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Tensor network algorithms seek to minimize correlations to compress the classical data
representing quantum states. Tensor network algorithms and similar tools—called tensor
networkmethods—form the backbone ofmodern numerical methods used to simulatemany-
body physics and have a further range of applications in machine learning. Finding and
contracting tensor network states is a computational task, which may be accelerated by
quantum computing. We present a quantum algorithm that returns a classical description of a
rank-r tensor network state satisfying an area law and approximating an eigenvector given
black-box access to a unitary matrix. Our work creates a bridge between several
contemporary approaches, including tensor networks, the variational quantum eigensolver
(VQE), quantum approximate optimization algorithm (QAOA), and quantum computation.
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1 INTRODUCTION

Tensor network methods provide the contemporary state of the art in the classical simulation of
quantum systems. A range of numerical and analytical tools have now emerged, including tensor
network algorithms, to simulate quantum systems classically; these algorithms are based in part on
powerful insights related to the area law [1–9]. The area law places bounds on quantum
entanglement that a many-body system can generate, which translates directly to the amount of
memory required to store a given quantum state; see, e.g., [8].

The leading classical methods to simulate random circuits for quantum computational supremacy
demonstration are also based on tensor network contractions. Additionally, classical machine
learning has been merged with matrix product states and other tensor network methods
[10–14]. How might quantum computing accelerate tensor network algorithms?

Although tensor network tools have traditionally been developed to simulate quantum systems
classically, we propose a quantum algorithm to approximate an eigenvector of a unitary matrix with
bounded rank tensor network states. The algorithm works given only black-box access to a unitary
matrix. In general, tensor network contraction can simulate any quantum computation.

We focus on 1D chains of tensors (matrix product states) due to some associated analytical
simplifications; indeed, matrix product states can be approximated classically which offers an
attractive gold standard to compare the quantum algorithm against. The general framework we
develop applies equally well to 2D and, e.g., sparse networks (projected entangled pair states, etc.).
However, an early merger between these topics is better situated to focus on 1D.

Even in 1D, tensor networks offer certain insights into quantum algorithms. For example, the
maximal degree of entanglement can often be bounded in the description of the tensor network state
itself. In other words, the bond dimension (the dimension of the wires) in the tensor network acts to
bound the maximal entanglement. Merging quantum computation with ideas from tensor networks
provides new tools to quantify the entanglement that a given quantum circuit can generate [15, 16].
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For the sake of simplicity, we work in the black-box setting and
assume access to a provided unitaryQ. The black-box setting does
not consider the implementation ofQ. Prima facie, this appears to
be a limitation; in practice, however, the restriction can easily be
lifted. For example, in QAOA, the problem Hamiltonian can be
applied for varying times, offering a natural extension of the
oracle idea by giving Q a simple time dependence [17].

In Discussion, we drop the black-box access restriction and
cast the steps needed to perform a meaningful near-term
demonstration of our algorithm on a quantum computer,
providing a low-rank approximation to eigenvectors of the
quantum computers free- (or effective) Hamiltonian. The
presented algorithm falls into the class of variational quantum
algorithms [18–25]. It returns a classical description, in the form
of a tensor network, of an eigenvector of an operator found
through an iterative classical-to-quantum optimization process.

We present a general framework to determine tensor networks
using quantum processors. We focus on 1D, which enables
several results related to the maximum amounts of
entanglement required to demonstrate these methods. This
analysis is followed by a discussion focused on applications of
these techniques and what might be required for a meaningful
near-term experimental demonstration.

2 METHODS

The algorithm we propose solves the following problem: given
black-box access to a unitary Q, find any eigenvector of Q.

We work in the standard mathematical setting of quantum
computing. We define n qubits arranged on a line and fix the
standard canonical (computational) basis. We consider the
commutative Hermitian subalgebra generated by the
n-projectors:

Pi �|0〉〈0 i,| (1)

where the subscript i denotes the corresponding ith qubit acted
on by Pi, with the remainder of the state space acting on trivially.
These form our observables.

Rank is the maximum Schmidt number (the nonzero singular
values) across any of the n − 1 stepwise partitions of the qubits on
a line. Rank provides an upper bound on the bipartite
entanglement that a quantum state can support; as will be
seen, a rank-r state has at most k � log2(r) ebits of
entanglement. The quantum algorithm we present works by
finding a sequence of maximally k ebit approximations, where
the k’th approximation can be used to seed the (k + 1)’th
approximation.

An ebit is the amount of entanglement contained in a
maximally entangled two-qubit (Bell) state. A quantum state
with q ebits of entanglement (quantified by any entanglement
measure) has the same amount of entanglement (in that measure)
as q Bell states. If a task requires l ebits, it can be done with l or
more Bell states, but not with fewer. Maximally entangled
states in

Cd ⊗Cd (2)

have log2(d) ebits of entanglement. The question is then to upper
bound the maximum amount of entanglement a given quantum
computation can generate, providing a coarse-graining to classify
quantum algorithms in terms of both the circuit depth and the
maximum ebits possible. For low-depth circuits, these arguments
are surprisingly relevant.

We parameterize a circuit family generating matrix product
states with θ, a real vector with entries in [0, 2π). We consider
action on the initial rank-1 state |0〉 � |0〉⊗n and define two states

|ψ(θ)〉 � U†(θ)QU(θ)|0〉 (3)

and

|~ψ(θ)〉 � U(θ)|0〉, (4)

both of yet to be specied rank.
We will construct an objective function (Eq. 6) to minimize

and hence to recover our approximate eigenvector. The choice of
this function provides a desirable degree of freedom to further
tailor the algorithm to the particular quantum processor at hand.
We choose

pi(θ) � 〈ψ(θ)|Pi|ψ(θ)〉 (5)

and call

L(θ) � ∑
n

i�1
lnpi(θ) (6)

the log-likelihood function of the n-point correlator

∏
n

i�1
pi(θ). (7)

The minimization of Eq. 6 corresponds to maximizing the
probability of measuring each qubit in |0〉. This minimization
can be done using a variety of optimization and machine learning
algorithms. The following summarizes the steps of the algorithm.

Algorithm 1: Find successive tensor network approximations
of an eigenvector of Q.

Choose the maximum number of ebits kmax

Choose the maximum number of optimization iterations nit
for k←1 to kmax do
Construct the ansatz Uk corresponding to a k ebit MPS
Set θk randomly
for j←1 to nit do
Evaluate p(θk)
Evaluate L(p)
Update θk using a classical optimizer

end for
Store Lk � L(p)

end for
return {θk}kmax

k�1 , {Lk}kmax
k�1

The algorithm begins with rank-1 qubit states as

|~ψ(θ)〉 �⊗
i�1

n

(cosθi1|0〉 + e−ıθ
i
2 sinθi1|1〉). (8)
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Minimization of the objective function Eq. 6 returns 2n real
numbers describing a local matrix product state. Approximations
of higher rank are made by utilizing the quantum circuit structure
given in Figure 1.

3 RESULTS

The algorithm works given only oracle access to a unitary Q. The
spectrum of Q is necessarily contained on the complex unit circle
and so we note immediately that

1 � max
ϕ

|〈ϕ|Q|ϕ〉|2 ≥max
θ

|〈0|ψ(θ)〉|2 (9)

� max
θ

|〈~ψ(θ)|Q|~ψ(θ)〉|2

with equality of the left-hand side if and only if |ϕ〉 is an
eigenvector of Q. One advantage of the presented method is
that it terminates when the measurement reaches a given value.
This implies that the system is in an eigenstate. Such a certificate
is not directly established using other variational quantum
algorithms.

Importantly, the maximization over θ on the right-hand
side of Eq. 9 corresponds to the minimization of the log-
likelihood Eq. 6. We will then parameterize ~ψ(θk), where k
denotes a k ebit matrix product state of interest. Learning this
matrix product state recovers an approximation to an
eigenvector of Q. With a further promise on Q that all
eigenvectors have a rank-p matrix product state
representation, we conclude that r < p implies a fundamental
error in our approximation. We consider then that the r’th
singular value of the state takes the value ε. It then follows that
the one-norm error scales with O(ε) and the two-norm error
scales only with O(ε2). In general, we arrive at the monotonic
sequence ordered by the following relation:

1≥max
θk+1

∣∣∣∣〈~ψ(θk+1)|Q|~ψ(θk+1)〉
∣∣∣∣2 (10)

≥max
θk

|〈~ψ(θk)|Q|~ψ(θk)〉|2

which is valid for k � 1 to ⌊n/2⌋ (minimum to maximum possible
number of ebits).

Indeed, increasing the rank of the matrix product state
approximation can improve the eigenvector approximation.
Yet, it should be noted that ground state eigenvectors of
physical systems are in many cases known to be well
approximated with low-rank matrix product states [1–9]. This
depends on the further properties of Q and is a subject of
intensive study in numerical methods, further motivating the
quantum algorithm we present here. We will develop our
algorithm agnostic to Q, leaving a more specific near-term
demonstration (in which Q is implemented); e.g., we will
express any |~ψ(θ)〉 as a matrix product state as

|~ψ(θ)〉 � ∑
q,s,...,n

A[θq]
q A[θs]

s /A[θn]
n |q, s, . . . , n〉 (11)

In Eq. 11, the rank-r of the representation is embedded into
the realization of the A’s. Quantum mechanics allows the
deterministic generation of a class of isometries, where an
isometry U that is also an endomorphism on a particular
space is called unitary.

Matrix product states (Eq. 11) are not isometries, though
correlation functions are readily calculated from them.
Furthermore, matrix product states can be deterministically
generated by the uniform quantum circuit given in Figure 1.
Other isometric structures of interest include trees and the so-
calledMultiscale Entanglement Renormalization Ansatz (MERA)
networks [3, 26–28].

Consider then a rank-r approximation to an eigenvector ofQ.
The blocks in Figure 1 represent unitary maps. These circuits
act on at most ⌈log2(r)⌉ qubits. Hence, each of these blocks has
at most r2 real degrees of freedom in [0, 2π). The general
realization of these blocks using the typical basis of CNOT
gates and arbitrary local unitaries can be done by a range of
methods; see, e.g., [29]. A commonly used theoretical lower
bound requires

1
4
(r2 − 3log2r − 1) (12)

FIGURE 1 | Example of a tensor network as a quantum circuit: (left) quantum circuit realization of a matrix product state with open boundary conditions; (right)
using standard graphical rewrite rules—or by manipulating equations—one readily recovers the familiar matrix product state depiction as a “train of tensors.”
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CNOT gates, where the method in [29] requires r2 local qubit
gates and did not reach this theoretical lower bound of CNOT
gates. The total number of single qubits and CNOT gates
nevertheless scales as O(r2) for each block, where the number
of blocks is bounded by n. Hence, the implementation complexity
scales as O(l · n · r2), where the optimization routine terminates
after l steps (perhaps in a local minimum).

Instead of preparing |~ψ(θ)〉 by a quantum circuit with
θ ∈ (0, 2π]×l tunable parameters as

|~ψ(θ)〉 � ∏
l

Ul|0〉⊗n (13)

where Ul is adjusted by θl , one might adopt an alternative
(heuristic) circuit realization performed by adjusting
controllable Hamiltonian parameters realizing each block,
subject again to the minimization of Eq. 6. With such an
approach, one will prepare |~ψ(θ)〉 by tuning accessible time-
dependent parameters θk(t) corresponding to Hermitian Ak as

|~ψ〉 � T {e− ı∑
θk(t)Ak}|0〉⊗n, (14)

where T orders the sequence by time and superscript k indexes
the kth operator Ak. Provided these sequences are localized
appropriately, the matrix product structure still remains.

We then consider vertical partitions of a quantum circuit with
the n qubits positioned horizontally on a line. For an m-depth
quantum circuit (where m is presumably bounded above by a
low-order polynomial in n), the maximum number of two-qubit
gates crossed in a vertical partition is never more than m. The

maximum number of ebits generated by a fully entangling two-
qubit CNOT gate is never more than a single ebit. We then
consider the (n − 1) partitions of the qubits, the maximum
partition with represent to ebits is into two (ideally) equal
halves, which is never more than ⌈n/2⌉. We then arrive at the
general result that anm-depth quantum circuit on n qubits never
applies more than

min{⌈n/2⌉,m} (15)

ebits of entanglement. This immediately puts a lower bound of
∼ n/2 on the two-qubit gate depth for Q to potentially drive a
system into a state supporting the maximum possible ebits of
entanglement.

In Figure 2, we demonstrate our algorithm for finding an
eigenstate of randomly generated 5-qubit unitary matrices. For
minimizing the function Eq. 6, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) minimization method [30]. For each k
ebit MPS, we place the k-layered hardware-efficient ansatz as the
operators in blocks [21].

4 DISCUSSION

We now turn to the realization of Q and sketch a possible
demonstration for a near-term device. Polynomial-time
simulation of Hamiltonian evolution is well known to be BQP-
hard. This provides an avenue for Q to represent a problem of
significant computational interest, as simulating quantum
evolution and quantum factoring are in BQP. We aim to
bootstrap properties of the quantum processor as much as
possible to reduce resources for a realization; see, for example, [21].

Let Q(t) be the one-parameter unitary group generated by H,
where H represents a 3-SAT instance. Given access to an oracle
computing

〈~ψ(θ1)|H|~ψ(θ1)〉, (16)

we can minimize the overall eigenvectors, which is NP-hard.
Hence, finding even rank-1 states can be NP-hard. This provides
a connection between our method and QAOA [31]. Similarly, we
can also use this external minimization to connect our method to
VQE [20]. However, our method provides a certificate that, on
proper termination, the system is indeed in such a desired
eigenstate.

When H is a general quantum Hamiltonian, minimization of

〈~ψ(θk)|H|~ψ(θk)〉 (17)

is in turnQMA-hard. For example, pairing our procedure with an
additional procedure (quantum phase estimation) to minimizeQ,
the overall eigenvectors would hence provide rank-k variational
states and hence our methods provide a research direction which
incorporates tensor network methods in works such as, e.g.,
[19–21]. It should however be noted that phase estimation
adds significant experimental difficultly compared with the

FIGURE 2 | Algorithm demonstration on randomly generated 6-qubit
unitaries Q: the value of Eq. 9 (upper), overlap between the variational state
and the closest eigenstate ofQ (middle), and the von Neumann entropy of the
subsystem of the first three qubits (lower). The vertical solid lines
indicate the iteration numbers after which k, the number of ebits that the MPS
ansatz can support, increases by 1. The plot is obtained by averaging over 10
randomly generated unitaries Q.
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algorithm presented here and the algorithm is closer to VQE
(with evident differences as listed above and in the main text).

For a near-term demonstration, we envision Q to be realized
by bootstrapping the underlying physics of the system realizing
Q, e.g., using the hardware-efficient ansatz [21]. For instance, one
can realize Q as a modification of the systems free Hamiltonian
using effective Hamiltonian methods (modulating local gates).
This greatly reduces practical requirements on Q.

The interaction graph of the Hamiltonian generating Q can be
used to define a PEPS tensor network (as it will have the same
structure as the layout of the chip, it will no longer have the
contractable properties of matrix product states, and yet is still of
interest) [4]. The algorithm works otherwise unchanged, but the
circuit acts on this interaction graph (instead of a line) to create a
corresponding tensor network state (a quantum circuit in the
form of, e.g., the variational ansatz). Tailored free evolution of the
system Hamiltonian generates Q. Our algorithm returns a tensor
network approximation of an eigenstate of Q.

The first interesting demonstrations of the quantum algorithm
we have presented should realize rank-k tensor networks (matrix
product state), and the corresponding tensor network can be realized
with a few hundred gates for a system with a few hundred qubits.
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