/loss. ]1 and ]2 are
the two real valued functions of spatial coordinates x and z,
describing the external potentials. c1 and c2 are real valued
functions of the propagation distance z. (Solutions: See
S79 & S80.)

5.25 The Coupled Inhomogeneous NLSE
[200]

iψ1t + ψ1xx + 2(|ψ1|2 + |ψ2|2)ψ1 − (αx − β2x2)ψ1 + iβψ1 � 0,
iψ2t + ψ2xx + 2(|ψ1|2 + |ψ2|2)ψ2 − (αx − β2x2)ψ2 + iβψ2 � 0,

(61)

where α denotes the coefficient of the linear density profile and β is
the coefficient of damping. αx and β2x2 correspond to the linear
and parabolic density profiles. (Solution: See S81.)

5.26 The Higher-Order CNLSEWith Variable
Coefficients [201]

iψjz −
1
2
β2(z)ψjtt − c(z)⎛⎝∑2

n�1
anj|ψn|2⎞⎠ψj + iβ3(z)ψjttt

+ iχ(z)⎛⎝∑2
n�1

anj|ψn|2⎞⎠ψjt + iδ(z)⎛⎝∑2
n�1

anjψntψ
*
j
⎞⎠ψj

+ iΓ(z)ψj � 0, j � 1, 2.

(62)
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Here β2(z), c(z), β3(z), χ(z), δ(z), and Γ(z) are coefficients of
group velocity dispersion, nonlinearity (SPM and XPM),
TOD, SS, SFS, and loss/gain, respectively. (Solution:
See S82.)

5.27 The Coupled Hirota Equations [202]

iψ1t +
1
2
ψ1xx + (|ψ1|2 + |ψ2|2)ψ1 + iϵ[ψ1xxx + (6|ψ1|2 + 3|ψ2|2)ψ1x

+ 3ψ1ψ
*
2ψ2x]� 0, iψ2t +

1
2
ψ2xx + (|ψ1|2 + |ψ2|2)ψ2

+iϵ[ψ2xxx + (6|ψ2|2 + 3|ψ1|2)ψ2x + 3ψ2ψ
*
1ψ1x] � 0,

(63)

where ϵ is a constant that provides the strength of higher-order
effects and scales the integrable perturbations of the simple
Manakov system. (Solutions: See S83 & S84.)

5.28 A Coupled Cubic-Quintic NLSE
Describing the Pulse Propagation in
Non-Kerr Media [203]

iψ1z + ψ1tt + 2(|ψ1|2 + |ψ2|2)ψ1 + (ρ1|ψ1|2 + ρ2|ψ2|2)2ψ1

− 2i[(ρ1|ψ1|2 + ρ2|ψ2|2)ψ1]t + 2i(ρ1ψ*
1ψ1t + ρ2ψ

*
2ψ2t)ψ1

� 0, iψ2z + ψ2tt + 2(|ψ1|2 + |ψ2|2)ψ2 + (ρ1|ψ1|2 + ρ2|ψ2|2)2ψ2

− 2i[(ρ1|ψ1|2 + ρ2|ψ2|2)ψ2]t + 2i(ρ1ψ*
1ψ1t + ρ2ψ

*
2ψ2t)ψ2� 0,

(64)

where ρ1 and ρ2 are the real parameters. (Solution: See S85.)

5.29 A Coupled Cubic-Quintic NLSE
Describing the Effects of Quintic
Nonlinearity on the Propagation of
Ultrashort Pulse in a Non-Kerr Media [204]

iψ1t + ψ1xx + 2(|ψ1|2 + |ψ2|2)ψ1 + (ρ1|ψ1|2 + ρ2|ψ2|2)2ψ1

− 2i[(ρ1|ψ1|2 + ρ2|ψ2|2)ψ1]x + 2i(ρ1ψ*
1ψ1x + ρ2ψ

*
2ψ2x)ψ1

� 0, iψ2t + ψ2xx + 2(|ψ1|2 + |ψ2|2)ψ2 + (ρ1|ψ1|2 + ρ2|ψ2|2)2ψ2

− 2i[(ρ1|ψ1|2 + ρ2|ψ2|2)ψ2]x + 2i(ρ1ψ*
1ψ1x + ρ2ψ

*
2ψ2x)ψ2� 0,

(65)

where ρ1 and ρ2 are real constants. (Solution: See S86.)

5.30 A Fourth-Order CNLSE Describing the
Ultrashort Pulse Propagation in a
Birefringent Optical Fiber [205]

iψαt + ψαxx + 2ψα∑2
ρ�1

|ψρ|2 + c⎡⎢⎢⎣ψαxxxx + 2ψα∑2
ρ�1

|ψρx|2

+ 2ψαx∑2
ρ�1

ψρψ
*
ρx + 6ψαx∑2

ρ�1
ψ*
ρψρx + 4ψαxx∑2

ρ�1
|ψρ|2

+ 4ψα∑2
ρ�1

ψ*
ρψρxx + 2ψα∑2

ρ�1
ψρψ

*
ρxx + 6ψα

⎛⎝∑2
ρ�1

|ψρ|2⎞⎠
2⎤⎥⎥⎥⎦

� 0, (66)

where α � 1, 2. γ is a real parameter that denotes the strength of
higher-order linear and nonlinear effects. (Solution: See S87.)

5.31 A NLS-Type System With
Self-Consistent Sources Associated With
the Two-Component Homogeneous
Plasma [206]

ψ1t −
iα
2
ψ1xx + iα σ|ψ1|2ψ1 − k0ψ2ψ

*
3 � 0,

ψ2x − ψ1ψ3 � 0, ψ3x − 2ik0ψ3 − σψ*
1ψ2 � 0,

(67)

where α, σ, and k0 denote the coefficients of dispersion,
nonlinearity, and coupling, respectively. (Solution: See S88.)

6 PEREGRINE SOLITONS IN DISCRETE
NLSE

This section delivers the Peregrine soliton solutions presented in
the literature in the framework of discrete NLSEs. Since its origin
from the mid-1960s, the general NLSE of continuous form plays a
significant role in unraveling the physical phenomena and
insights which lead to numerous scientific and technological
applications in various nonlinear systems. Further, owing to its
outstanding versatility, different forms of continuous NLSEs,
namely, scalar and vector NLSEs, have been proposed with
suitable additional terms to predict various dynamical
situations in numerous nonlinear systems [90, 109, 207]. From
the past three decades, apart from continuous nonlinear systems,
considerable efforts have also been made to investigate the
nonlinear discrete systems characterized by structural
discontinuities and lattices. These systems find potential
applications in electronic circuits [208, 209], optical waveguides
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[210], nonlinear lattices [211], spatial energy concentrators [212],
coupled nonlinear waveguide arrays [213], BEC trapped in periodic
optical lattices [214], photorefractive crystals [215], and so forth.
Those nonlinear discrete systems, discrete NLSEs, can be modeled
through discretizing the continuous NLSE via appropriate
transformations. In such discrete NLSEs, the energy evolution is in
a semidiscrete form characterized by the spatial discretization and
temporal continuity [90].

Additionally, the pioneering work by Ablowitz and Ladik led
to a cutting-edge method for constructing a family of semidiscrete
and doubly discrete nonlinear systems associated with their linear
operator pairs, necessary for obtaining the solutions of the
nonlinear systems via the inverse scattering transform (IST)
[216]. Further, those formulations include an integrable
semidiscretization of NLSE as well as doubly discrete integrable
NLSE referred to as integrable discrete NLSE (IDNLSE) [217]. These
equations form basic discrete equations which serve as a model for
the plethora of applications where exact solutions can be realized
through diverse methods such as Darboux and Bäcklund
transformations in addition to the IST [86, 87, 89, 90, 93, 218].
Firstly, the DNLSE was reported by Christodoulides et al., in a
nonlinear array of coupled waveguides displaying discrete self-
focusing [219], followed by the experimental realization of
discrete spatial solitons in AlGaAs nonlinear waveguide arrays
[213]. Solitons resulting in these systems are due to the interplay
between discreteness and self-trapping nonlinearity and coined as
spatial discrete solitons or lattice solitons [220]. On the other hand,
Peregrine solitons of DNLSEs display different dynamical behavior
compared to that of the continuous counterpart and find interesting
applications in spatial energy concentrators [212], photonic lattices
[221], anharmonic lattices [222], Heisenberg spin chains [223], self-
trapping on a dimer [224], and so forth. These Peregrine solitons
that arise in discrete systems are studied in a broad category under
the context of i) the DNLSEs [90, 219], ii) the Ablowitz-Ladik
equations [90, 225], iii) the discrete Hirota equations (a combination
of DNLSE and discrete complex modified KdV equations) [90, 226],
and iv) the Salerno equation (an interpolation of the cubic DNLSE
and the integrable Ablowitz-Ladik equation) [227]. Here, we present
the class of DNLSEs where the Peregrine solitons were reported.

6.1 The Focusing and Defocusing
Ablowitz-Ladik (AL) Equation [228]

i
dψn

dt
� (1 ± |ψn|2)(ψn+1 + ψn−1). (68)

In the above AL equation, the term |ψn|2 with + and − sign
represents focusing and defocusing regimes, respectively.
(Solution: See S89.)

6.2 The DNLSE Describing an Array of
Coupled Nonlinear Waveguides [229]

i
dψn

dt
+ ψn+1 + ψn−1 − 2ψn + σ|ψn|2ψn � 0. (69)

Here, the constant σ takes the value ‘‘ + 1} denoting the focusing
nonlinearity and ‘‘ − 1} denoting the defocusing nonlinearity.
(Solution: See S90.)

6.3 An Optical Field Propagating Through a
Tight Binding Waveguide Array Described
by the DNLSE [230]

i
dψj

dz
� −Jj(ψj+1 + ψj−1) + Vjψj + g|ψj|2ψj, (70)

where Jj is the coupling coefficient between j-th waveguide and
adjacent waveguides. Vj is the propagation constant of the j-th
waveguide. g is the constant describing nonlinear interaction.
(Solution: See S91.)

6.4 The Discrete NLSE [231]

i
dψn

dt
� ψn+1 − 2ψn + ψn−1 + ψnψ

*
n(ψn+1 + ψn−1). (71)

(Solution: See S92.)

6.5 The Integrable AL Equation [232, 233]

i
dψn

dt
+ (ψn−1 + ψn+1)(1 + |ψn|2) − 2ψn � 0. (72)

(Solutions: See S93 & S94.)

6.6 The Modified AL Equation [234]

i
dψn

dt
+ (ψn−1 + ψn+1)(1 + |ψn|2) − 2(q2 + 1)ψn � 0. (73)

(Solution: See S95.)

6.7 The Generalized Ablowitz-Ladik-Hirota
Lattice Equation With Variable Coefficients
[235]

iψn,t + [Λ(t)ψn+1 + Λ*(t)ψn−1](1 + g(t)|ψn|2) − 2vn(t)ψn

+ ic(t)ψn� 0. (74)

Here, the tunnel coupling constant between the sites is given by
Λ(t) � α(t) + iβ(t), with α(t) and β(t) the differentiable real
valued functions. g(t), vn(t), and c(t) represent time-
modulated interstice nonlinearity, space-time-modulated
inhomogeneous frequency shift, and time-modulated effective
gain/loss constants, respectively. (Solution: See S96.)
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6.8 The Generalized Salerno Equation [64]

i
dψn

dt
� −1

2
(ψn+1 − 2ψn + ψn−1) − μ|ψn|2ψn

−1
2
(1 − μ)|ψn|2(ψn+1 + ψn−1). (75)

Above equation corresponds to the DNLSE, when μ � 1, and
reduces to the AL system, when μ � 0, respectively. (Solution:
See S97.)

6.9 The Discrete Hirota Equation [233]

i
dψn

dt
+ [(a − ib)ψn−1 + (a + ib)ψn+1](1 + |ψn|2) − 2ψn � 0.

(76)

(Solution: See S98.)

6.10 A Spatially Discrete Hirota Equation
[236]

dψn

dt
� α(1 + |ψn|2)[ψn+2 − 2ψn+1 + 2ψn−1 − ψn−2 + ψ*

n(ψ2
n+1

− ψ2
n−1) − |ψn−1|2ψn−2 + |ψn+1|2ψn+2 + ψn(ψ*

n−1ψn+1
− ψ*

n+1ψn−1)] − iβ(1 + |ψn|2)(ψn+1 + ψn−1) + 2iβψn,

(77)

where α and β are real constants. (Solution: See S99.)

6.11 A Single Ablowitz-Ladik Equation With
Only One Component [237]

i
dψ(1)

n

dt
+ 1
2h2
(ψ(1)

n−1 + ψ(1)
n+1 − 2ψ(1)

n ) + 1
2
(ψ(1)

n−1 + ψ(1)
n+1)∣∣∣∣ψ(1)

n |2 � 0,

(78)

where 1/h2 is a real coefficient. (Solution: See S100.)

6.12 The Discrete AL Equation [238]

i
dψn

dt
� ψn+1 + ψn−1 − 2ψn

h2
+ σ|ψn|2(ψn+1 + ψn−1). (79)

Here σ � +1 and −1 for focusing and defocusing nonlinearity,
respectively. h is a real parameter. (Solution: See S101.)

6.13 The Coupled AL Equations Describing
the Coupled Discrete Nonlinear Wave
Systems [51]

ψ(1)
n,t � −i(σ + |ψ(1)

n |2)(ψ(2)*
n + ψ(2)*

n−1 ),
ψ(2)
n,t � i(σ + |ψ(2)

n |2)(ψ(1)*
n+1 + ψ(1)*

n ). (80)

Here σ � +1 and −1 denote the focusing and defocusing
nonlinearity, respectively. (Solution: See S102.)

6.14 The System of Differential-Difference
Equations on the Doubly Infinite Lattice
[239, 240]

i
dψ(1)

n

dt
� ψ(1)

n+1 − 2ψ(1)
n + ψ(1)

n−1 − ψ(1)
n ψ(2)

n (ψ(1)
n+1 + ψ(1)

n−1),
−i dψ

(2)
n

dt
� ψ(2)

n+1 − 2ψ(2)
n + ψ(2)

n−1 − ψ(1)
n ψ(2)

n (ψ(2)
n+1 + ψ(2)

n−1)
(81)

with ψ(2)n � σψ(1)*n . (Solutions: See S103 & S104.)

6.15 The Coupled AL Equation With Variable
Coefficients Describing the Optical Field
Through the Tight Binding Waveguide Array
[241]

i
dψ(1)

n

dt
+ [1 + g1(t)|ψ(1)

n |2 + g2(t)|ψ(2)
n |2][Λ1(t)ψ(1)

n+1 + Λ*
1(t)ψ(1)

n−1]
− 2v1(n, t)ψ(1)

n + ic1(t)ψ(1)
n

� 0, i
dψ(2)

n

dt
+ [1 + g1(t)|ψ(2)

n |2 + g2(t)|ψ(1)
n |2][Λ2(t)ψ(2)

n+1

+ Λ*
2(t)ψ(2)

n−1] − 2v2(n, t)ψ(2)
n + ic1(t)ψ(2)

n � 0.

(82)

Here the tunnel coupling coefficients between sites are given by
Λ1(t) � a(t) + ib(t), Λ2(t) � c(t) + id(t) with a(t), b(t), c(t),
and d(t) being differentiable functions. g1(t) and g2(t) denote
the time-modulated interstice nonlinearity. The space-time-
modulated inhomogeneous frequency shifts are denoted by
v1(t) and v2(t). c1(t) and c2(t) represent the time-modulated
effective gain and loss term. (Solution: See S105.)

7 PEREGRINE SOLITONS IN NONLOCAL
NLSES

The objective of this section is to present the existing Peregrine
soliton solutions reported in the literature under the context of
nonlocal NLSEs. In nonlinear systems, NLSEs play a ubiquitous
role in understanding the diverse nonlinear phenomena, finding
potential applications from fundamental to advanced technologies
[109]. Out of such diversemanifestations of NLSEs, the NLSEwith
parity-time symmetry has shown an extensive recent research
interest. This equation displays invariance under the joint
transformations of time t→ − t, space x→ − x (both time and
space reversal symmetry), and complex conjugation. Its original
prediction was by Bender et al. in a class of non-Hermitian PT
invariant Hamiltonians in quantum mechanics [242]. PT-
symmetric systems have gained great attention in diverse fields
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of research. Apart from the quantum mechanics, PT-symmetric
systems have been investigated in many other physical systems,
namely, nonlinear optics [243], plasmonics [244], BEC [245],
electronics [246], and acoustics [247]. Such PT-symmetric
systems allow the realization of a new class of gain/loss
balanced dissipative as well as conservative systems which
features unusual dynamics and control which cannot be
realized in the conventional systems [248]. In the background
of NLSEs, PT-symmetric systems involve two different models,
namely, i) the nonlinear optical system where the optical potential
is fixed PT-symmetric [243, 249–251] and ii) the coupled and
multicomponent NLSE with a balance gain/loss [60, 252, 253].

Recently, Ablowitz et al. introduced an exactly integrable nonlocal
PT-symmetricNLSEwhere the nonlinearity is nonlocal as well as PT-
symmetric [254]. Furthermore, they constructed a discrete one-
soliton solution via a left-right Riemann-Hilbert formulation in an
exactly solvable PT-symmetric DNLSE which then discretized the
above reported NLSE [255]. Since then, a numerous nonlocal
integrable NLSEs have been reported such as the reverse time
NLSE [93], the reverse space-time NLSE [93, 256], the nonlocal
derivate NLSE [93, 257], PT-symmetric Davey-Stewartson equation
[93, 258], and the reverse space-time complex modified KdV
equation [93, 259, 260], to explore the exciting behaviors of
nonlocal solutions in such systems. Recently, intense research
investigations have been made in rogue waves to understand and
control their appearance in nonlinear optics [155], BEC [156],
hydrodynamics [157], biophysics [158], and so forth. In general,
these rogue waves are mathematically expressed in a rational form
which exhibits both spatial and temporal localization.Moreover, they
possess interesting dynamical patterns and are found to be observed
in a large number of local nonlinear integrable systems [17, 21, 173,
261, 262]. In the following, we list out the Peregrine soliton solution
under the context of different nonlocal PT-symmetric NLSEs with
space reversal, time reversal, and space-time reversal.

7.1 The Nonlocal NLSE With Parity-Time
Symmetric Self-Induced Potential [263]

iψz +
1
2
ψxx + ψ(x, z)ψ*(−x, z)ψ(x, z) � 0. (83)

(Solutions: See S106 & S107.)

7.2 The Reverse Time Nonlocal NLSE [256]

iψt(x, t) � ψxx(x, t) + 2ψ2(x, t)ψ(x,−t). (84)

(Solution: See S108.)

7.3 ANonlocal NLSEWith the PT-Symmetric
Potential [264]

iψt(x, t) � ψxx(x, t) + 2ψ2(x, t)ψ*(−x, t). (85)

(Solution: See S109.)

7.4 A Nonlocal NLSE [265]

iψt(x, t) � ψxx(x, t) − 2ψ2(x, t)ψ*(−x, t). (86)

(Solution: See S110.)

7.5 A Nonlocal NLSE With the Self-Induced
PT-Symmetric Potential [266]

iψt(x, t) + ψxx(x, t) +
1
2
ψ2(x, t)ψ*(−x, t) � 0. (87)

(Solution: See S111.)

7.6 A Reverse Time Nonlocal NLSE [267]

iψt(x, t) � ψxx(x, t) + 2σψ2(x, t)ψ(x,−t). (88)

Here, the constant σ takes the values +1 and −1 for focusing
and defocusing nonlinearity, respectively. (Solution: See
S112.)

7.7 A Nonlocal NLSE [268]

iψt(x, t) � ψxx(x, t) + 2σψ2(x, t)ψ*(−x, t). (89)

Here, σ takes the value +1 or −1 for focusing or defocusing
nonlinearity, respectively. (Solution: See S113.)

7.8 A Nonlocal Derivative NLSE [269]

iψt(x, t) + ψxx(x, t) + σ[ψ2(x, t)ψ*(−x, t)]x � 0, (90)

where σ takes the value +1 or −1 for focusing or defocusing
nonlinearity, respectively. (Solution: See S114.)

7.9 A Nonlocal Third-Order NLSE [270]

iψt + icψx + ψxx + σψ[ψ(−x, t)]*ψ + iλ ψxxx

+ 3iλ σ ψ[ψ(−x, t)]*ψx� 0, (91)

where λ, σ, and c are real constants. (Solution: See S115.)

7.10 An Integrable Three-Parameter
Nonlocal Fifth-Order NLSE [271]

iψt + S(ψ, r) + αH(ψ, r) + cP(ψ, r) + δQ(ψ, r) � 0, (92)

where ψ ≡ ψ(x, t), r ≡ r(x, t) are complex fields; α, γ, and δ are all
real parameters.

Here, a) S(ψ, r) denotes the nonlocal NLS part
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S(ψ, r) � 1
2
ψxx + ψ2r, (93)

b) H(ψ, r) represents the nonlocal Hirota part

H(ψ, r) � ψxxx + 6ψψx r, (94)

c) P(ψ, r) denotes the nonlocal Lakshmanan-Porsezian-Daniel
(LPD) part

P(ψ, r) � ψxxxx + 8ψ rψxx + 6ψ3r2 + 4ψψx rx + 6ψ2
xr + 2ψ2rxx,

(95)

and d) Q(ψ, r) is the nonlocal quintic part

Q(ψ, r) � ψxxxxx + 10ψ rψxxx + 10(ψψxrx)x + 20r ψxψxx

+ 30ψ2r2ψx, (96)

where r(x, t) � σ ψ*(−x, t) and σ � ± 1. (Solutions: See S116,
S117, S118 & S119.)

7.11 The Nonlocal Variant of the NLSE in a
Dimensionless Form [272]

i
zψ

zt
+ 1
2
z2ψ

zx2
+ θ ψ − μ ψ � 0,

]
z2θ

zx2
− 2q θ � −2|ψ|2, (97)

where θ represents the optically induced deviation of the
director angle, ν is the nonlocality parameter, μ is the
propagation constant, and q is the parameter that represents
the square of the applied static electric field that pretilts the
nematic dielectric. Using Fourier transform θ can be
rewritten as

θ � F−1[F[2|ψ|2]
]k2 + 2

].
Here k is the wave number relevant to the Fourier variable.
(Solution: See S120.)

7.12 The Generalized PT-Symmetric
Nonlocal CoupledNLSEWith Nonlocal SPM,
XPM, and FWM of the Following Form [273]

i
zψ1(x, t)

zt
+ z2ψ1(x, t)

zx2
+ [aψ1(x, t)ψ*

1(−x, t)

+ bψ1(x, t)ψ*
2(−x, t) + cψ2(x, t)ψ*

2(−x, t)
+ d ψ*

1(−x, t)ψ2(x, t)]ψ1(x, t)

� 0, i
zψ2(x, t)

zt
+ z2ψ2(x, t)

zx2
+ [aψ1(x, t)ψ*

1(−x, t)

+ bψ1(x, t)ψ*
2(−x, t) + cψ2(x, t)ψ*

2(−x, t)
+ d ψ*

1(−x, t)ψ2(x, t)]ψ2(x, t)� 0, (98)

where a and c correspond to the nonlocal SPM and XPM,
respectively, while b, d represent the nonlocal FWM terms.
(Solution: See S121.)

8 PEREGRINE SOLITONS IN HIGHER
DIMENSIONAL AND MIXED NLSES

This section aims at presenting the Peregrine soliton solutions of
higher dimensional and mixed NLSEs reported in the existing
literature. The one-dimensional (1D) cubic NLSE or (1 + 1)-
dimensional ((1 + 1)-D) cubic NLSE appears in diverse fields of
physics, namely, nonlinear optics, plasma physics, BEC, condensed
matter physics, and superfluids [109]. A successful first, completely
integrable property of such (1 + 1)-D NLSE has been reported by
Ablowitz et al., through the inverse scattering transform technique
[87]. Higher dimensional NLSEs of such a basic (1 + 1)-DNLSE can
be obtained by replacing the second spatial derivative through the
Laplacian. Moreover, higher dimensional NLSEs are not integrable,
but localized solutions are found to exist in two transverse directions
[274, 275]. However, the obtained solutions are not robust against
perturbations and found to be unstable after a finite distance. Also,
the (3 + 1)-D NLSEs are not integrable, but localized solutions for
these equations have been reported through the numerical
simulations [6] and via the similarity transformations [275–277].
In particular, this section is related to the Peregrine soliton solution.
The Peregrine solitons found profound interest in diverse areas of
physics, namely, optical systems [278], BEC [73], hydrodynamics
[12], and superfluids [25]. Originally, such Peregrine soliton
solutions have been reported in the two-dimensional graded-
index waveguides using the similarity transformation [279],
followed by their appearance in a two-dimensional graded-index
grating waveguide [280] and two-dimensional coupled NLSEs with
distributed coefficients [281]. The Peregrine soliton solutions in a (3
+ 1)-D inhomogeneous NLSE with variable coefficients [282] and a
(3 + 1)-D higher-order coupled NLSE [283] have also been
reported. These Peregrine solitons play an inevitable role in
describing the dynamics of ocean waves, nonlinear optics, and
BEC. Hence, this section considers reporting the Peregrine soliton
solutions of various higher dimensional NLSEs and mixed NLSEs.
Here, the mixed NLSEs refer to the higher dimensional NLSEs with
other physical effects, namely, inhomogeneity, external potential,
variable coefficient, and nonlocality. Such higher dimensional and
mixed NLSEs in which Peregrine soliton solutions are reported will
be listed in this section.

8.1 THE THREE-DIMENSIONAL
INHOMOGENEOUS NLSE WITH VARIABLE
COEFFICIENTS IN A DIMENSIONLESS
FORM [282]

iψt � −1
2
∇2ψ + v(r, t)ψ + g(t)|ψ|2ψ + ic(t)ψ. (99)

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 59688617

Uthayakumar et al. Peregrine Solitons of the Higher-Order

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


8.2 A Special Case of Eq. 99 [284]

iψt � −β(t)
2

∇2ψ + v(r, t)ψ + g(t)|ψ|2ψ + ic(t)ψ � 0, (100)

where ψ � ψ(r, t), r ∈ R3, r � (x, y, z), ∇ ≡ (zx, zy, zz) with
zx � z/zx . v(r, t) is an external potential with a real valued
function of time and spatial coordinates. β(t), g(t), and c(t)
denote the coefficients of linearity, nonlinearity, and gain/loss,
respectively. (Solutions: See S122, S123 & S124.)

8.3 A (2 + 1)-Dimensional NLSE With an
External Potential [285]

iψt + ψxx + ψyy − g(x, y, t)|ψ|2ψ − V(x, y, t)ψ � 0, (101)

where g(x, y, t) is the coefficient of nonlinearity and V(x, y, t) is
an external potential. (Solutions: See S125 & S126.)

8.4 The 3D Variable Coefficient NLSE of the
Form With Linear and Parabolic Potentials
[286]

iψt +
β(t)
2

Δψ + χ(t)|ψ|2ψ + V(t, x, y, z)ψ � ic(t)ψ, (102)

where ψ � ψ(t, x, y, z) is the order parameter in BECs or the
complex envelope of the electric field in optical communication
system. Here Δ � z2x + z2y + z2z is the 3-dimensional Laplacian
operator. The functions β(t), χ(t), and c(t) are the coefficients
of the diffraction, nonlinearity, and gain/loss. Here, the potential
V � V1(t)(x + y + z) + V2(t)Y2, where V1(t) and V2(t) are
linear and parabolic potential strengths and Y2 � x2 + y2 + z2.
(Solution: See S127.)

8.5 A (2 + 1)-Dimensional NLSE With
Variable Coefficients [287]

iψt + ψxy + α(x, y, t)ψ + β(t)ψ z−1x zy|ψ|2 + ic(t)ψ � 0, (103)

where ψ � ψ(x, y, t), with the propagation variables x, y and
transverse variable t. α(x, y, t) is an external potential which is
the real valued function of space and time. β(t) and c(t) are the
coefficients of nonlinearity and gain/loss. The inverse d-bar
operator, z−1x � z−1z + z−1z , z � x + iy, zz � 1

2 (zx − izy),
zz � 1

2 (zx + izy), and (zzf ) � 1
π
∫
R2

f (x′,y′)dx′dy′
z−z′

. (Solution: See S128.)

8.6 A Two-Dimensional Nonlocal NLSE [288]

iψt � −ψxx − σψ∫
+∞

−∞
|ψ|2dy � 0, (104)

where ψ ≡ ψ(x, y, t) is a two-dimensional field envelope and
σ (> 0) is the nonlinearity coefficient. (Solution: See S129.)

8.7 A (2 + 1)-Dimensional Variable Coefficient
NLSE With Partial Nonlocality [289]

iψt + β(t)ψxx + χ(t)ψ∫
+∞

−∞
|ψ|2dy � 0, (105)

where ψ � ψ(t, x, y). β(t) and χ(t) are the coefficients of
diffraction and nonlinearity, respectively. (Solution: See S130.)

8.8 A (2 + 1)-Dimensional Variable
Coefficient Partially Nonlocal NLSE [290]

i
zψ

zz
+ β(z) z

2ψ

zx2
+ χ(z)ψ∫

+∞

−∞
|ψ|2dy + c(z)x2ψ � 0, (106)

where ψ � ψ(z, x, y) describing the optical field or wave function of
condensate. β(z) and c(z) are the coefficients of diffraction and
tapering effect/harmonic trapping potential, respectively. The
nonlinearity is localized in x-direction and nonlocalized in
y-direction with the coefficient function χ(z). (Solution: See S131.)

8.9 A (2 + 1)-Dimensional (2D) Nonlocal
NLSE Satisfying the Two-Dimensional
Parity-Time-Symmetric Potential
V(x, y) � V*(− x, − y) [291, 292]

iψt + ψxy + ψ r � 0, ry � [ψ(x, y, t)ψ(−x,−y, t)*]x, (107)

where ψ � ψ(x, y, t) and V(x, y, t) � ψ(x, y, t)ψ*(x, y, t).
(Solutions: See S132 & S133.)

8.10 A Two-Dimensional Nonlocal NLSE
[293]

iψt + ψxx + ψyy − 2ψxy + 2ψV � 0, V � ψ(x, y, t)ψ*(−x,−y, t),
(108)

where ψ � ψ(x, y, t). (Solution: See S134.)

8.11 The Integrable “Reverse Space” 2D
Nonlocal NLSE [294]

(izt + z2xy)ψ(x, y, t) − λ

2
ψ(x, y, t)(z−1z

+ z−1z )zy[ψ(x, y, t)ψ*(−x,−y, t)]
� 0, λ � ± 1. (109)

8.12 A Reverse Space-Time Nonlocal NLSE
[294]

(izt + z2xy)ψ(x, y, t) − λ

2
ψ(x, y, t)(z−1z

+ z−1z )zy[ψ(x, y, t)ψ*(−x, y,−t)]
� 0, λ � ± 1. (110)
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Here z ≡ x + iy and z−1z,z are operators inverse to
zz ≡ (1/2)(zx − izy) and zz ≡ (1/2)(zx + izy). (Solutions: See
S135 & S136.)

8.13 A Two-Dimensional Two-Coupled
Variable Coefficient NLSE [281]

iψ1z +
β(z)
2
(ψ1xx + ψ1yy) + R(z)∑2

k�1
|ψk|2ψ1 � ic(z)ψ1,

iψ2z +
β(z)
2
(ψ2xx + ψ2yy) + R(z)∑2

k�1
|ψk|2ψ2 � ic(z)ψ2,

(111)

where ψj � ψj(x, y, z), j � 1, 2. The real analytic spatial functions,
β(z), R(z), and c(z) represent the diffraction, nonlinearity, and
gain/loss parameter, respectively. (Solution: See S137.)

8.14 The Variable Coefficient NLSE
Describing the Inhomogeneous Nonlinear
Waveguide [295]

iψ1z +
β

2
(ψ1xx + ψ1yy) + χ(z)(r11|ψ1|2 + r12|ψ2|2)ψ1

+ 1
2
f (z)(x2 + y2)ψ1� ig(z)ψ1, iψ2z +

β

2
(ψ2xx + ψ2yy)

+χ(z)(r21|ψ1|2 + r22|ψ2|2)ψ2 +
1
2
f (z)(x2 + y2)ψ2� ig(z)ψ2,

(112)

where ψ1(x, y, z) and ψ2(x, y, z) are the two normalized
orthogonal components of electric fields. β, χ(z), g(z), and f(z)
denote the dispersion, nonlinearity, gain, and geometry of
tapered waveguide coefficients, respectively. r11 and r22 are
the self-phase modulation coefficients for ψ1(x, y, z), ψ2(x, y, z)
and r12 and r21 are the cross-phase modulation coefficients.
(Solution: See S138.)

8.15 The Variable Coefficient CNLSE [296]

iψ1z +
1
2
[β1(z)ψ1xx + β2(z)ψ1yy + β3(z)ψ1tt] + χ(z)(σ11|ψ1|2

+ σ12|ψ2|2)ψ1� ic(z)ψ1, iψ2z +
1
2
[β1(z)ψ2xx + β2(z)ψ2yy

+β3(z)ψ2tt] + χ(z)(σ21|ψ1|2 + σ22|ψ2|2)ψ2 � ic(z)ψ2,
(113)

where ψ1(z, x, y, t) and ψ2(z, x, y, t) are the two normalized
complex mode fields. β1(z) and β2(z) are the coefficients of
diffractions along the x and y transverse coordinates. β3(z) is
the coefficient of dispersion. χ(z) is the SPM, accounting for the
self-focusing (χ > 0) or the self-defocusing (χ < 0) nonlinearity.
The parameters σ11, σ12, σ21, and σ22 determine the ratio of the
coupling strengths of the cross-phase modulation to the SPM. For
linearly polarized eigenmodes, σ11 � σ22 � 1, σ12 � σ21 � 2/3, in

case of circularly polarized eigen modes, σ11 � σ22 � 1, σ12 � σ21 �
2 and for the elliptically polarized eigen modes, σ11 � σ22 � 1,
2< σ12 � σ21 < 2/3. The parameter c(z) represents the loss when
c(z)< 0 or gain when c(z)> 0. (Solution: See S139.)

9 PEREGRINE SOLITONS IN SATURABLE
NLSES

This section presents the Peregrine soliton solutions reported in the
literature under the family of the saturable NLSEs. In nonlinear
dynamics, the ultrashort optical pulse propagation through the
dielectric waveguides like optical fibers is governed by the NLSEs.
The key parameter that plays a decisive role in the nonlinear effects
of such optical fibers is an intensity dependent variation of the
refractive index, also known as the optical Kerr effect. The Kerr
index induced refractive index results in the self-phase modulation
which ultimately broadens the optical spectrum.Moreover, it is well
known that the Kerr nonlinearity determines the nonlinear
response of the optical medium up to a certain level of input
power, but when input power level exceeds a certain value, the role
of higher-order nonlinear susceptibility is inevitable. This eventually
results in the saturation of the nonlinear response of the system. In
general, all nonlinearities saturation is owing to the upper limit for
change in the refractive index of thematerial mediumand thereafter
system does not display any change in the nonlinear index even at
very high input power levels [109]. Also, it is demonstrated that the
saturation in cubic nonlinearity is equivalent to the occurrence of
the third-, fifth-, and seventh-order nonlinear susceptibility [297].
Such nonlinear index saturation has been originally observed in
dual core nonlinear directional couplers by Stegeman et al. [298],
followed by plethora of studies to understand the detrimental effects
of nonlinear saturation in the coupling behaviors of directions
couplers [299–302]. The propagation of solitons through the
materials with nonlinear saturation has also been expressed
through numerical and analytical methods. The dynamics of
such system provide the evidence of the existence of bistable
solitons of the same duration with different peak powers [303].
Moreover, the dynamics of ultrashort pulse propagation through
the fibers with saturable nonlinearity in the normal dispersion
regime has also been analyzed to determine the minimum duration
of the output pulse of fiber-grating compressor [304]. In addition,
the nonlinear saturation effects play a significant role in theMI gain
spectrum of the ultrashort pulse propagation through the
semiconductor doped fibers [305–307]. This section lists out the
saturable NLSEs in which Peregrine soliton solutions were reported.

9.1 A NLSE Describes Quasi-1D
Bose-Einstein Condensates [308]

iψt � −1
2
ψxx + V(x)ψ + 1 − (3/2)|ψ|2�������

1 − |ψ|2
√ ψ, (114)

where V(x) � 1
2Ω

2x2 is an external potential of harmonic form. Ω
is the normalized trap strength. (Solution: See S140.)
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10 SUMMARY AND OUTLOOK

The historical review of the discovery of the Peregrine soliton
goes side by side with the mathematical steps of its derivation. We
have adopted here the most common method of derivation,
namely, the use of Lax pair and Darboux transformation.
Employing the continuous wave as a seed solution, we have
analytically derived the general breather solution of the NLSE
through the Darboux transformation and Lax pair technique. We
have shown that this class of solution turns out, under certain
limits, into its five members, the Akhmediev breather, the
Kuznetsov-Ma breather, the Peregrine soliton, the single bright
soliton, and the continuous wave solution. When the temporal
period of the Kuznetsov-Ma breather approaches infinity, it falls
into the Peregrine soliton. A similar result is obtained when the
spacial period of the Akhmediev breather tends to infinity. We
have then collected all Peregrine soliton solutions of the NLSE
and its various variations that are found in the literature.
Particularly, we have recorded the Peregrine soliton solutions
in higher-order and inhomogeneous NLSEs, in NLSE with
external potentials, in coupled NLSEs, in discrete NLSEs, in
nonlocal NLSEs, in higher dimensional and mixed NLSEs, and
finally in saturable NLSEs. The Peregrine waves in saturable
nonlinear systems are not sufficiently explored. Concerning
studies in such systems will yield more information about
modulation instability and new frequency generations, that
will play a crucial role in nonlinear optical fields.

While studying the various nonlinear dynamics modeled by
the NLSEs is a developing and attractive area of research, this
work will be a useful guideline to keep track of new NLS
frameworks that admit Peregrine soliton solutions, youthful
stability investigations, up-to-date formation mechanisms,
and fresh experimental observations. One future extension
of this work is a deep exploration of the existence of Peregrine
solitons in higher coupled NLSEs and higher dimensional
systems. The accompanying features of these systems could
support the robustness of the Peregrine soliton against
different perturbations and initial conditions and thus
generate more stable rogue wave structures. Additionally, it
may be interesting to investigate numerically complex
nonintegrable systems in order to achieve more stable rogue

waves. Constructing such models experimentally allows for the
monitorization of randomly many possible nonlinear
dynamics. This opens the door to a better understanding of
the preactions accomplished by extreme events such as
rogue waves.

As the multisoliton interaction is one of the formation
mechanisms of the rogue waves and it is recently reported in
the bioenergy transport mechanism in the helical protein [32],
this evidence may also be extended to different biomechanisms.
Moreover, one of the not fully explored aspects, yet very
important, is the knowledge of how a variety of initial
conditions are influencing the rogue wave formation. In
nonlinear optics, the knowledge of initial conditions plays an
essential role in generating, on purpose, rogue waves in order to
produce high energy light pulses. Last but not least, with regard to
the dispersion and nonlinearity management, it may be
interesting to consider interactions of multi-Peregrine solitons
modeling by higher dimensional NLSEs. Recently, photonic
rogue waves are analytically reported in lattice systems [78].
This will be useful in understanding wave interactions in
diverse crystal structures.
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