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Our recent year’s studies of the prototypal FeSe and molecule-intercalated (Li,Fe)OHFeSe
superconductor systems are briefly reviewed here, with emphasis on the link between the
superconducting and normal-state properties observed in the single crystals and films.
These samples were successfully synthesized by our recently developed soft-chemical
hydrothermal methods, which are also briefly described. Particularly in theMn-doped high-
Tc (Li,Fe)OHFeSe film, a strong enhancement of the superconducting critical current
density was achieved, which is promising for practical application of the superconductivity.
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INTRODUCTION

Iron-based superconductors [1] have received extensive attention because of their rich physics,
including magnetic and nematic instabilities, electronic correlations, and quantum phenomena
[2–9]. As the second class of high-Tc materials after the discovery of cuprate superconductors,
the iron-based superconductors are also promising for practical application owing to their large
critical current density, high upper critical field, and small anisotropy [10–17]. The recent
observation of Majorana zero modes in iron-based superconductors implies a potentiality for
future application in topological quantum calculating [18–21]. Unlike an electronic
configuration of Cu-3d9 in the cuprates, the iron-based compounds have an electronic
configuration of Fe-3d6 and a small crystal-field splitting [2, 7, 22–24]. An immediate
consequence of this is that all the five Fe-3d orbitals could be involved in the low-energy
interactions [25], giving rise to the multiband nature of the iron-based superconductivity, and
the complexity and multiplicity of the normal-state properties. The iron-based family has two
major subclasses, the iron chalcogenide and pnictide superconductors. Among them, the iron
selenide superconductors have been shown to display a highly tunable superconducting critical
Tc and unique electronic properties in the normal state, thus providing a superior platform to
investigate the underlying physics for iron-based superconductivity.

Superconductivity of FeSe-based compounds emerges from the edge-sharing FeSe-tetrahedra
blocks, each formed by one iron-plane sandwiched between two selenium-planes. An important
feature is that the superconducting Tc can be tuned in a wide range. The simplest binary FeSe shows
bulk superconductivity at a lower Tc ∼ 9 K under ambient pressure [26]. It is notable that Tc can be
boosted to tens of kelvin (30-50 K), by the applications of high pressure [27–33], charge-carrier
injection [34], electrochemical etching [35], and chemical intercalation. The weak van der Waals
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bonding between the neighboring FeSe-blocks allows a variety of
FeSe-based intercalates to be obtained, such as the atom-
intercalated AyFe2-xSe2 (A � alkali metal) [36–40], molecule-
intercalated (Li0.8Fe0.2)OHFeSe [41], and atom/molecule-co-
intercalated Lix(C5H5N)yFe2-zSe2 [42], Ax(NH2)y(NH3)1-yFe2Se2
[43, 44], Ax(NH3)yFe2Se2 [45–47] and Ax(C2H8N2)yFe2Se2 [48].
Moreover, the highest superconducting gap opening temperature
(∼65 K) among all the iron-based superconductors has been
observed in a monolayer FeSe grown on a SrTiO3 substrate
[49, 50]. On the other hand, distinct from most iron-based
superconductor systems, FeSe does not order magnetically at
ambient pressure, whereas a unique electronic nematic ordering
has been observed to develop with a rotational-symmetry-
breaking transition from a tetragonal to an orthorhombic
phase at Ts ∼ 90 K [51, 52]. The electronic nematicity is
directly related to a degeneracy lifting of the bands with Fe
3dxz and 3dyz orbital characters [53–55]. Compared to the
Fermi-surface topology of the prototypal FeSe, in the
molecule-intercalated (Li,Fe)OHFeSe single crystals, only the
electron pockets near the Brillouin zone corners are observed,
in absence of the hole pocket near the zone center [56, 57]. This
raises question about a proposed pairing scenario of the
electronic scatterings between the hole-like and electron-like
pockets. Study of the FeSe-based superconductors is essential

for a better understanding of the unconventional
superconductivity.

To investigate the link between the unconventional
superconductivity and unusual normal-state electronic
properties, and the potential for the superconductivity
application, high-quality single crystal and film samples are
highly demanded. Recent years, we have been exploring soft-
chemical methods suitable for synthesizing the FeSe-based
superconductor single crystals and single-crystalline films hard
to obtain by conventional high-temperature growth. By
developing hydrothermal ion-exchange [58–60] and ion-
deintercalation [61, 62] approaches, we have succeeded in
synthesizing series of high-quality sizable single crystals of the
intercalated (Li,Fe)OHFeSe and binary FeSe systems, respectively.
Our further study [9] has shown a strong electronic two-
dimensionality and a nearly linear extracted magnetic
susceptibility in the hydrothermal high-Tc (42 K) (Li,Fe)
OHFeSe single crystal, suggesting the presence of two-
dimensional magnetic fluctuations in the normal state. In a
series of the (Li, Fe)OHFeSe single crystals, a coexistence of
antiferromagnetism with superconductivity has been detected
[60]. We explain such coexistence by electronic phase
separation, similar to the previously observed in high-Tc
cuprates and iron arsenides. An electronic phase diagram is

FIGURE 1 | Illustration of hydrothermal ion-exchange growth of (Li,Fe)OHFeSe crystals [58].
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further established for (Li, Fe)OHFeSe system [60, 63]. In
hydrothermal binary Fe1−xSe single crystals, we have observed
a field-induced two-fold rotational symmetry emerging below Tsn
in angular-dependent magnetoresistance measurements, and a
linear relationship between Tc and Tsn [61, 64]. Importantly, we
find in our recent study [9] that the superconductivity of FeSe
system emerges from the strongly correlated, hole-dominated
Fe1−xSe as the non-stoichiometry is reduced to x ∼ 5.3%.
Interestingly, such an x threshold for superconductivity of the
prototypal FeSe is similar to that (x ∼ 5% [65]) for high-Tc
superconductivity of the intercalated (Li, Fe)OHFeSe sharing
the common superconducting FeSe-blocks.

We have also successfully synthesized a series of high-quality
single-crystalline films of (Li, Fe)OHFeSe system, by inventing a
hydrothermal epitaxial film technique [16, 17, 66]. We find that
doping Mn into high-Tc (Li, Fe)OHFeSe films can raise the
superconducting critical current density Jc by one order of
magnitude to 0.32 MA/cm2 at a high field of 33 T [17]. Such a
high Jc value is the record so far among the iron-based
superconductors, and is thus promising for high-field application
of the superconductivity. Besides, our breakthrough in the crystal
growth has greatly promoted other related studies and progresses
have been made [57, 59, 60, 67–71], including the ARPES study of
Fermi-surface topology [57] and the observation of pressure-induced
second high-Tc (>50 K) phase [70] in the (Li,Fe)OHFeSe system. Our
developed growth method has also been adopted in the studies of
other research groups [56, 72–83].

SOFT-CHEMICAL HYDROTHERMAL
GROWTH METHODS DEVELOPED FOR
FESE-BASED SINGLE CRYSTALS AND
FILMS

The discovery of Li0.8Fe0.2OHFeSe (FeSe-11111) superconductor [41]
brings new opportunity for the study of iron-based
superconductivity. (Li, Fe)OHFeSe is free from the complications
of the structural transition, associated with the electronic nematicity,
and the chemical phase separation, related to the intergrown
insulating K0.8Fe1.6Se2 (KFS-245 phase) [63], as compared to the
prototypal FeSe-11 and K1-yFe2-xSe2-122 superconductors,
respectively. Moreover, it shows an ambient-pressure high Tc �
42 K and a pressure-induced higher Tc > 50 K under 12.5 GPa
[70]. Having a Fermi-surface topology [56, 57] similar to the
high-Tc (>65 K) FeSe monolayer, (Li, Fe)OHFeSe system turns
out to be an ideal platform for studying the superconducting and
normal-state properties of high-Tc iron-based superconductors.
Initially, only the powder samples of (Li, Fe)OHFeSe can be
prepared hydrothermally [41, 63, 65, 84, 85]. For in-depth
investigations on the intrinsic and anisotropic physical properties,
the high-quality single crystal and film samples are indispensable.

The crystal structure of (Li, Fe)OHFeSe consists of a stacking
of one superconducting (SC) FeSe-block alternating with one
insulating (Li, Fe)OH-block along the c-axis. The (Li, Fe)OHFeSe
compound suffers an easy decomposition because of the inherent

FIGURE 2 | Scematic llutration of the hydrothermal ion-deintercalation method. During the HID process, Fe1-xSe single crystals are derived from the readily
obtainable phase-pure matrix single crystals of K0.8Fe1.6Se2. The original interlayer K ions and Fe vacancies (20% in amount) in K0.8Fe1.6Se2 were completely
de-intercalated and substantially reduced, respectively, yielding the target single crystals of phase-pure Fe1-xSe [9, 61, 62].
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weak hydrogen bonding. Therefore, none of the conventional
high-temperature methods is applicable to grow the single
crystals. To overcome this problem, we have developed a soft-
chemical hydrothermal ion-exchange method capable of
producing high-quality sizable single crystals of (Li, Fe)
OHFeSe [58]. Figure 1 schematically illustrates the
hydrothermal ion-exchange process. For the hydrothermal
ion-exchange reaction, large and high-quality K0.8Fe1.6Se2
crystal is used as a kind of matrix. The structure of
K0.8Fe1.6Se2 is formed by an alternative stacking of K-layer
and FeSe-tetrahedron-block similar to the target compound.
The K ions in K0.8Fe1.6Se2 are completely de-intercalated
during the hydrothermal process. Simultaneously, the (Li, Fe)
OH-blocks constructed by ions from the hydrothermal solution
are intercalated into the matrix, and the ordered vacant Fe-sites

(20% in amount) originally in the matrix Fe0.8Se-blocks are
almost occupied. A series of large and high-quality (Li, Fe)
OHFeSe single crystals [60] are thus derived. The derived (Li,
Fe)OHFeSe single crystal almost inherits the original shape of the
matrix (insets of Figures 1B,C). Inspired by the successful
hydrothermal ion-exchange method for the single crystals, we
have further invented a hydrothermal epitaxial film technique to
fabricate a series of high-quality single-crystalline films of un-
doped [16, 66] and Mn-doped [17] (Li, Fe)OHFeSe, showing an
optimal zero-resistivity Tc � 42.4 K. The high-quality (Li, Fe)
OHFeSe films has enabled a systematic study of the
superconducting and normal-state properties [66].

By modifying the hydrothermal reaction conditions, we have
also developed a hydrothermal ion-deintercalation (HID)
method, as illustrated in Figure 2. The atomic ratio of the
FeSe-blocks can be continuously tuned by the HID process,
yielding a series of non-stoichiometric Fe1-xSe single crystals at
various charge-doping levels [9, 61, 62]. FeSe crystals used to be
grown by chemical-vapor-transport [86, 87], flux-free floating-
zone [88], and flux solution methods. These methods are hard to
tune the chemical stoichiometry.

ELECTRONIC AND SUPERCONDUCTING
PROPERTIES STUDIED IN THE
HYDROTHERMAL SINGLE CRYSTALS AND
FILMS

Now we briefly review our recent year’s studies of the series of
FeSe-based single crystals and films grown by the hydrothermal
methods.

FIGURE 3 | The electrical transport and magnetic properties of
(Li0.84Fe0.16)OHFe0.98Se single crystal [58]. (A) The in-plane electric resistivity
and the ratio of out-of-plane to in-plane resistivity as functions of temperature.
The inset shows the linear resistivity below the Hall-dip temperature T*
down to Tc. (B) The temperature dependence of in-plane Hall coefficient
shows a dip-like feature around T* ∼120 K. (C) The temperature
dependencies of static magnetic susceptibility under magnetic fields along
c-axis. A deviation from the Curie-Weiss law is clearly visible below the Hall-dip
temperature T*. After subtracting the Curie-Weiss term (the solid fitted curves)
from the (Li0.84Fe0.16)OH-blocks, a nearly linear magnetic susceptibility from
the FeSe-blocks is obvious (the inset).

FIGURE 4 | Electronic phase diagram of (Li,Fe)OHFeSe system [60, 63].
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FIGURE 5 | (A,B) Temperature dependence of static magnetic susceptibility near the superconducting transitions, for the two sets of superconducting (Li,Fe)
OHFeSe single crystals. (C) Antiferromagnetic (AFM) transition at ∼125 K is detectable for the superconducting (Tc < ∼38 K) samples and non-superconducting
samples. (D) The corresponding AFM signal size and the SC Meissner signal size are positively correlated (60).

FIGURE 6 | Temperature dependences of the angular-dependent magnetoresistance of FeSe crystal (Tc � 7.6 K), showing the twofold rotational symmetry below
Tsn ∼ 55 K [64].
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Strong Electronic Two-Dimensionality in
High-Tc (Li,Fe)OHFeSe Single Crystal
Figure 3A shows the temperature dependence of the in-plane
resistivity, ρab, for the high-Tc (42 K) (Li0.84Fe0.16)OHFe0.98Se
single crystal [58], which displays a metallic behavior over the
whole measuring temperature range in the normal state. As a
measure of the charge transport anisotropy, the ratio of the out-
of-plane to in-plane resistivity, ρc/ρab, was found to increase with
lowering temperature and reach a high value of 2,500 at 50 K. It is
obvious that the normal-state electronic property turns out to be

highly two dimensional just above Tc. Shown in Figure 3C is the
temperature dependence of static magnetic susceptibility, which
is slightly dependent on the magnitude of the applied field. In the
higher temperature range, all the data can be fitted to a modified
Curie-Weiss law χm � χ0 + χCW (the solid lines), where χ0 is the
Pauli paramagnetic contribution from itinerant charge carriers. A
deviation from the Curie-Weiss law is clearly visible below a
characteristic T* (∼ 120 K ) for a dip-like T-dependence of the
Hall coefficient (Figure 3B), coinciding with the upturn in Hall
coefficient and the change in resistivity behavior. From the Hall-
dip T* down to the superconducting Tc, both the extracted iron-
plane magnetic susceptibility (with the Curie-Weiss term
subtracted; inset of Figure 3C) and the in-plane resistivity
(inset of Figure 3A) exhibit a linear temperature dependence,
suggesting the presence of two-dimensional antiferromagnetic
spin fluctuations in the iron planes.

Phase Diagram and Electronic Phase
Separation of (Li,Fe)OHFeSe System
The first phase diagram of (Li, Fe)OHFeSe system [63] was based on
the powder samples. In a subsequent work [60], we established a
more complete phase diagram for the system (Figure 4), based on a
series of the hydrothermal single crystals in the superconducting (SC)
and non-superconducting regimes. In some of the SC samples (Tc <
∼38 K, cell parameter c < ∼9.27 Å), we observed a strong drop in the
magnetization at an almost constant temperature scale Tafm ∼ 125 K
(Figure 5C), indicating the occurrence of antiferromagnetism well
aboveTc. Our analysis of electron energy-loss spectroscopy combined
with selected-area electron diffraction confirmed the absence of
magnetic impurity phases such as Fe3O4 [60]. Therefore, the
antiferromagnetic signal is intrinsic to (Li, Fe)OHFeSe system.
Moreover, a positive correlation between the sizes of the
antiferromagnetic signal and the Meissner signal was observed

FIGURE 7 | Temperature dependence of the static magnetization around Tsn under the in-plane and out-of-plane fields for the FeSe crystal shown in Figure 6 [61].

FIGURE 8 | The universal linear relationship between the
superconducting transition temperature (Tc) and the field-induced spin-
nematic ordering temperature (Tsn) among various FeSe samples (the solid
symbols) [64]. The hollow symbols in the vertical blue-shaded area
represent the structure phase transition temperatures by the x-ray or neutron
diffractions on various FeSe samples of different Tc’s [30, 52, 55, 86, 92–94].
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(Figures 5D). These experimental results demonstrate the
coexistence of an antiferromagnetic state with the superconducting
state in (Li, Fe)OHFeSe at Tc < ∼38 K and c < ∼9.27 Å. Such
coexistence can be explained by electronic phase separation [60],
similar to the cases of high-Tc cuprates and iron arsenides. Therefore
the electronic phase diagram shown in Figure 4 provides more
information about the electronic states in (Li, Fe)OHFeSe system.

The Link Between the Superconducting and
Normal-State Properties in Fe1−xSe Single
Crystals
The in-plane angular-dependent magnetoresistance (AMR) in the
normal state was measured for the hydrothermal Fe1-xSe single
crystals [64]. Figure 6 shows the AMR at a 9 T field for a
representative sample with Tc � 7.6 K. The AMR displays a two-

FIGURE 9 | XRD characterizations of the (Li,Fe)OHFeSe film on the LaAlO3 (LAO) substrate. (A) The two theta scan detects only (00l) peaks. (B) The rocking curve
of (006) reflection with an FWHM of 0.22°. (C) The ϕ-scan of the (101) plane. The 4-fold symmetry reveals an excellent epitaxial growth [16].

FIGURE 10 | High superconducting critical parameters for (Li,Fe)OHFeSe film. (A) Temperature dependence of in-plane resistivity, with the onset of zero resistivity
at 42.4 K. (B) Temperature dependence of Hc2 along the c-axis (circle) and within the ab plane (square). (C) The temperature dependence of Jc, exceeding 0.5 MA/cm2

at 20 K [16].
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fold rotational symmetry emerging below a characteristic
temperature Tsn ∼ 55 K. This anisotropy in AMR is enhanced
with decreasing temperature (left panel of Figure 6). This
enhancement in charge scatterings was also observed in the
temperature-dependent magnetoresistance by an earlier study [89].
Moreover, a downward curvature starting below Tsn ∼ 55 K was
observed in our sample in the static magnetization under an in-plane
magnetic field of 0.1 T (Figure 7A) [61]. Such a feature is strongly
dependent on the magnitude and direction of the applied field
(Figures 7A vs 7B). This suggests that the strong quantum spin
frustrations predominate in the iron planes. Although the orbital-
nematic order associated with the structural transition at Ts ∼ 90 K is
also of a two-fold rotational symmetry, the obvious downward feature
of in-plane static magnetization below Tsn ∼ 55 K, which is far below
Ts, suggests that the fourfold-rotational-symmetry breaking identified
by our AMR measurements is closely related to the frustrated spins
with anisotropic magnetic fluctuations. Therefore, a field-induced
nematic state of a spin origin emerges below Tsn.

By summarizing all the data of our samples, we found a
remarkable linear relationship between Tc and Tsn, as shown
in Figure 8. Moreover, the related data of Tc and Tsn available
from literature [89–91] also well satisfy this linear relationship.
Namely, the linear relationship between superconducting Tc and
characteristic Tsn of the field-induced spin-nematic state was
observed to cover a wide range from far below to beyond Ts. This
further suggests that the superconductivity is more likely related
to the anisotropic magnetic fluctuations. These results of
prototypal FeSe system are consistent with those of
intercalated high-Tc (Li,Fe)OHFeSe presented above. It needs
to be emphasized that, for nearly stoichiometric FeSe samples
with a constant Tc ∼ 9.5 K, both the spin-nematic ordering and
orbital-nematic ordering (associated with the structural
transition) happen to coincide with each other at ∼90 K, as
shown in Figure 8. So it is difficult to distinguish these
different ordering states in such samples. Our samples with
different Tc’s enable the disentanglement of the different states.

Most recently, we have studied the doping dependences of
electronic correlation effect [9] and upper critical field behavior
[62] in a series of hydrothermal Fe1-xSe single crystals.
Particularly in these binary Fe1-xSe samples, the charge-doping
level can be tuned simply by the non-stoichiometric x, from a
strong electron dominance at x ∼ 0 to a strong hole dominance at
higher x values. Importantly, we find that superconductivity of
FeSe system emerges from the strongly correlated, hole-
dominated Fe1−xSe as the non-stoichiometry is reduced to x ∼
5.3% [9]. Interestingly, such an x threshold for superconductivity
of the prototypal FeSe is similar to that (x ∼ 5% [65]) for high-Tc
superconductivity of the intercalated (Li, Fe)OHFeSe sharing the
common superconducting FeSe-blocks.

FIGURE 11 | Temperature-pressure phase diagram of (Li0.84Fe0.16)
OHFe0.98Se single crystal [70]. Pressure-dependence of Tc and contour plot
of the normal-state resistivity exponent α are shown up to 12.5 GPa.

FIGURE 12 | Magnetic field dependence of Jc (A) and Fp (B) of several
superconductors [17], including Mn-doped and pure (Li,Fe)OHFeSe films at
5 K, SmFeAs(O,F) films [95], FeSe0.5Te0.5 films [96], P-doped BaFe2As2 films
[97], and YBa2Cu3O7−δ wires [98] at 4.2 K under c-axis fields.
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High Superconducting Critical Parameters
of Un-Doped and Mn-Doped (Li,Fe)OHFeSe
Crystals and Films
Figure 9 shows the x-ray diffraction characterization of a
representative (Li,Fe)OHFeSe film sample hydrothermally
grown on LaAlO3 substrate [16]. The observation of only (00l)
reflections indicates a single preferred (001) orientation
(Figure 9A). Shown in Figure 9B is the double-crystal x-ray
rocking curve for the (006) Bragg reflection, with a small FWHM
of 0.22°. To our knowledge, this is the best FWHM value observed
so far among various iron-based superconductor crystals and
films, indicating a high sample quality. The Ø-scan of (101) plane
shown in Figure 9C exhibits four successive peaks with an equal
interval of 90°, consistent with the C4 symmetry of the (Li,Fe)
OHFeSe film. These results clearly demonstrate an excellent in-
plane orientation and epitaxial growth.

High-quality superconducting films can play an important
role in the application. Besides the high sample quality, the (Li,Fe)
OHFeSe films also display excellent superconducting properties.
The temperature dependence of in-plane resistivity is shown in
Figure 10A, with a superconducting zero-resistivity temperature
up to 42.4 K. Figure 10B is the temperature dependences of upper
critical fieldHc2 derived from systematic measurements of the in-
plane and out-of-plane magnetoresistance. Based on WHH
(Werthamer-Helfand-Hohenberg) model, the values of Hc2(0)
are estimated as 79.5 and 443 T at magnetic fields perpendicular
and parallel to the ab plane, respectively. Moreover, a large critical
current density Jc > 0.5 MA/cm2 was achieved at ∼20 K, as shown
in Figure 10C. The high superconducting critical parameters are
important for practical application. Additionally, as seen from
Figure 11, the critical temperature Tc of (Li0.84Fe0.16)OHFe0.98Se
single crystal can be further raised up to a value >50 K under a
pressure of 12.5 GPa in the superconducting phase II (SC-II)
region. The SC-II phase develops with pressure at a critical Pc �
5 GPa, as the superconducting phase I (SC-I) is gradually
suppressed.

Very recently, we have successfully doped Mn into (Li,Fe)
OHFeSe films [17]. As seen from Figure 12A, the Jc value of high-
Tc (Li,Fe)OHFeSe film is strongly enhanced by one order of
magnitude, from the undoped 0.03 to Mn-doped 0.32 MA/cm2

under 33 T at 5 K. The vortex pinning force density Fp
monotonically increases with field up to 106 GN/m3, shown in
Figure 12B. To the best of our knowledge, these values are the
records so far among all the iron-based superconductors. Such a
superconducting (Li,Fe)OHFeSe film is not only important for
the fundamental research, but also promising for high-field
application.

CONCLUSION

High-quality single crystals and single-crystalline films of iron-
based superconductors play an important role in both the basic
research and potential application. However, for the FeSe-
based superconductor systems reviewed here, by the
conventional high-temperature growth it is either hard to

obtain the single crystals and films, or not easy to tune the
electronic properties. These problems can be overcome by our
recently developed soft-chemical hydrothermal growth
methods, which are capable of producing the single crystals
and films, and tuning the chemical stoichiometry thus the
electronic properties. In addition, these methods may be
applicable in other layered materials, providing a new route
for the exploration of functional materials.

The successful crystal and film growth has enabled systematic
studies of the FeSe-based superconductor systems. We have
observed a strong electronic two-dimensionality towards Tc,
and a nearly linear extracted magnetic susceptibility as well as a
linear in-plane resistivity both emerging below a Hall-dip
temperature T* (∼120 K), in high-Tc intercalated (Li,Fe)OHFeSe
system. We have also observed a linear relationship between Tc and
characteristic temperature Tsn of a field-induced spin nematicity in
prototypal FeSe system. These results suggest the presence of
magnetic fluctuations in the iron planes and their relevance to
superconductivity. Importantly, we have found that
superconductivity of the prototypal FeSe emerges from the
strongly correlated, hole-dominated Fe1−xSe at a non-
stoichiometric x similar to that for the high-Tc superconductivity
of the FeSe-based intercalate of (Li, Fe)OHFeSe. An electronic phase
diagram has been established for (Li, Fe)OHFeSe system, with the
observed coexistence of antiferromagnetism and superconductivity
explained by electronic phase separation. On the other hand, the
high superconducting critical current density achieved inMn-doped
high-Tc (Li,Fe)OHFeSe film is promising for high-field application.
These FeSe-based superconductor systems deserve further
experimental and theoretical studies, in both aspects of the
underlying physics and potential application.
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