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In theoretical chemistry, the numerical parameters that are used to characterize the
molecular topology of graphs are called topological indices. Several physical and
chemical properties like boiling point, entropy, heat formation, and vaporization
enthalpy of chemical compounds can be determined through these topological
indices. Graph theory has a considerable use in evaluating the relation of various
topological indices of some derived graphs. In this article, we will compute the
topological indices like Randić, first Zagreb, harmonic, augmented Zagreb, atom-bond
connectivity, and geometric-arithmetic indices for chain hex-derived network of type
3 CHDN3(m, n) for different cases of m and n. We will also compute the numerical
computation and graphical view to justify our results.
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INTRODUCTION AND PRELIMINARY RESULTS

A branch of numerical science called graph theory is the one in which we use tools of graph
parameters to reveal the compound phenomenon precisely. Graph theory, for instance, when used in
the study of molecular structures, characterizes a field among various disciplines of science known as
molecular topology or chemical graph theory.

Chemical graph theory has provided a considerable part of study to chemist through which they
can execute graph theory to mathematical demonstrating of chemical marvel. We are usually
interested in estimating the structural characters to elaborate quantitative structure–activity
relationships using techniques taken from graph theory.

Topological description of chemical structures with required properties can be used to categorize
the molecules and to model unknown structures. Molecules and molecular compounds are
frequently demonstrated by molecular graph. In graph theory, a molecular graph is the
illustration of structural formula of chemical compounds. The vertices are expressed by the
atoms of molecule while the edges suggest the covalent bonds between the atoms.

Quantitative structure–activity (QSAR) and structure–property (QSPR) relationships that are
used to analyze the organic activities and properties of biological compounds can be studied by the
help of a new subject known as cheminformatics, which is the composition of mathematics,
information science, and chemistry.

At present, the numerical programming of biological structure with topological descriptors is
increasing in consequence in invigorating science, bioinformatics, and pharmaceutics.
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In QSAR/QSPR study, physicochemical properties of the
topological descriptors like Wiener index, Randić index, sieged
index, first and second Zagreb index, augmented Zagreb index,
harmonic index, and geometric–arithmetic index are useful to
classify the bioactivity of the chemical compounds.

A graph can be characterized by a polynomial, a numeric
number, and a sequence of numbers or a matrix. A numeric
quantity interrelated with a graph that remains invariant under
the graph automorphism and differentiate the topology of graph
is called molecular descriptor. A graph theoretical characteristic
that is sustained by an isomorphism is called topological
descriptor.

At present, in the field of computational chemistry, topological
indices have a rising interest, which is actually associated to their
use in nonempirical quantitative structure–property relationship
and quantitative structure–activity relationship.

Topological descriptor, Top (G), may also be defined with the
property of isomorphism, that is, for every graphH isomorphic to
G, Top (G) � Top (H). The idea of topological indices was first
introduced byWeiner [35] during the laboratory work on boiling
point of paraffin and named this result as path number, which
was later named as Weiner index.

This article takes into account the topological indices of
hexagonal networks derived from a hexagonal graph, which
contain molecular graphs of unbranched benzene
hydrocarbons. Hexagonal structure graphs consist of hexagons
that are fused together. Theoretical chemists pay great attention
to this class of chemical compounds. Topological index theory
has been intensively developed over the past four decades for the
individual molecular graphs. Benzene hydrocarbons are not only
the major chemical industry raw materials but also harmful
pollutants [15, 16, 28].

Chen et al. [9] derived a hexagonal mesh. Hexagonal mesh
made by a set of triangles is shown in Figure 1. There exists
no hexagonal mesh with one dimension. A two dimensional
hexagonal mesh HX(2) can be generated from six triangles.
A three dimensional hexagonal mesh HX(3) can be obtained
by adding a layer of triangles around the each wall of HX(2).

In the similar way, HX(n) can be produced by adding n layers
around all the sides of every proceeding hexagonal mesh.

Drawing algorithm of HDN3 networks.

Step-1: First, we draw a hexagonal network of dimension n.
Step-2: All the K3 subgraphs are converted into planar
octahedron network POH and the graph obtained is known
as HDN3 [29] [see Figures 1, 2)] network.
Step-3: An mth CHDN3(m, n) can be easily formed from the
HDN3 network (see Figures 2, 3).

In CHDN3(m, n), m represents the number of rows and n are
the number of triangles in each row.

In this article, G is considered a network with a V(G) vertex
set and an edge set of E(G), and dr is the degree of vertex
r ∈ V(G).

The Randić index [27] is denoted by R−1
2
(G) and makes us

aware of Milan Randić and is represented as follows:

R−1
2
(G) � ∑

rs∈E(G)

1����
drds

√ . (1)

The general Randić index is the sum of (drds)α over all edges
e � rs ∈ E(G), represented as

Rα(G) � ∑
rs∈E(G)

(drds)α for α � 1,
1
2
,−1,−1

2
. (2)

Trinajstić [31] makes us aware of TI′s, which are the first and
second Zagreb indices, denoted by M1(G) and formalized as
follows:

M1(G) � ∑
rs∈E(G)

(dr + ds). (3)

Furtula et al. [13] introduced the augmented Zagreb index and
described it as

FIGURE 1 | Hexagonal meshes: (1) HX (2), (2) HX (3), and (3), all facing HX (2).

Frontiers in Physics | www.frontiersin.org November 2020 | Volume 8 | Article 5932752

Huo et al. Chain Hex-Derived Networks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


AZI(G) � ∑
rs∈E(G)

( drds
dr + ds − 2

)3

. (4)

Zhong [37] introduced the harmonic index and described it as

H(G) � ∑
rs∈E(G)

( 2
dr + ds

). (5)

The index atom–bond connectivity (ABC) is one of the well-
known degree-based topological indices, given by Estrada et al.
[12] and defined as

ABC(G) � ∑
rs∈E(G)

���������
dr + ds − 2

drds

√
. (6)

Vukićević and Furtula [33] invented the famous
geometric–arithmetic index and represented it as

GA(G) � ∑
rs∈E(G)

2
����
drds

√
(dr + ds). (7)

Cases for mth chain hex-derived network of third type.
CHDN3(m, n)

There are three cases for CHDN3(m, n).

Case-1: For m � n, (m, n)≥ 1.
Case-2: Form< n,m is odd and n ∈ N. Form> n,m is odd and
n ∈ N. For m< n, m and n both are even. For m> n, m and n
both are even.
Case-3: Form< n,m is even and n is odd. Form> n,m is even
and n is odd.

MAIN RESULTS

Simonraj et al. [29] discovered hex-derived networks and found
the metric dimension of HDN3. We discuss the newly derived
third type of hex-derived networks in this article and calculate the
exact results for topological indexes based on degrees. These
topological indices and their variants are currently subjected to
extensive research activity, see [1–8, 14, 18–25, 30, 32, 34, 36]. For
Basic notations and definitions, see [10, 17, 26, 31].

Results for the First Case mth Chain
Hex-Derived Network of Third Type
CHDN3 (m, n)
In this section, for the very first time, we discuss CHDN3(m, n),
which is derived from hex-derived network and compute the
exact results for Randic, Zagreb, harmonic, augmented Zagreb,
atom–bond connectivity, and geometric–arithmetic indices for
case 1.

Theorem 2.1.1. Consider the mth chain hex-derived network
of type 3 CHDN3(m, n), the general Randić index is equal to

FIGURE 2 | Chain hex-derived networks CHDN3(m, n) for different conditions for m and n like even and odd.
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Rα(G) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16(2 − 9m + 27mn − 9n), α � 1;

4(6 − 4
�
2

√ − 3m + (9 + 6
�
2

√ )mn − 3n), α � 1
2
;

1
8
(6 − 4

�
2

√ + 3m + (9 + 6
�
2

√ )mn + 3n), α � −1
2
;

1
64

(2 + 9m + 27mn + 9n), α � −1.

Proof. Let G � CHDN3(m, n). Table 1 shows such an edge
partition of G for m � n. Using Equation (2), we have

Rα(G) � ∑
rs∈E(G)

(drds)α.

Using edge partitions in Table 1, we get the following.
For α � 1, Eq. 2 becomes

R1(G) � (16)1(3mn + 3m + 3n + 2) + (32)1(6mn − 4)
+ (64)1(3mn − 3m − 3n + 2).

By making some calculations, we get

0R1(G) � 16(2 − 9m + 27mn − 9n).

For α � 1
2, Eq. 2 becomes

R1
2
(G) � (16)12(3mn + 3m + 3n + 2) + (32)12(6mn − 4)

+ (64)12(3mn − 3m − 3n + 2).

By making some calculations, we get

0R1
2
(G) � 4(6 − 4

�
2

√ − 3m + (9 + 6
�
2

√ )mn − 3n).
For α � −1

2, Eq. 2 becomes

R−12(G) � (16)− 1
2(3mn + 3m + 3n + 2) + (32)− 1

2(6mn − 4)
+ (64)− 1

2(3mn − 3m − 3n + 2).

By making some calculations, we get

0R−12(G) �
1
8
(6 − 4

�
2

√ + 3m + (9 + 6
�
2

√ )mn + 3n).
For α � −1, Eq. 2 becomes

R−1(G) � (16)− 1(3mn + 3m + 3n + 2) + (32)− 1(6mn − 4)
+ (64)− 1(3mn − 3m − 3n + 2).

FIGURE 3 | Chain hex-derived network CHDN3(m, n).

TABLE 1 | Degree-Based Edge partition for m � n

(dr ,ds) where rs ∈ E(G) Number of Edges

(4, 4) (3mn + 3m + 3n + 2)
(4, 8) (6mn − 4)
(8, 8) (3mn − 3m − 3n + 2)
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By making some calculations, we get

0R−1(G) � 1
64

(2 + 9m + 27mn + 9n).

Theorem 2.1.2. Consider the mth chain hex-derived
network of type 3 CHDN3(m, n), the first Zagreb index is
equal to

M1(G) � −24(m − 6mn + n).

Proof. Let G � CHDN3(m, n). In Table 1, there is an edge
partition of G for m � n. Using Eq. 3, we have

M1(G) � ∑
rs∈E(G)

(dr + ds).

Using edge partitions in Table 1, we get

M1(G) � (4 + 4)(3mn + 3m + 3n + 2) + (4 + 8)(6mn − 4)
+ (8 + 8)(3mn − 3m − 3n + 2),

� (8)(3mn + 3m + 3n + 2) + (12)(6mn − 4)
+ (16)(3mn − 3m − 3n + 2),

By making some calculations, we get

0M1(G) � −24(m − 6mn + n).

Theorem 2.1.3. Consider the mth chain hex-derived network
of type 3 CHDN3(m, n), the augmented Zagreb index and
harmonic index are equal to

AZI(G) � 512
1157625

(221398 − 519375m + 1221153mn

− 519375n).
H(G) � 1

24
(2 + 9m + 51mn + 9n).

Proof. Let G � CHDN3(m, n). Using Eq. 4, we have

AZI(G) � ∑
rs∈E(G)

( drds
dr + ds − 2

)3

.

From Table 1, using the edge partition, the outcome can be
obtained as

AZI(G) � ( 4 × 4
4 + 4 − 2

)3

(3mn + 3m + 3n + 2)

+ ( 4 × 8
4 + 8 − 2

)3

(6mn − 4)

+ ( 8 × 8
8 + 8 − 2

)3

(3mn − 3m − 3n + 2),

� (8
3
)3

(3mn + 3m + 3n + 2) + (16
5
)3

(6mn − 4)

+ (32
7
)3

(3mn − 3m − 3n + 2).

By making some calculations, we get

0AZI(G) � 512
1157625

(221398 − 519375m + 1221153mn

− 519375n).

Using Eq. 5, we have

H(G) � ∑
rs∈E(G)

( 2
dr + ds

).
From Table 1, using the edge partition, the outcome can be

obtained as

H(G) � ( 2
4 + 4

)(3mn + 3m + 3n + 2) + ( 2
4 + 8

)(6mn − 4)

+ ( 2
8 + 8

)(3mn − 3m − 3n + 2),

� (1
8
)(3mn + 3m + 3n + 2) + (1

6
)(6mn − 4)

+ (1
8
)(3mn − 3m − 3n + 2).

By making some calculations, we get

0H(G) � 1
24

(2 + 9m + 51mn + 9n).

Theorem 2.1.4. Let G be themth chain hex-derived network of
third type CHDN3(m, n), then atom–bond connectivity index
and geometric–arithematic index are equal to

ABC(G) � 1
8
(4 �

5
√ (3mn − 2) + ��

14
√ (2 − 3m + 3mn − 3n)

+ 2
�
6

√ (2 + 3m + 3mn + 3n)).
GA(G) � 4 + 6mn + 4

�
2

√
3

(3mn − 2).

Proof. Let G � CHDN3(m, n). Using Eq. 6, we have

ABC(G) � ∑
rs∈E(G)

���������
dr + ds − 2

drds

√
.

From Table 1, using the edge partition, the outcome can be
obtained as

ABC(G) �
�������
4 + 4 − 2
4 × 4

√
(3mn + 3m + 3n + 2)

+
�������
4 + 8 − 2
4 × 8

√
(6mn − 4)

+
�������
8 + 8 − 2
8 × 8

√
(3mn − 3m − 3n + 2),
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�
�
3
8

√
(3mn + 3m + 3n + 2) +

��
14
64

√
(6mn − 4)

+
��
7
32

√
(3mn − 3m − 3n + 2),

By making some calculations, we get

0ABC(G) � 1
8
(4 �

5
√ (3mn − 2) + ��

14
√ (2 − 3m + 3mn − 3n)

+ 2
�
6

√ (2 + 3m + 3mn + 3n)).
Using Eq. 7,

GA(G) � ∑
rs∈E(G)

2
����
drds

√
dr + ds

.

From Table 1, using the edge partition, we get the outcome as,

GA(G) � 2
����
4 × 4

√
(4 + 4) (3mn + 3m + 3n + 2) + 2

����
4 × 8

√
(4 + 8) (6mn − 4)

+ 2
����
8 × 8

√
(8 + 8) ,

(3mn − 3m − 3n + 2)
� (1)(3mn + 3m + 3n + 2) + 2

�
2

√
3

(6mn − 4)
+ (1)(3mn − 3m − 3n + 2).

By making some calculations, we get

0GA(G) � 4 + 6mn + 4
�
2

√
3

(3mn − 2).

Results for the Second Case of Chain
Hex-Derived Networks of Third Type
CHDN3 (m, n)
In this section, for the very first time, we discuss CHDN3(m, n)
derived from of hex-derived network and compute the exact
results forRandic, Zagreb, harmonic, augmented Zagreb,
atom–bond connectivity, and geometric–arithmetic indices for
case 2.

Theorem 2.2.1. Consider the mth chain hex-derived network
of type 3 CHDN3(m, n), the general Randic index for second case
is equal to

Rα(G) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16(2 − 12m + 27mn − 6n), α � 1;

4(6 − 4
�
2

√ − 4m + (9 + 6
�
2

√ )mn − 2n), α � 1
2
;

1
8
(6 − 4

�
2

√ + 4m + (9 + 6
�
2

√ )mn + 2n, ) α � −1
2
;

1
64

(2 + 12m + 27mn + 6n), α � −1.

Proof. Let G � CHDN3(m, n). Table 2 shows such an edge
partition of G for second case.

Using Eq. 2, we get

Rα(G) � ∑
rs∈E(G)

(drds)α.

Using edge partitions in Table 2, we get, for α � 1,

R1(G) � (16)1(3mn + 4m + 2n + 2) + (32)1(6mn − 4)
+ (64)1(3mn − 4m − 2n + 2),

By making some calculations, we get

0R1(G) � 16(2 − 12m + 27mn − 6n).
For α � 1

2,

R1
2
(G) � (16)12(3mn + 4m + 2n + 2) + (32)12(6mn − 4)

+ (64)12(3mn − 4m − 2n + 2),

By making some calculations, we get

0R1
2
(G) � 4(6 − 4

�
2

√ − 4m + (9 + 6
�
2

√ )mn − 2n).
For α � −1

2,

R−12(G) � (16)− 1
2(3mn + 4m + 2n + 2) + (32)− 1

2(6mn − 4)
+ (64)− 1

2(3mn − 4m − 2n + 2).

By making some calculations, we get

0R−1
2
(G) � 1

8
(6 − 4

�
2

√ + 4m + (9 + 6
�
2

√ )mn + 2n).
For α � −1,
R−1(G) � (16)− 1(3mn + 4m + 2n + 2) + (32)− 1(6mn − 4)

+ (64)− 1(3mn − 4m − 2n + 2).

By making some calculations, we get

0R−1(G) � 1
64

(2 + 12m + 27mn + 6n).

Theorem 2.2.2. Consider the mth chain hex-derived
network of type 3 CHDN3(m, n), the first Zagreb index is
equal to

M1(G) � −16(2m − 9mn + n).

TABLE 2 | Degree-Based Edge partition for Case 2.

(dr ,ds) where rs ∈ E(G) Number of Edges

(4, 4) (3mn + 4m + 2n + 2)
(4, 8) (6mn − 4)
(8, 8) (3mn − 4m − 2n + 2)
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Proof. Let G � CHDN3(m, n). Table 2 shows such an edge
partition of G for second case.

Using Eq. 3,

M1(G) � ∑
rs∈E(G)

(dr + ds).

Using edge partitions in Table 2, we get

M1(G) � (4 + 4)(3mn + 4m + 2n + 2) + (4 + 8)(6mn − 4)
+ (8 + 8)(3mn − 4m − 2n + 2),

� (8)(3mn + 4m + 2n + 2) + (12)(6mn − 4)
+ (16)(3mn − 4m − 2n + 2).

By making some calculations, we get

0M1(G) � −16(2m − 9mn + n).

Theorem 2.2.3. Let G be the CHDN3(m, n) mth chain hex-
derived network of third type, the augmented Zagreb index and
harmonic index are equal to

AZI(G) � 512
1157625

(221398 − 692500m + 1221153mn

− 346250n).
H(G) � 1

24
(2 + 12m + 51mn + 6n).

Proof. Consider G be the CHDN3(m, n) mth chain hex-
derived network of third type. Using Eq. 4, we get

AZI(G) � ∑
rs∈E(G)

( drds
dr + ds − 2

)3

.

From Table 1, using the edge partition, the outcome can be
obtained as

AZI(G) � ( 4 × 4
4 + 4 − 2

)3

(3mn + 4m + 2n + 2)

+ ( 4 × 8
4 + 8 − 2

)3

(6mn − 4)

+ ( 8 × 8
8 + 8 − 2

)3

(3mn − 4m − 2n + 2),

� ((8
3
)3)(3mn + 4m + 2n + 2)

+ (16
5
)3

(6mn − 4) + (32
7
)3

(3mn − 4m − 2n + 2).

By making some calculations, we get

0AZI(G) � 512
1157625

(221398 − 692500m + 1221153mn

− 346250n).
By using Eq. 5, we have

H(G) � ∑
rs∈E(G)

( 2
dr + ds

).
From Table 1, using the edge partition, the outcome can be

obtained as

H(G) � ( 2
4 + 4

)(3mn + 4m + 2n + 2) + ( 2
4 + 8

)(6mn − 4)

+ ( 2
8 + 8

)(3mn − 4m − 2n + 2),

� (1
8
)(3mn + 4m + 2n + 2) + (1

6
)(6mn − 4)

+ (1
8
)(3mn − 4m − 2n + 2).

By making some calculations, we get

0H(G) � 1
24

(2 + 12m + 51mn + 6n).

Theorem 2.2.4. Let G be the CHDN3(m, n) mth chain hex-
derived network of third type, then atom–bond connectivity and
geometric–arithematic index are equal to

ABC(G) � 1
8
(4 �

5
√ (3mn − 2) + ��

14
√ (2 − 4m + 3mn − 2n)

+ 2
�
6

√ (2 + 4m + 3mn + 2n)).
GA(G) � 4 + 6mn + 4

�
2

√
3

(3mn − 2).

Proof. Consider G � CHDN3(m, n). By using Eq. 6, we have

ABC(G) � ∑
rs∈E(G)

���������
dr + ds − 2

drds

√
.

From Table 2, by using the edge partition, we get the outcome
as,

ABC(G) �
�������
4 + 4 − 2
4 × 4

√
(3mn + 4m + 2n + 2)

+
�������
4 + 8 − 2
4 × 8

√
(6mn − 4)

+
�������
8 + 8 − 2
8 × 8

√
(3mn − 4m − 2n + 2),

�
�
3
8

√
(3mn + 4m + 2n + 2) +

��
14
64

√
(6mn − 4)

+
��
7
32

√
(3mn − 4m − 2n + 2).

By making some calculations, we get

0ABC(G) � 1
8
(4 �

5
√ (3mn − 2) + ��

14
√ (2 − 4m + 3mn − 2n)

+ 2
�
6

√ (2 + 4m + 3mn + 2n)).
Using Eq. 7, we have
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GA(G) � ∑
rs∈E(G)

2
����
drds

√
(dr + ds).

From Table 2, using the edge partition, we get the outcome as,

GA(G) � 2
����
4 × 4

√
(4 + 4) (3mn + 4m + 2n + 2) + 2

����
4 × 8

√
(4 + 8) (6mn − 4)

+ 2
����
8 × 8

√
(8 + 8) (3mn − 4m − 2n + 2),

� (1)(3mn + 4m + 2n + 2) + 2
�
2

√
3

(6mn − 4)
+ (1)(3mn − 4m − 2n + 2).

By making some calculations, we get

0GA(G) � 4 + 6mn + 4
�
2

√
3

(3mn − 2).

Results for the Third Case of CHDN3(m,n)
Chain Hex Derived Networks of Third Type
In this section, for the very first time, we discuss
CHDN3(m, n)–derived hex-derived network and compute the
exact results forRandic, Zagreb, harmonic, augmented Zagreb,
atom–bond connectivity, and geometric–arithmetic indices for case 3.

Theorem 2.3.1. Consider the mth chain hex-derived network
of type 3 CHDN3(m, n), the general Rand�ic index for third case is
equal to

Rα(G)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−16(2+12m−27mn+6n), α�1;
4(−4m+(9+6 �

2
√ )mn−2(−5+4 �

2
√ +n)), α�1

2
;

1
8
(4m+(9+6 �

2
√ )mn+2(7−4 �

2
√ +n)), α�−1

2
;

1
64

(10+12m+27mn+6n), α�−1.

Proof. Let G � CHDN3(m, n). Using Eq. 2, we get

Rα(G) � ∑
rs∈E(G)

(drds)α.

Using edge partitions in Table 3, we get, for α � 1

R1(G) � (16)1(3mn + 4m + 2n + 6) + (32)1(6mn − 8)
+ (64)1(3mn − 4m − 2n + 2).

By making some calculations, we get

0R1(G) � −16(2 + 12m + 27mn + 6n).
For α � 1

2,

R1
2
(G) � (16)12(3mn + 4m + 2n + 6) + (32)12(6mn − 8)

+ (64)12(3mn − 4m − 2n + 2).

By making some calculations, we get

0R1
2
(G) � 4( − 4m + (9 + 6

�
2

√ )mn − 2( − 5 + 4
�
2

√ + n)).
For α � −1

2,

R−12(G) � (16)− 1
2(3mn + 4m + 2n + 6) + (32)− 1

2(6mn − 8)
+ (64)− 1

2(3mn − 4m − 2n + 2).

By making some calculations, we get

0R−12(G) �
1
8
(4m + (9 + 6

�
2

√ )mn + 2(7 − 4
�
2

√ + n)).
For α � −1,
R−1(G) � (16)− 1(3mn + 4m + 2n + 6) + (32)− 1(6mn − 8)

+ (64)− 1(3mn − 4m − 2n + 2).

By making some calculations, we get

0R−1(G) � 1
64

(10 + 12m + 27mn + 6n).

Theorem 2.3.2. Consider the mth chain hex-derived
network of type 3 CHDN3(m, n), the first Zagreb index is
equal to

M1(G) � −16(1 + 2m − 9mn + n).

Proof. Let G � CHDN3(m, n). Table 3 shows such an edge
partition of G for third case. Using Eq. 3, we get

M1(G) � ∑
rs∈E(G)

(dr + ds).

Using edge partitions in Table 3, we get

M1(G) � (4 + 4)(3mn + 4m + 2n + 6) + (4 + 8)(6mn − 8)
+ (8 + 8)(3mn − 4m − 2n + 2),

� (8)(3mn + 4m + 2n + 6) + (12)(6mn − 8)
+ (16)(3mn − 4m − 2n + 2).

By making some calculations, we get

0M1(G) � −16(1 + 2m − 9mn + n).

TABLE 3 | Degree-Based Edge partition for Case 3.

(dr ,ds) where rs ∈ E(G) Number of Edges

(4, 4) (3mn + 4m + 2n + 6)
(4, 8) (6mn − 8)
(8, 8) (3mn − 4m − 2n + 2)
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Theorem 2.3.3. Consider the mth chain hex-derived
network of type 3 CHDN3(m, n), the augmented Zagreb
index and Harmonic Zagreb index are equal to

AZI(G) � 512
1157625

(96546 − 692500m + 1221153mn

− 346250n).
H(G) � 1

24
(10 + 12m + 51mn + 6n).

Proof. Let G � CHDN3(m, n). Using Eq. 4,

AZI(G) � ∑
rs∈E(G)

( drds
dr + ds − 2

)3

.

From Table 3, using the edge partition, the outcome can be
obtained as

AZI(G) � ( 4 × 4
4 + 4 − 2

)3

(3mn + 4m + 2n + 6)

+ ( 4 × 8
4 + 8 − 2

)3

(6mn − 8)

+( 8 × 8
8 + 8 − 2

)3

(3mn − 4m − 2n + 2),

� ((8
3
)3)(3mn + 4m + 2n + 6) + (16

5
)3

(6mn − 8)

+ (32
7
)3

(3mn − 4m − 2n + 2).

By making some calculations, we get

0AZI(G) � 512
1157625

(96546 − 692500m + 1221153mn

− 346250n).
Using Eq. 5,

H(G) � ∑
rs∈E(G)

( 2
dr + ds

).
From Table 3, using the edge partition, the outcome can be

obtained as

H(G) � � ( 2
4 + 4

)(3mn + 4m + 2n + 2) + ( 2
4 + 8

)(6mn − 8)

+ ( 2
8 + 8

)(3mn − 4m − 2n + 2),

� (1
8
)(3mn + 4m + 2n + 6) + (1

6
)(6mn − 8)

+ (1
8
)(3mn − 4m − 2n + 2).

By making some calculations, we get

0H(G) � 1
24

(10 + 12m + 51mn + 6n).

Theorem 2.3.4. Let G be the CHDN3(m, n) mth chain hex-
derived network of third type, then atom–bond connectivity
index is equal to

ABC(G) � 1
8
(4 �

5
√ (3mn − 4) + ��

14
√ (2 − 4m + 3mn − 2n)

+ 2
�
6

√ (6 + 4m + 3mn + 2n)).
GA(G) � 8 + 6mn + 4

�
2

√
3

(3mn − 4).

Proof. Let G � CHDN3(m, n). Using Eq. 6, we get

ABC(G) � ∑
rs∈E(G)

���������
dr + ds − 2

drds

√
.

From Table 3, by using the edge partition, the outcome can be
obtained as

ABC(G) �
�������
4 + 4 − 2
4 × 4

√
(3mn + 4m + 2n + 6)

+
�������
4 + 8 − 2
4 × 8

√
(6mn − 8)

+
�������
8 + 8 − 2
8 × 8

√
(3mn − 4m − 2n + 2),

�
�
3
8

√
(3mn + 4m + 2n + 6) +

��
14
64

√
(6mn − 8)

+
��
7
32

√
(3mn − 4m − 2n + 2).

By making some calculations, we get

0ABC(G) � 1
8
(4 �

5
√ (3mn − 4) + ��

14
√ (2 − 4m + 3mn − 2n)

+2 �
6

√ (6 + 4m + 3mn + 2n)).
Using Eq. 7, we have

GA(G) � ∑
rs∈E(G)

2
����
drds

√
dr + ds

.

From Table 3, using the edge partition, the outcome can be
obtained as

GA(G) � 2
����
4 × 4

√
(4 + 4) (3mn + 4m + 2n + 6) + 2

����
4 × 8

√
(4 + 8) (6mn − 8)

+ 2
����
8 × 8

√
(8 + 8) (3mn − 4m − 2n + 2),
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� (1)(3mn + 4m + 2n + 6) + 2
�
2

√
3

(6mn − 8)
+ (1)(3mn − 4m − 2n + 2).

By making some calculations, we get

0GA(G) � 8 + 6mn + 4
�
2

√
3

(3mn − 4).

• For the comparison of First Zagreb, harmonic, atom–bond
connectivity, and geometric–arithmetic indices of
CHDN3(m, n) for m � n, we computed the indices for
different values of m and n. By increasing the values of
m and n, we can clearly check from the following Table 4,
the order of indices is also increasing, and their graphical
structure is shown in Figure 4.

• For the comparison of first Zagreb, harmonic, atom–bond
connectivity, and geometric–arithmetic indices of

CHDN3(m, n) for m< n, where m is odd and n is
natural number. By increasing the values of m and n,
we can clearly check from the following Table 5, the
order of indices is also increasing, and their graphical
structure is shown in Figure 5.

• For the comparison of first Zagreb, harmonic, atom–bond
connectivity, and geometric–arithmetic indices of
CHDN3(m, n) for m< n, where m and n both are even. By
increasing the values ofm and n, we can clearly check from the
following Table 6, the order of indices is also increasing, and
their graphical structure is shown in Figure 6.

• For the comparison of first Zagreb, harmonic, atom–bond
connectivity, and geometric–arithmetic indices of
CHDN3(m, n) for m< n, where m is even and n is odd. By
increasing the values ofm and n, we can clearly check from the
following Table 7, the order of indices is also increasing, and
their graphical structure is shown in Figure 7.

FIGURE 4 | Graphical representation of CHDN3(m, n) for different
values of m � n.

TABLE 5 | Numerical computation of CHDN3(m, n) network form< n, wherem is
odd and n is natural number.

M1 H ABC GA

(3.4) 1,568 28.08 84.75 140.11
(3.5) 1984 34.70 105.76 175.08
(3.6) 2,400 41.33 126.77 210.05
(3.7) 2,816 47.95 147.77 245.02
(3.8) 3,232 54.58 168.78 279.99
(3.9) 3,648 61.20 189.79 314.96
(3.10) 4,064 67.83 210.80 349.93
(3.11) 4,480 74.45 231.81 384.90
(3.12) 4,896 81.08 252.81 419.87
(3.13) 5,312 87.70 273.82 454.84

FIGURE 5 | Graphical representation of CHDN3(m, n) for different
values of m< n, where m is odd and n is natural number.

TABLE 4 | Numerical computation of CHDN3(m, n) for m � n.

M1 H ABC GA

(2.2) 480 10.08 28.04 46.86
(3.3) 1,152 21.46 61.88 105.14
(4.4) 2,112 37.08 108.91 186.74
(5.5) 3,360 56.96 169.12 291.65
(6.6) 4,896 81.08 242.53 419.88
(7.7) 6,720 109.46 329.12 571.41
(8.8) 8,832 142.08 428.91 746.27
(9.9) 11,232 178.96 541.88 944.43
(10.10) 13,920 220.08 668.04 1,165.93
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CONCLUSION

In this article, we have calculated the exact solutions for
degree-based indices for mth-hex-derived networks of third
type. Hex-derived network has a variety of useful
applications in pharmacy, electronics, and networking.
We obtained the degree-based indices such as Randić, first
Zagreb, augmented Zagreb, harmonic, atom–bond
connectivity index, and geometric–arithmetic index for
hex derived networks. For this network, we have also
given the tabular and graphical comparison between
indices. We came to know that by increasing the values of
m and n, there is also increase in the indices, which shows the
correctness of our results. These results may be helpful for
people working in computer science and chemistry who
encounter hex-derived networks.
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TABLE 6 | Numerical computation of CHDN3(m, n) network for m< n, where m
and n both are even.

M1 H ABC GA

(2.4) 1,024 19.08 57.79 93.48
(2.6) 1,568 28.08 86.62 140.11
(2.8) 2,112 37.08 115.45 186.73
(2.10) 2,656 46.08 144.28 233.36
(2.12) 3,200 55.08 173.10 279.99
(2.14) 3,744 64.08 201.93 226.62
(2.16) 4,288 73.08 230.76 373.24
(2.18) 4,832 82.08 259.58 419.87
(2.20) 5,376 91.08 288.41 466.50
(2.22) 5,920 100.08 317.24 513.13

FIGURE 6 | Graphical representation of CHDN3(m, n) for different
values of m< n, where m and n both are even.

TABLE 7 | Numerical computation of CHDN3(m, n) network form< n, wherem is
even and n is odd.

M1 H ABC GA

(2.3) 752 14.58 43.38 70.16
(4.5) 2,672 45.83 139.31 233.36
(6.7) 5,744 94.08 287.99 489.81
(8.9) 9,968 159.33 489.43 839.52
(10.11) 15,344 241.58 743.62 1,282.48
(12.13) 21,872 340.83 1,050.57 1818.69
(14.15) 29,552 457.08 1,410.27 2,448.16
(16.17) 38,384 590.33 1822.72 3,170.89
(18.19) 48,368 740.58 2,287.93 3,986.87
(20.21) 59,504 907.83 2,805.90 4,896.10

FIGURE 7 | Graphical representation of CHDN3(m, n) for different
values of m< n, where m is even and n is odd.
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