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The critical brain hypothesis states that there are information processing advantages for
neuronal networks working close to the critical region of a phase transition. If this is true, we
must ask how the networks achieve andmaintain this critical state. Here, we review several
proposed biological mechanisms that turn the critical region into an attractor of a dynamics
in network parameters like synapses, neuronal gains, and firing thresholds. Since neuronal
networks (biological and models) are not conservative but dissipative, we expect not exact
criticality but self-organized quasicriticality, where the system hovers around the
critical point.
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1 INTRODUCTION

Thirty-three years after the initial formulation of the self-organized criticality (SOC) concept [1] (and
37 years after the self-organizing extremal invasion percolation model [2]), one of the most active
areas that employ these ideas is theoretical neuroscience. However, neuronal networks, similar to
earthquakes and forest fires, are nonconservative systems, in contrast to canonical SOC systems like
sandpile models [3, 4]. To model such systems, one uses nonconservative networks of elements
represented by cellular automata, discrete time maps, or differential equations. Such models have
distinct features from conservative systems. A large fraction of them, in particular neuronal
networks, have been described as displaying self-organized quasi-criticality (SOqC) [5–7] or
weak criticality [8, 9], which is the subject of this review.

The first person that made an analogy between brain activity and a critical branching process
probably was Alan Turing, in his memorable paper Computing machinery and intelligence [10].
Decades later, the idea that SOC models could be important to describe the activity of neuronal
networks was in the air as early as 1995 [11–16], eight years before the fundamental 2003
experimental article of Beggs and Plenz [17] reporting neuronal avalanches. This occurred
because several authors, working with models for earthquakes and pulse-coupled threshold
elements, noticed the formal analogy between such systems and networks of integrate-and-fire
neurons. Critical learning was also conjectured by Chialvo and Bak [18–20]. However, in the absence
of experimental support, these works, although prescient, were basically theoretical conjectures. A
historical question would be to determine in what extent this early literature motivated Beggs and
Plenz to perform their experiments.

Since 2003, however, the study of criticality in neuronal networks developed itself as a research
paradigm, with a large literature, diverse experimental approaches, and several problems addressed
theoretically and computationally (some reviews include Refs. [7, 21–27]). One of the main results is
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that information processing seems to be optimized at a second-
order absorbing phase transition [28–42]. This transition occurs
between no activity (the absorbing phase) and nonzero steady-
state activity (the active phase). Such transition is familiar from
the SOC literature and pertains to the directed percolation (DP)
or the conservative-DP (C-DP or Manna) universality classes [7,
42–45].

An important question is how neuronal networks self-
organize toward the critical region. The question arises
because, like earthquake and forest-fire models, neuronal
networks are not conservative systems, which means that in
principle they cannot be exactly critical [5, 6, 45, 46]. In these
networks, we can vary control parameters like the strength of
synapses and obtain subcritical, critical, and supercritical
behavior. The critical point is therefore achieved only by fine-
tuning.

Over time, several authors proposed different biological
mechanisms that could eliminate the fine-tuning and make the
critical region a self-organized attractor. The obtained criticality is
not perfect, but it is sufficient to account for the experimental data.
Also, the mechanisms (mainly based on dynamic synapses but also
on dynamic neuronal gains and adaptive firing thresholds) are
biologically plausible and should be viewed as a research topic per se.

The literature about these homeostatic mechanisms is vast,
and we do not intend to present an exhaustive review. However,
we discuss here some prototypical mechanisms and try to connect
them to self-organized quasicriticality (SOqC), a concept developed
to account for nonconservative systems that hover around but do not
exactly sit on the critical point [5–7].

For a better comparison between the models, we will not rely
on the original notation of the reviewed articles, but will try to use
a universal notation instead. For example, the synaptic strength
between a presynaptic neuron j and a postsynaptic neuron i will
be always denoted by Wij (notice the convention in the order of
the indexes), the membrane potential is Vi, the binary firing state
is si ∈ {0, 1}, the gain of the firing function is Γi, and the firing
threshold is θi. To prevent an excess of index subscripts as is usual
in dynamical systems, likeWij,t , we use the conventionWij(t) for
continuous time and Wij[t] for discrete time.

Last, before we begin, a few words about the fine-tuning
problem. Even perfect SOC systems are in a sense fine-tuned:
they must be conservative and require infinite separation of time
scales with driving rate 1/τ→ 0+ and dissipation rate u→ 0+
with 1/(τu)→ 0 [3, 4, 7, 43, 45]. For homeostatic systems, we
turn a control parameter like the coupling W into a time-
dependent slow variable W[t] � 〈Wij[t]〉 by imposing a local
dynamics in the individualWij. This dynamics could depend on
new parameters (here called hyperparameters) which need some
tuning (in some cases, this tuning can be very coarse in the large
τ case). Have we exchanged the fine tuning on W by several
tuning operations on the homeostatic hyperparameters? Not
exactly, as nicely discussed by Hernandez-Urbina and
Herrmann [47]:

To Tune or Not to Tune

In this article, we have shown how systems self-organize
into a critical state through [homeostasis]. Thus, we

became relieved from the task of fine-tuning the
control parameter W, but instead, we acquire a new
task: that of estimating the appropriate values
for parameters A,B,C, and D. Is there no way to
be relieved from tuning any parameter in the
system?

The issue of tuning or not tuning depends mainly on
what we understand by control parameter. (. . .) a
control parameter can be thought of a knob or dial
that when turned the system exhibits some quantifiable
change. We say that the system self-organizes if nobody
turns that knob but the system itself. In order to achieve
this, the elements comprising the system require a
feedback mechanism to be able to change their inner
dynamics in response to their surroundings. (. . .) The
latter does not require an external entity to turn the dial
for the system to exhibit critical dynamics. However, its
internal dynamics are configured in a particular way in
order to allow feedback mechanisms at the level of
individual elements.

Did we fine-tune their configuration? Yes. Otherwise,
we would have not achieved what was desired, as
nothing comes out of nothing. Did we change
control parameter from W to A,B,C, and D? No, the
control parameter is still intact, and now it is “in the
hands” of the system. (. . .) Last and most
importantly, the new configuration stresses the
difference between global and local mechanisms.
The control parameter W (the dial) is an external
quantity that observes and governs the global (i.e., the
collective), whereas [homeostasis] provides the
system with local mechanisms that have an effect
over the collective. This is the main feature of a
complex system.

2 PLASTIC SYNAPSES

Consider an absorbing-state second-order phase transition where
the activity is ρ � 0 below a critical point Ec and

ρxC(E − Ec

Ec
)β

, (1)

for EaEc, where E is a generic control parameter (see Figures
1A,B). For topologies such as random and complete graphs, one
typically obtains β � 1, which is consistent with a transition in the
mean-field directed percolation (DP) class (or perhaps, the
compact-DP (Manna) class usual in SOC models, which has
the same mean-field exponents but different ones below the
upper critical dimension; see Refs. 3, 7, 42, 48).

The basic idea underlying most of the proposed mechanism
for homeostatic self-organization is to define a slow dynamics in
the individual links Ei(t) (i � 1, . . . ,N) such that if the network is
in the subcritical state, their average value E(t) � 〈Ei(t)〉 grows
toward Ec, but if the network is in the supercritical state, E(t)
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decreases toward Ec (see Figure 1C). Ideally, these mechanisms
should be local, that is, they should not have access to global
network information such as the density of active sites ρ (the
order parameter) but rather only to the local firing of the neurons
connected by Ei. In the following, we give several examples from
the literature.

2.1 Short-Term Synaptic Plasticity
Markram and Tsodyks [49, 50] proposed a short-term synaptic
model that inspired several authors in the area of self-
organization to criticality. The Markram–Tsodyks (MT)
dynamics is

dJij(t)
dt

� 1
τ
[ A
u(t) − Jij(t)] − u(t)Jij(t)δ(t − t̂j) , (2)

du(t)
dt

� 1
τu

[U − u(t)] + U[1 − u(t)]δ(t − t̂j) , (3)

where Jij is the available neurotransmitter resources, u is the
fraction used after the presynaptic firing at time t̂j (so that the
effective synaptic efficacy is Wij(t) � u(t)Jij(t)), A and U are
baseline constants (hyperparameters), and τ and τu are recovery
time constants.

In an influential article, Levina, Herrmann, and Geisel
(LHG) [51] proposed to use depressing–recovering
synapses. In their model, we have leaky integrate-and-fire
(LIF) neurons in a complete-graph topology. As a self-
organizing mechanism, they used a simplified version of
the MT dynamics with constant u, that is, only Eq. 2. They
studied the system varying A and found that although we need
some tuning in the hyperparameter A, any initial distribution
of synapses P(Wij(t � 0)) converges to a stationary

distribution P*(Wij) with 〈W*
ij〉 ≈ Wc. We will refer to Eq.

2 with constant u as the LHG dynamics. These authors found
quasicriticality for 1.7<A< 2.3, u ∈ ]0, 1] and τ∝N . Levina
et al. also studied synapses with the full MT model in Refs.
52, 53.

Bonachela et al. [6] studied in depth the LHG model and
found that, like forest-fire models, it is an instance of SOqC.
The system presents the characteristic hovering around the
critical point in the form of stochastic sawtooth oscillations in
the W(t) that do not disappear in the thermodynamic limit.
Using the same model, Wang and Zhou [54] showed that the
LHG dynamics also works in hierarchical modular networks,
with an apparent improvement in SOqC robustness in this
topology.

Note that the LHG dynamics can be written in terms of the
synaptic efficacy Wij � uJij by multiplying Eq. 2 by u, leading to

dWij(t)
dt

� 1
τ
[A −Wij(t)] − uWij(t)δ(t − t̂j) . (4)

Brochini et al. [55] studied a complete graph of stochastic
discrete time LIFs [56, 57] and proposed a discrete time LHG
dynamics:

Wij[t + 1] � Wij[t] + 1
τ
(A −Wij[t]) − uWij[t]sj[t] , (5)

where the firing index sj[t] ∈ {0, 1} denotes spikes. Kinouchi et al.
[58], in the same system, studied the stability of the fixed points of
the joint neuronal LHG dynamics. They found that, for the
average synaptic value W, the fixed point is
W* � Wc +O((A − 1)/τu), meaning that for large τu, the

FIGURE 1 | Example of homeostatic mechanisms in a stochastic neuron with firing probability P(si � 1). (A) Scheme of the loci for homeostatic mechanisms:
synapses Wij , neuronal gain Γi , and firing threshold θi . Inset: Firing probability with homeostatic variables. (B) Bifurcation diagram for the activity ρ as a function of a
generic control parameter E. The critical point is Ec, but the homeostatic fixed point (a focus) is slightly supercritical. (C) Self-organization of the generic “control”
parameter E(t), where the standard deviation of the stochastic oscillations around the fixed point depends on system size as s.d.∝N−a.
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systems approach the critical pointWc if A> 1. However, since it
is not biologically plausible to assume an infinite recovering time
τ, one always obtains a system which is slightly supercritical. This
work also showed that the fixed point is a barely stable focus,
around which the system is excited by finite size (demographic)
noise, leading to the characteristic sawtooth oscillations of SOqC.
A similar scenario was already found by Grassberger and Kantz
for forest-fire models [59].

The discrete time LHG dynamics was also studied for
cellular automata neurons in random networks with an
average of K neighbors connected by probabilistic synapses
Pij ∈ [0, 1] (Costa et al. [60], Campos et al. [61] and Kinouchi
et al. [58]):

Pij[t + 1] � Pij[t] + 1
τ
(A
K
− Pij[t]) − uPij[t]sj[t] , (6)

with an upper limit Pmax � 1. Multiplying by K and summing
over i, we get an equation for the local branching ratio:

σ j[t + 1] � σ j[t] + 1
τ
(A − σ j[t]) − uσ j[t]sj[t] . (7)

It has been found that such depressing synapses induce
correlations inside the synaptic matrix, affecting the global
branching ratio σ[t] � 〈σj[t]〉, so that criticality does not occur
at the branching ratio σc � 1 but rather when the largest eigenvalue
of the synaptic matrix is λc � 1, with σ* � K〈P*

ij〉 ≈ 1.1 [61].

After examining this diverse literature, it seems that any
homeostatic dynamics of the form

Wij[t + 1] � Wij[t] + R(Wij[t]) − D(Wij, sj[t]) (8)

can self-organize the networks, where R and D are the recovery
and depressing processes, for example:

Wij[t + 1] � Wij[t] + 1
τ
Wij[t] − uWij[t]sj[t] . (9)

In particular, the simplest mechanism would be

Wij[t + 1] � Wij[t] + 1
τ
− usj[t] , (10)

a usual dynamics in SOC models [5, 7]. This means that the full
LHG dynamics, and also the full MT dynamics, is a sufficient but
not a necessary condition for SOqC.

The average W � 〈Wij〉 for this dynamics is

W[t + 1] � W[t] + 1
τ
− uρ[t] , (11)

where ρ[t] � 〈si[t]〉 is the time-dependent network activity. The
stationary state is ρ* � 1/(τu), and if τu is large, this means that
ρ* � O(1/(τu))→ ρc � 0+. Also, if we use Eq. 1, we get
W* � Wc +O(1/(τu)). The dissipative term u should also be
small, meaning that, if we desire absolute separation of time
scales, we need 1/τ→ 0+, u→ 0+, 1/(τu)→ 0, as is usual in other
SOC systems [3, 5, 7, 43, 45].

Here, for biological plausibility, it is better to assume a large
but finite recovery time, say τ ∈ [100, 10, 000]ms, in comparison
with 1 ms for spikes. Also, to obtain SOqC, u need not be small.
We must have A> 1 because A< 1 produces subcritical activity
[6, 51, 58]. So, moderate A ∈ [1, 2], u ∈ ]0, 1], and large τ > 1000
seem to be the coarse tuning conditions for homeostasis. This
produces the hovering of the average value W[t] � 〈Wij[t]〉
around the critical point Wc, with the characteristic sawtooth
oscillations of SOqC and power-law avalanches for some
decades.

We observe that the original LHG model [6, 51] had τ∝N to
produce the infinite separation of time scales in the large-N limit.
This, however, did not prevent the SOqC hovering stochastic
oscillations in the thermodynamic limit. Moreover, a recovery
time proportional to N is a very unrealistic feature for biological
synapses. Curiously, if we use a finite τu instead, the oscillations
are damped in the thermodynamic limit because the fixed point
ρ* � O(1/(τu)),W* � Wc +O(1/(τu)) continues to be an
attractive focus, but the demographic noise vanishes. On the
other hand, when we use τu→∞, the fixed point loses its stability
and continues to be perturbed even by the N→∞ vanishing
fluctuations [58].

As early as 1998, Kinouchi [62] proposed the synaptic
dynamics:

Wij[t + 1] � Wij[t] + 1
τ
Wij[t] − usj[t] , (12)

with small but finite τ and u. The difference here from the former
mechanisms is that, like in Eq. 10, depression is not proportional
toWij (but recovery is). He also discussed the several concepts of
SOC at the time, and called these homeostatic system as self-
tuned criticality, which is equivalent to a SOqC system with finite
separation of time scales.

Hsu and Beggs [63] studied amodel for the activityAi(t) of the
local field potential at electrode i:

Ai[t + 1] � Hi[t] +∑
j

Pij[t]sj[t] , (13)

whereHi(t) is a spontaneous activity used to prevent the freezing
of the system in the absorbing state (this is similar to a time-
dependent SOC drive term h). The probabilistic coupling is
Pij ∈ [0, 1]. Firing-rate homeostasis and critical homeostasis
are achieved by increasing or decreasing H and P if the firing
rate is too low or too high compared to a target firing rate
s0 � 1/τ0:

Hi[t + 1] � exp[ − kS(〈si[t]〉 − s0)]Hi[t] , (14)

Pij[t + 1] � exp[ − kP(〈si[t]〉 − s0)]Pij[t] , (15)

where 〈 . . . 〉 represents a moving average over a memory widow
τm.

Hsu and Beggs found that for kS/kP ≈ 0.5, this dynamics leads
to a critical branching ratio σ � 1. They also found that the target
firing rate s0 can be maintained by this homeostasis. Equation 15
reminds us of the depressing–recovering synaptic rule of Eq. 9.
Indeed, if we examine the small kP limit (as used by the authors),
we have
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Pij[t + 1]xPij[t] + 1
τ
Pij[t] − uPij[t]〈si[t]〉 , (16)

where now τ � 1/(kPs0) and u � kP . A similar reasoning applies to
the equation forH[t], which could be identifiedwith the homeostatic
threshold Eq. 60 discussed in Section 4, with H[t] � −θ[t].

In another article, Hsu et al. [64] extended the model to
include distance-dependent connectivity and Hebbian learning
[64]. Changing the homeostasis equations to our standard
notation, we have

dHi(t)
dt

� 1
τS
(1 − ηi(t))Hi(t) − uSHi(t)(〈si〉 − s0) , (17)

dPij(t)
dt

� 1
τ
(1 − ηi(t))Pij(t) − uPij(t)(〈si〉 − s0) − uDDijPij(t) ,

(18)

whereHi ∈ [0, 1] is now a probability of spontaneous firing, s0 is a
target average activity, and Dij is the distance between electrodes i
and j. The input ratio is ηi(t) � ∑jPij(t). Remember that, for a
critical branching process, 〈ηi〉 � 1. These values were chosen as
homeostatic targets.

Shew et al. [65] studied experimentally the visual cortex of
the turtle and proposed a (complete graph) self-organizing
model for the input synapses Ωi and the cortical synapses
Wij. The stochastic neurons fire with a linear saturating
function:

Prob(si[t + 1] � 1) �
⎧⎪⎨⎪⎩

Vi[t] if V < 1 ,

1 if V > 1 ,
(19)

Vi[t] � Ωi[t]Hi[t] + 1
N
∑
j

Wij[t]sj[t] , (20)

where, like in Eq. 13, Hi accounts for external stimuli. For both
types of synapses, they used the discrete time LHG dynamics, Eq.
5, and concluded that the computational model accounts very
well for the experimental data.

Hernandez-Urbina and Herrmann [47] studied a discrete time
IF model where they define a local measure called node success:

ϕj[t] �
∑iAijsi[t + 1]∑iAij

, (21)

where A is the adjacency matrix of the network, with Aij � 1 if j
projects onto i (Aij � 0 otherwise). Note that we reversed the
indices as compared with the original notation [47]. Observe that
ϕj measures how many postsynaptic neurons are excited by the
presynaptic neuron j.

The authors then define the node success–driven plasticity
(NSDP):

Wij[t + 1] � Wij[t] + 1
τ
exp( − ϕj(t)/B) − u exp(−Δtj/D) ,

(22)

where Δtj � t − t̂j is the time difference between the spike of node j
occurring at current time step t and its previous spike which

occurred at t̂j (the last spike), while B and D are constants. Notice
that the drive term is larger if the node success is small and the
dissipation term is larger if the firing rate (inferred locally as
ρ̂ � 1/Δtj) is large [compare with Eq. 8].

They analyzed the relation among the avalanche critical
exponents, the largest eigenvalue Λ associated to the weight
matrix, and the data collapse of the shape of avalanches for
several network topologies. All results are compatible with
(quasi-)criticality. They also found that if they stop NSDP and
introduce STDP, the criticality vanishes, but if the two dynamics
are done together, criticality survives.

Levina et al. [66] proposed a model in a complete graph in
which the branching ratio σ is estimated as the local branching σi

of a neuron that initiates an avalanche. The homeostatic rule is to
increase the synapses if σi < 1 and decreasing them if σi > 1. The
network converges, with SOqC oscillations, to σ* ≈ σc � 1.

2.2 Meta-Plasticity
Peng and Beggs [67] studied a square lattice (K � 4) of IF neurons
with open boundary conditions. A random neuron receives a
small increment of voltage (slow drive). If the voltage of
presynaptic neuron j is above a threshold θ � 1, we have

Vj[t + 1] � Vj[t] − 1 , (23)

sj[t + 1] � Θ(Vj[t + 1] − θ) , (24)

Vi[t + 1] � Vi[t] + 1
K
Wij[t]sj[t] , (25)

where Θ is the Heaviside function. The self-organization is
made by a LHG dynamics plus a meta-plasticity term:

Wij[t + 1] � Wij[t] + 1
τ
(A −Wij[t]) − uWij[t]sj[t] , (26)

ua+1 � ua − (1 − Xa)/N , (27)

where Xa is the total fraction of neurons at the boundary that
fired during the a-th avalanche and ua+1 is the updated value of
u after the avalanche. Notice that the meta-plasticity term
differs from the MT model of Eq. 3, because the
hyperparameter u is updated in a much slower time scale.
Peng and Beggs show that this dynamics converges
automatically to good values for the parameter u; that is, we
no longer need set the u value in advance. We observe, however,
that Xa is a nonlocal variable.

2.3 Hebbian Synapses
Ever since Donald Hebb’s proposal that neurons that fire together
wire together [68–70], several attempts have been made to
implement this idea in models of self-organization. However, a
pure Hebbian mechanism can lead to diverging synapses, so that
some kind of normalization or decay needs also be included in
Hebbian plasticity.

In 2006, de Arcangelis, Perrone-Capano, and Herrmann
introduced a neuronal network with Hebbian synaptic
dynamics [71] that we call the APH model. There are several
small variations in the models proposed by de Arcangelis et al.,
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but perhaps the simplest one [72] is given by the following
neuronal dynamics on a square lattice of L × L neurons: If at
time t a presynaptic neuron j has a membrane potential above a
firing threshold, Vj[t]> θ, it fires, sending neurotransmitters to all
its (nonrefractory) neighbors:

Vi[t + 1] � Vi[t] +WijVj[t] , (28)

where Wij � Wij/∑​ nn
l Wlj. Then, neuron j enters in a refractory

period of one time step. The synaptic self-organizing dynamics is
given by

Wij[t + 1] � Wij[t] + 1
θ
WijVj[t] (active synapses) , (29)

Wij←Wij − 1
NB

∑
ij

δWij ( inactive synapses, after avalanche) ,
(30)

where NB is the total number bonds and active (inactive)
synapses are the ones used (not used) in Eq. 28. The sum
in Eq. 30 is over all synaptic modifications
δWij[t + 1] � Wij[t + 1] −Wij[t], a step which involves
nonlocal information and amounts to a kind of synaptic
rescaling. If the synaptic strength falls below some
threshold, the synapse is deleted (pruning), so that this
mechanism sculpts the network architecture. So, co-
activation of pre- and postsynaptic neurons makes the
synapse grow, and inactive synapses are depressed, which
means that it is a Hebbian process. Several authors explored
the APH model in different contexts, including learning
phenomena [72–80].

Çiftçi [81] studied a neuronal SIRs model on the C. elegans
neuronal network topology. The spontaneous activation rate
(the drive) is h � 1/τ→ 0+, and the recovery rate to the
susceptible state is q. The author studied the system as a
function of q/h (separation of time scales q≫ h). The
probability that a neuron j activates its neighbor i is Pij
(gij � 1 − Pij is the probability of synaptic failure in the
author notation). The synaptic update occurs after an
avalanche (of size S) and affects two neighbors that are active
at the same time (Hebbian term):

Pij[t + 1] �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pij[t] + 1
τ

1
S
(1 − Pij[t]) if the synapse was not used ,

Pij[t] − u(1 − 1
S
)Pij[t] if the synapsewas used .

(31)

Ciftçi found robust self-organization to quasicriticality. The
author notes, however, that S is nonlocal information.

Uhlig et al. [82] considered the effect of LHG synapses in
the presence of an associative Hebb synaptic matrix. They
found that, although the two processes are not irreconcilable,
the critical state has detrimental effects to the attractor
recovery. They interpret this as a suggestion that the
standard paradigm of memories as fixed point attractors
should be replaced by more general approaches like
transient dynamics [83].

2.4 Spike Time–Dependent Plasticity
Rubinov et al. [84] studied a hierarchical modular network of LIF
neurons with STDP plasticity. The synapses are modeled by
double exponentials:

dVi(t)
dt

� −(Vi(t) − E) + I + Isyni (t) , (32)

Isyni (t) � ∑
j

WijV0∑̂
tj

[exp( − t − t̂j
τ1

) − exp( − t − t̂j
τ2

)] , (33)

where {̂tj} are the presynaptic firing times. Synaptic weight
changes at every spike of a presynaptic neuron, following the
STDP rule:

ΔWij �
⎧⎪⎪⎨⎪⎪⎩ A+(Wij)exp( − t̂j − t̂iτ+) if t̂j < t̂i ,

−A−(Wij)exp( − t̂j − t̂iτ−) if t̂j ≥ t̂i ,
(34)

where A+(Wij) and A−(Wij) are weight-dependent functions (see
Ref. 84 for details). The authors show an association among
modularity, low cost of wiring, STDP, and self-organized
criticality in a neurobiologically realistic model of neuronal
activity.

Del Papa et al. [85] explored the interaction between
criticality and learning in the context of self-organized
recurrent networks (SORN). The ratio between inhibitory to
excitatory neurons is NI/NE � 0.2. These neurons interact via
WEE,WIE , and WEI synapses (no inhibitory self-coupling).
Synapses are dynamic, and also the excitatory thresholds θEi .
The neurons evolve as

sEi [t + 1] � Θ⎛⎝∑
j

NE

WEE
ij [t]sEj [t] −∑

k

NI

WEI
ik s

I
j [t] − θEi [t]

+ Ii[t] +ηEi [t]⎞⎠ , (35)

sIi[t + 1] � Θ⎛⎝∑
j

NE

WIE
ij s

E
j [t] − θIi + ηIi [t]⎞⎠ , (36)

where ηi[t] represents membrane noise. Synapses and thresholds
evolve following five combined dynamics:

WEE
ij [t + 1] � WEE

ij [t] +
1

τSTDP
[sEi [t + 1]sEj [t]

− sEj [t + 1]sEi [t]] excitatory STDP , (37)

WEI
ij [t + 1] � WEI

ij [t] −
1

τ iSTDP
sIj [t][1 − sEi [t + 1](1 + 1/μIP)]

inhibitory STDP ,

(38)

Wij[t + 1]← Wij[t + 1]∑jWij[t + 1] synaptic normalization (SN) , (39)

p(NE) � NE(NE − 1)
N(N − 1) p(N) structural plasticity (SP) , (40)
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θEi [t + 1] � θEi [t] +
1
τIP

[sEi [t] − μIP] intrinsic plasticity(IP) ,
(41)

where μIP is the desired activity level. In the structural plasticity
process, excitatory synapses are added with probability p(NE).
The authors found that this SORN model presents well-
behaved power-law avalanche statistics and that the plastic
mechanisms are necessary to drive the network to criticality,
but not to maintain it critical; that is, the plasticity can be
turned off after the networks reach the critical region. Also,
they found that noise was essential to produce the avalanches,
but degrade the learning performance. From this, they
conclude that the relation between criticality and learning is
more complex, and it is not obvious if criticality optimizes
learning.

Levina et al. [86] studied the combined effect of LHG synapses,
homeostatic branching parameter Wh, and STDP:

Wij(t) � uJij(t)Wh(t)WSTDP(t) . (42)

They found that there is cooperativity of these mechanisms in
extending the robustness of the critical state to variations on the
hyperparameter A (see Eq. 2).

Stepp et al. [87] examined a LIF neuronal network which has
both Markram–Tsodyks dynamics and spiking time–dependent
plasticity STDP (both excitatory and inhibitory). They found that,
although MT dynamics produces some self-organization, the
STDP mechanism increases the robustness of the network
criticality.

Delattre et al. [88] included in the STDP synaptic change ΔW+
a resource depletion term:

ΔW’+ � c(η(t))ΔW+ , (43)

c(η(t)) � 1 − exp(η*−η(t)
m )

1 + exp(η*−η(t)m ) , (44)

where resource availability η(t) evolves as

dη(t)
dt

� 1
τη

− η(t)
η0(α(t))τη

. (45)

Here, α(t) is a continuous estimator of the network firing rate,
τη is the recovery time of the resources availability, and the term
η0(α(t)) � (1 + α/k)− 1 in the denominator ensures that depletion
is fast and recovery is slow (k � 20 Hz). They called this
mechanism as network spiking–dependent plasticity and
showed that, in contrast to pure STDP, it leads to power-law
avalanches with branching ratio around one.

2.5 Homeostatic Neurite Growth
Kossio et al. [89] studied IF neurons randomly distributed in a
plane, with neurites distributed within circles of radii Ri that
evolved according to

dRi

dt
� 1
τ
− u∑

ti

δ(t − ti) , (46)

where {ti} are the spike times of neuron i, with τ and u
constants. Since the connections are given by Wij � gOij,
where g is a constant and Oij are the overlapping areas of
the synaptic discs, Eq. 46 is not much different from the simple
synaptic dynamics of Eq. 10, with constant drive and decay
due to spikes.

Tetzlaff et al. [90] studied experimentally neuronal avalanches
during the maturation of cell cultures, finding that criticality is
achieved in a third stage of the dendrites/axons growth process.
They modeled the system using neurons with membrane
potential Vi(t)< 1 and calcium dynamics Ci(t):

dVi(t)
dt

� −Vi(t) − V0

τV
+∑

j

k ±
j Wij(t)Θ(Vj(t) − ηj(t)) , (47)

dCi(t)
dt

� − 1
τC
Ci(t) + βΘ(Vi(t) − ηi(t)) , (48)

where k+ > 0 (k− < 0) defines excitatory (inhibitory) neurons, and
ηj(t) ∈ [0, 1] is a random number. Dendritic and axonal spatial
distributions are again represented by their radii Ri and Ai, whose
dynamics are governed by calcium dynamics as

dRi(t)
dt

� − 1
τR

(Ci(t) − Ctarget) , (49)

dAi(t)
dt

� 1
τA

(Ci(t) − Ctarget) . (50)

Finally, the effective connection is defined as

Wij(t) � [c1(t) − 1
2
sin(2c1(t))]A2

j (t)

+ [c2(t) −12 sin(2c2(t))]R2
j (t) , (51)

c1(t) � arccos(A2
j (t) + D2

ij − R2
i (t)

2Aj(t)Dij
) ,

c2(t) � arccos(R2
i (t) + D2

ij − A2
j (t)

2Ri(t)Dij
) ,

(52)

where Dij is the distance between the neurons. This essentially
represents the overlap of the axonal and dendritic zones, which
can be understood as an abstract representation for the
probability of synapse formation.

3 DYNAMIC NEURONAL GAINS

For all-to-all topologies as used in Refs. 6, 51, 53, 55, the number
of synapses is N(N − 1), which means that simulations become
impractical for large N. Brochini et al. [55] discovered that, in
their model with stochastic neurons, adaptation in a single
parameter per neuron (the dynamic gain) is sufficient to self-
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organize the network. This reduces the number of dynamic
equations from O(N2) to O(N), enabling large-scale
simulations.

The stochastic neuron has a probabilistic firing function, say, a
linear saturating function or a rational function:

P(s � 1|V) � Φ(V)
� Γ(V − θ)Θ(V − θ)Θ(1 − Γ(V − θ))

+ Θ(Γ(V − θ) − 1) , (53)

P(s � 1|V) � Φ(V) � Γ(V − θ)
1 + Γ(V − θ) Θ(V − θ) , (54)

where s � 1 means a spike, V is the membrane potential, θ is the
threshold, and Γ is the neuronal gain.

Now, let us assume that each neuron i has its neuronal gain Γi.
Several adaptive dynamics work, similar to LHG and even
simpler:

Γi(t + 1) � Γi(t) + 1
τ
[A − Γi(t)] − uΓi(t)si(t) , (55)

Γi(t + 1) � Γi(t) + 1
τ
Γi(t) − uΓi(t)si(t) , (56)

Γi(t + 1) � Γi(t) + 1
τ
− usi(t) . (57)

Costa et al. [91] and Kinouchi et al. [58] studied the stability of
the fixed points of mechanisms given by Eqs 55 and 56 and
concluded that the fixed point solution (ρ*, Γ*) is of the form
ρ* � 0+ +O(1/τ), Γ* � Γc +O(1/τ). The fixed point is a barely
stable focus for large τ, which means that demographic noise
creates the hovering around the critical point (the sawtooth SOqC
stochastic oscillations). The peaks of theses oscillations
correspond to large excursions in the supercritical region,
producing the so-called dragon king avalanches [77].

Zierenberg et al. [92] considered a cellular automaton
neuronal model with binary states si and probabilistic synapses
Pij[t] � αi[t]Wij, where αi[t] is a homeostatic scaling factor. The
homeostasis is given by a negative feedback:

αi[t + 1] � αi[t] + 1
τhp

(r* − si[t]), (58)

where τhp is the time constant of the homeostatic process and r* is
a target level. Notice that this mechanism depends only on the
activity of the postsynaptic neuron i, not the presynaptic neuron j
as in the LHGmodel. So, αi[t] plays the same role of the neuronal
gain Γi[t] discussed above.

Indeed, for a cellular automata model similar to [60, 61], a
probabilistic synapse with neuronal gains could be written as
Pij[t] � Γi[t]Wij. In order to compare with the neuronal gain
dynamics, we rewrite Eq. 58 as

Γi[t + 1] � Γi[t] + 1
τ
− usi[t] , (59)

where τ � τhp/r* and u � 1/τhp. So, in Zierenberg et al., we have a
neuronal gain dynamics similar to Eq. 10, with hovering around

the critical point and the ubiquitous sawtooth oscillations in
α[t] ≡ 〈αi[t]〉.

4 ADAPTIVE FIRING THRESHOLDS

Girardi-Schappo et al. [93] examined a network with NE � pN �
0.8N excitatory and NI � qN � 0.2N inhibitory stochastic LIF
neurons. They found a phase diagram very similar to that of the
Brunel model [94], with synchronous regular (SR), asynchronous
regular (AR), synchronous irregular (SI), and asynchronous
irregular (AI) states. Close to the balanced state g � WII/WEE �
p/q � 4 they found an absorbing-active second-order phase
transition with a critical point gc � p/q − 1/(qΓWEE). The self-
organization of the WII and WEI inhibitory synapses was
accomplished by a LHG dynamics.

They noticed, however, that for these stochastic LIF systems,
the critical point requires also a zero field h � I − (1 − μ)θ, where I
is the external input and μ is the leakage parameter. While setting
h � 0 for the critical point of spin systems is natural, obtaining
zero field in this case demands self-organization, which is done by
an adaptive firing threshold:

θi[t + 1] � θi[t] − 1
τθ
θi[t] + uθθi[t]si[t] . (60)

Notice the plus signal in the last term, since if the postsynaptic
neuron fires (si � 1) then the threshold must increase to hinder
new firings. This mechanism is biologically plausible and also
explains classical firing rate adaptation. Remembering that ρ �
〈si〉∝ h1/δh in the critical point, where δh is the field critical
exponent, from Eq. 60, we have h∝ 1/(τθuθ)δh ≈ 0 for large τθuθ.

As already seen, Del Pappa et al. [85] considered a similar
threshold dynamics, Eq. 41. Bienenstock and Lehmann [95] also
studied, at the mean field level, the joint evolution of firing
thresholds and dynamic synapses (see Section 6.3).

5 TOPOLOGICAL SELF-ORGANIZATION

Consider a cellular automata model [29, 32, 60, 61] in a network
with average degree K and average probabilistic synaptic weights
P � 〈Pij〉. The critical branching ratio is σ � PK � 1; that is,
critical average weight Pc � 1/K . Notice that we can study
networks with any K, even the complete graph, where
Pc � 1/(N − 1). In this network, what is critical is the activity,
which does not depend on the topology (the degree K).

In another sense, we call a network topology critical if there is a
barely infinite percolating cluster, which for a random network
occurs for Kc � 2. Several authors, starting in 2,000 with
Bornholdt and Rohlf [96], explored the self-organization
toward this type of topological criticality [22, 97–104].

So, we can have a critical network with a Wc and any K or a
topologically critical network with a well-defined Kc. The two
concepts (activity criticality and topological criticality) are
different, but sometimes a topological criticality also presents a
phase transition with power-law avalanches and critical
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phenomena. The topological phase transition is continuous and
has a critical point, related to the formation of a percolating
cluster of nodes, but in the Bornholdt and Rohlf (BR) model, it is
related to an order-chaos phase transition, not to an absorbing
state phase transition.

We present here a more advanced version of the BR model
[97]. It follows the idea of deleting synapses from correlated
neurons and increasing synapses of uncorrelated neurons. The
correlation over time T is calculated as

Cij[T] � 1
T + 1

∑t0+T
t�t0

si[t]sj[t] , (61)

where the stochastic neurons evolve as

Vi[t + 1] � ∑
j

Wijsj[t] , (62)

Prob(si[t + 1] � +1) � Φ(Vi) , (63)

Prob(si[t + 1] � −1) � 1 − Φ(Vi), (64)

Φ[Vi] � 1
1 + exp( − 2Γ(Vi − θi)). (65)

The self-organization procedure is as follows:

Choose at random a pair (i, j) of neurons.
Calculate the correlation Cij(T).
Define a threshold α. If Cij(T)> α, i receives a new link Wij

randomly drawn from a uniform distribution on [−1, 1] from
site j, and if Cij < α, the link is deleted.
Then, continue updating the network state {si} and self-
organizing the network.

Interesting analytic results for this class of topological models
were obtained by Droste et al. [105]. The self-organized
connectivity is about Kc ≈ 2, where the order-chaos transition
occurs. We must notice, however, that K � 2 seems to be a very
low degree for biological neuronal networks. Kuehn [106] studied
how the topological dynamics time scale τ and noise level D affect
the BR model, finding that optimal convergence to the critical
point occurs for finite values of τopt and Dopt.

Zeng et al. [107] combined the rewiring rules of the BR model
with the neuronal dynamics of the APHmodel. They obtained an
interesting result: the final topology is a small-world network with
a large number of neighbors, say 〈K〉 ≈ 100. This avoids the
criticism made above about the low number K ≈ 2 of the
BR model.

6 SELF-ORGANIZATION TOOTHER PHASE
TRANSITIONS

6.1 First-Order Transition
Mejias et al. [108] studied a neuronal population model with
firing rate ](t), which can be written in terms of the firing density
ρ � ]/]max:

τρ
dρ
dt

� −ρ + S(W(t)ρ − θ) + Dηη(t) , (66)

where S(z) � (1/2)[1 + tanh(z)] is a (deterministic) firing
function, η(t) is a zero-mean Gaussian noise, and Dη is a noise
amplitude. They used a depressing average synaptic weight
inspired by a noisy LHG model:

dW(t)
dt

� 1
τ
[1 −W(t)] − uW(t)ρ(t) + DWη(t) , (67)

where DW is the synaptic noise amplitude. Within a certain range
of noise, they observed up–down states with irregular intervals,
leading to a distribution of permanence times T in the upstate as
P(T)∝T−3/2. Notice that this model already starts with the
mean-field equations; it is not a microscopic model (although
a microscopic model perhaps could be constructed from it).

Millman et al. [109] obtained similar results at a first-order
phase transition, but now in a random network of LIF neurons
with average of K neighbors and chemical synapses. The synapses
follow the LHG mechanism:

dWij(t)
dt

� 1
τ
[A −Wij(t)] − uWij(t)sj(t) , (68)

where Wij(t) � prUij(t) in the authors notation (pr for
probability of releasing vesicles, Uij(t) for synaptic resources)
and A � pr . They found that the branching ratio is close to one in
the upstate, with power-law avalanches with size exponent 3/2
and lifetime exponent 2.

Di Santo et al. [110, 111] and Buendía et al. [7, 46] studied the
self-organization toward a first-order phase transition (called self-
organized bistability or SOB). The simplest self-organizing
dynamics was used in a two-dimensional model:

dρ( x→, t)
dt

� [a + ωE( x→, t)]ρ( x→, t) − bρ2( x→, t) − ρ3( x→, t)
+ D∇2ρ( x→, t) + η( x→, t) ,

(69)

dE( x→, t)
dt

� ∇2ρ( x→, t) + 1
τ
[A − E( x→, t)] − uρ( x→, t) , (70)

where ω, a> 0, b< 0 are constants, A is the maximum level of
charging, D is the diffusion constant, and η( x→, t) is a zero-mean
Gaussian noise with amplitude ρ. The authors’ original notation is
h � 1/τ, ϵ � u, and E is a (former) control parameter. In the limit
1/τ→ 0+, u→ 0+, 1/(τu)→ 0, this self-organization is
conservative and can produce a tuning to the Maxwell point
with power-law avalanches (with mean-field exponents) and
dragon-king quasi-periodic events.

Relaxing the conditions of infinite separation of time scales
and bulk conservation, the authors studied the model with an
LHG dynamics [7, 46, 111]:

dρ( x→, t)
dt

� [a +W( x→, t)]ρ( x→, t) − bρ2( x→, t) − ρ3( x→, t) + I

+ D∇2ρ( x→, t) + η( x→, t) ,
(71)
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dW( x→, t)
dt

� 1
τ
[A −W( x→, t)] − uW( x→, t)ρ( x→, t) , (72)

where W is the synaptic weight and I a small input. They
found that this is the equivalent SOqC version for first-order
phase transitions, obtaining hysteretic up–down activity,
which has been called self-organized collective oscillations
(SOCOs) [7, 46, 111]. They also observed bistability
phenomena.

Cowan et al. [112] also found hysteresis cycles due to
bistability in an IF model from the combination of an
excitatory feedback loop with anti-Hebbian synapses in its
input pathway. This leads to avalanches both in the upstate
and in the downstate, each one with power-law statistics (size
exponents close to 3/2). The hysteresis loop leads to a sawtooth
oscillation in the average synaptic weight. This is similar to the
SOCO scenario.

6.2 Hopf Bifurcation
Absorbing-active phase transitions are associated to transcritical
bifurcations in the low-dimensional mean-field description of the
order parameter. Other bifurcations (say, between fixed points
and periodic orbits) can also appear in the low-dimensional
reduction of systems exhibiting other phase transitions, such
as between steady states and collective oscillations. They are
critical in the sense that they present phenomena like critical
slowing down (power-law relaxation to the stationary state) and
critical exponents. Some authors explored the homeostatic self-
organization toward such bifurcation lines.

In what can be considered a precursor in this field,
Bienenstock and Lehmann [95] proposed to apply a Hebbian-
like dynamics at the level of rate dynamics to the Wilson–Cowan
equations, having shown that the model self-organizes near a
Hopf bifurcation to/from oscillatory dynamics.

The model has excitatory and inhibitory stochastic neurons.
The neuronal equations are

VE
i (t) � ∑

j

WEE
ij s

E
j (t) +∑

j

WEI
ij s

I
j(t) − θEi , (73)

VI
i (t) � ∑

j

WIE
ij s

E
j (t) +∑

j

WEI
ij s

I
j(t) − θIi , (74)

where, as before, the binary variable s ∈ {0, 1} denotes the firing of
the neuron. The update process is an asynchronous (Glauber)
dynamics:

P(s � 1|V) � 1
2
[1 + tanh(ΓV(t))] , (75)

where Γ is the neuronal gain.
The authors proposed a covariance-based regulation for the

synapses WEE and WIE and a homeostatic process for the firing
thresholds θE(t), θI(t). The homeostatic mechanisms are

dWEE(t)
dt

� 1
τEE

(cEE(t) − ΘEE) , dWIE(t)
dt

� − 1
τIE

(cIE − ΘIE) ,
(76)

dθE(t)
dt

� 1
τE

(ρE(t) − ΘE) , dθI(t)
dt

� 1
τI
(ρE(t) − ΘI) , (77)

where cEE ≡ (ρE(t) − 〈ρE(t)〉)2 is the variance of the excitatory
activity ρE(t), cIE ≡ (ρE(t) − 〈ρE〉)(ρI(t) − 〈ρI〉) is the
excitatory–inhibitory covariance, τEE, τIE, τE , τI are time
constants, and ΘEE,ΘIE,ΘE ,ΘI are target constants.

The authors show that there are Hopf and saddle-node lines in
this system and that the regulated system self-organizes at the
crossing of these lines. So, the system is very close to the
oscillatory bifurcation, showing great sensibility to external
inputs.

As commented, this article is a pioneer in the sense of
searching for homeostatic self-organization at a phase
transition in a neuronal network in 1998, well before the
work of Beggs and Plenz [17]. However, we must recognize
some deficiencies that later models tried to avoid. First, all
the synapses and thresholds have the same value, instead of
an individual dynamics for each one, as we saw in the
preceding sections. Most importantly, the network
activities ρE and ρI are nonlocal quantities, not locally
accessible to Eqs 76 and 77.

Magnasco et al. [113] examined a very stylized model of neural
activity with time-dependent anti-Hebbian synapses:

dVi(t)
dt

� ∑
j

Wij(t)Vj(t) , (78)

dWij(t)
dt

� 1
τ
(δij − Vi(t)Vj(t)) , (79)

where δij is the Kronecker delta. They found that the system self-
organizes around a Hopf bifurcation, showing power-law
avalanches and hovering phenomena similar to SOqC.

6.3 Edge of Synchronization
Khoshkhou and Montakhab [114] studied a random network
with K � 〈Ki〉 neighbors. The cells are Izhikevich neurons
described by

dVi(t)
dt

� 0.04V2
i (t) + 5Vi(t) + 140 − ui(t) + I + Isyni (t) , (80)

dui(t)
dt

� a(bVi(t) − ui(t)), (81)

if Vi ≥ 30 thenVi←c, ui←ui + d . (82)

The parameters a, b, c, and d are chosen to have regular spiking
excitatory neurons and fast spiking inhibitory neurons. The
synaptic input is composed of chemical double-exponential
pulses with time constants τs and τf :

Isyni � V0 − Vi

Ki(τs − τf )∑j Wij
⎡⎢⎢⎣exp⎛⎝ − t − (tj + τij)

τs
⎞⎠

− exp⎛⎝−t − (tj + τij)
τf

⎞⎠⎤⎥⎥⎦ , (83)
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where τij are axonal delays from j to i, V0 is the reversal potential
of the synapses, and Ki is the in-degree of node i.

The inhibitory synapses are fixed, but the excitatory ones
evolve with a STDP dynamics. If the firing difference is
Δt � tpost − tpre, when the postsynaptic neuron i fires, the
synapses change by

ΔWij �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A+(Wmax −Wij)exp( − Δt − τij
τ+

) if Δt > τij,

A−(Wmax −Wij)exp( − Δt − τij
τ−

) if Δt ≤ τij.

(84)

This system presents a transition from out-of-phase to
synchronized spiking. The authors show that a STDP
dynamics self-organizes in a robust way the system to the
border of this transition, where critical features like avalanches
(coexisting with oscillations) appear.

7 CONCLUDING REMARKS

In this review, we described several examples of self-organization
mechanisms that drive neuronal networks to the border of a
phase transition (mostly a second-order absorbing phase
transition, but also to first-order, synchronization, Hopf, and
order-chaos transitions). Surprisingly, for all cases, it is possible to
detect neuronal avalanches with mean-field exponents similar to
those obtained in the experiments of Beggs and Plenz [17].

By using a standardized notation, we recognized several
common features between the proposed homeostatic
mechanisms. Most of them are variants of the fundamental
drive-dissipation dynamics of SOC and SOqC and can be
grouped into a few classes.

Following Hernandez-Urbina and Herrmann [47], we stress
that the coarse tuning on hyperparameters of homeostatic SOqC
is not equivalent to the fine-tuning of the original control
parameter. This homeostasis is a bona-fide self-organization, in
the same sense that the regulation of body temperature is self-
organized (although presumably there are hyperparameters in
that regulation). The advantage of these explicit homeostatic
mechanisms is that they are biologically inspired and could be
studied in future experiments to determine which are more
relevant to cortical activity.

Due to nonconservative dynamics and the lack of an infinite
separation of time scales, all these mechanisms lead to SOqC
[5–7], not SOC. In particular, conservative sandpile models
should not be used to model neuronal avalanches because
neurons are not conservative. The presence of SOqC is

revealed by stochastic sawtooth oscillations in the former
control parameter, leading to large excursions in the
supercritical and subcritical phases. However, hovering around
the critical point seems to be sufficient to account for the current
experimental data. Also, perhaps the omnipresent stochastic
oscillations could be detected experimentally (some authors
conjecture that they are the basis for brain rhythms [91]).

One suggestion for further research is to eliminate nonlocal
variables in the homeostatic mechanisms. Another is to study
how the branching ratio σ, or better, the synaptic matrix largest
eigenvalue Λ, depends on the self-organization hyperparameters
(as done in Ref. [61]). As several results in this review have shown,
the dependence of criticality on the hyperparameters is always
weaker than the dependence on the original control parameter.
Finally, one could devise local metaplasticity rules for the
hyperparameters, similarly to Peng and Beggs [67] (which,
however, is unfortunately nonlocal). An intuitive possibility is
that, at each level of metaplasticity, the need for coarse tuning of
hyperparameters decreases and criticality will turn out more
robust.
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