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Mesoscopic environments and particles diffusing in them are often studied by tracking
such particles individually while their Brownian motion explores their environment.
Environments may be, e.g., a domain in a cell membrane, an interior compartment of
a cell, or an engineered nanopit. Particle trajectories are typically determined from time-
lapse recorded movies. These are recorded with sufficient exposure time per frame to be
able to detect and localize particles in each frame. Since particles move during this
exposure time, particles image with motion blur. This motion blur can compromise
estimates of diffusion coefficients and the size of the confining domain if not
accounted for correctly. We do that here. We give explicit and exact expressions for
the variance of measured positions and the mean-squared displacement of a Brownian
particle confined in, respectively, a 1D box, a 2D box, a 2D circular disc, and a 3D sphere.
Our expressions are valid for all exposure times, irrespective of the size of the confining
space and the value of the diffusion coefficient. They apply also in the common case where
the exposure time is smaller than the time-lapse due, e.g., to “dead time” caused by the
readout process in the camera. These expressions permit determination of diffusion
coefficients and domain sizes for given movies for the simple geometries we consider.
More important, the trends observed in our exact results when parameter values are varied
are valid also for more complex geometries for which no exact analytical solutions exist.
Wherever the underlying physics is the same, the exact quantitative description of its
consequences provided here is portable as a qualitative and semi-quantitative
understanding of its consequences in general. The results may also be useful for other
types of reflected Brownian motion than those occurring in single-particle tracking, e.g., in
nuclear magnetic resonance imaging techniques. For use in that particular context, we
briefly discuss the effects of confinement on anisotropic Brownian motion imaged with
motion blur.
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1 INTRODUCTION

In many branches of science, individual particles or molecules are
labeled fluorescently in order to track and characterize their
motion. To this end, they must be sufficiently isolated from
each other in time and/or space, e.g., by sparse labeling [1] or
super-resolution microscopies [2]. Only thenmay their centers be
found with a precision that increases with the number of photons
recorded [3]. When it does, nanometer precision is obtained
routinely. In this manner, single-particle tracking is used
extensively to uncover, e.g., the organization and dynamics of
biology at its shortest length scale [4] and its interactions with
nanoparticles [5]. One key advantage of single-particle tracking is
that, with sufficiently long trajectories, it yields single-particle
results. With sample-averaging unnecessary, it can detect
heterogeneity in a population. Moreover, if such heterogeneity
is absent, it can detect anomalous behavior in individual particles.
Thus spotted before averaging, such outliers can be excluded
from samples before sample-averages are calculated. This can
improve accuracy and precision of estimates substantially.

Since the molecules and particles are studied under ambient
conditions, they undergo Brownian motion. Various methods of
various qualities are used to estimate diffusion coefficients from
recorded particle trajectories describing free Brownian motion
[6, 7]. Here, we address how to do similar estimates for Brownian
motion in confined spaces: for example, a domain in a cell
membrane, a compartment inside a cell, or an engineered
nanopit [4, 8–10]. Such motion in confined domains and the
properties of the domains themselves are important. Indeed,
nano-domains in cell membranes, such as lipid nano-domains
and nano-domains created by cellular filaments, are involved in
multiple biological mechanisms, such as signal processing,
membrane trafficking, and various diseases [11–13]. Moreover,
single-particle tracking of nano-particles is often used to
characterize lab-on-a-chip devices and thus the importance of
single-particle tracking for characterization of particles and their
confining environments.

The implementation of single-particle tracking may, however,
itself confound results obtained with it. In order to track a
fluorescently labeled particle or molecule, one records a time-
lapse movie of micrographs of the particle. Typically, the dim
signal from its fluorescent label is recorded with a highly sensitive
camera. Each frame of the time-lapse movie must have recorded
enough photons from the label to permit detection and
localization of the particle in that frame [14]. So, a sufficiently
long exposure time is used. The particle, however, moves during
exposure. Since typical exposure times last tens of milliseconds,
they are much longer than the characteristic time-scale of the
particle’s inertial motion. The particle thus undergoes Brownian
motion while being imaged. This creates motion blur, and the
observed position essentially is the time-average over positions
visited by the particle during exposure. This has consequences for
the statistics of motion, such as variances of measured positions
of the particle and its mean-squared displacement (MSD).

While the effects of motion blur on the statistics of free
Brownian motion have been studied in detail [6, 14–16], less
effort has been devoted to its effects in the case of confined

Brownian motion. Clearly, if the exposure time is very long, the
particle visits all of a confining domain many times during a
single exposure time. Thus, if the domain is smaller than the
diffraction limit, super-localization techniques will locate the
particle at the centroid of the confining domain if at all. Such
consequences of motion blur have been observed [17], and
approximate formulas that correct for these effects have been
developed for specific geometries [18]. Their quality,
unfortunately, depends on the values of experimental
parameters. Therefore, we here derive exact expressions for the
variances of positions and the MSD for Brownian particles in
confinement recorded with motion blur. Specifically, we treat the
cases of 1D Brownian motion confined to a box, 2D Brownian
motion confined, respectively, to a box and to a circular disc, and
3D Brownianmotion confined to a sphere. Our formulas are valid
for all frame rates, irrespective of the value of the diffusion
coefficient and the size of the confining domain. We also
model the common case of “dead time” making the exposure
time shorter than the inverse frame rate. While our exact results
are derived for uniform and isotropic Brownian motion, we also
discuss the implications of confinement and motion blur on
anisotropic Brownian motion confined to a 2D disc. We do
this using simulated trajectories. We compare the statistics
obtained from those trajectories to the theory for the
isotropic case.

We note that confined (sometimes called reflected) Brownian
motion also plays an important role in other research fields, e.g.,
in probability theory and nuclear magnetic resonance (NMR)
imaging. Time-averaging also may influence results there, e.g., in
pulsed field-gradient spin-echo NMR, where the diffusion of the
spins during the finite duration of the pulse causes that the pores
in materials appear smaller than they are (for a review, see [19,
Sec. II.B]).

2 RESULTS

2.1 True Positions Versus Measured
Positions
In order to track a fluorescently labeled particle in a fluorescence
microscopy experiment, one records a movie of it. Typically, one
uses a constant time-lapse, Δt, between frames.1 If a particle’s true
position was x0 at time t0, we let x(t|x0, t0) denote its true position
at time t. If positions could be recorded instantaneously, we could
sample positions xj � x(tj|x0, t0) at equidistant discrete points in
time, tj � jΔt. That is, however, not how positions are recorded in
camera-based single-particle tracking. Instead, Δt is typically
divided into two complementary parts, Δtopen and Δtclosed.
Thus, Δt � Δtopen + Δtclosed. The camera shutter is open during
a finite exposure time, Δtopen, in order to record a sufficient
number of photons to determine the particle’s position with the
desired precision [3]. The time interval Δtclosed may be a necessary

1Note that by time-lapse, we mean the inverse frame rate: the lapse between, e.g.,
the start of consecutive frames. The “time-lapse” between the end of recording of
one frame and the beginning of the next frame we call dead time.
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“dead time” between frames due to finite duration of readout
processes in the camera. In general, Δtopen ≤Δt, and equality is
achieved only if the camera shutter is left open during the entire
time-lapse.

Finite exposure time can be accounted for by introducing the
shutter function sj(t), a non-negative function that integrates to
unity over the time interval Δt [15]. For the present case, the
shutter function is a step function with sj(t) � 1/Δtopen for
t ∈ [tj − Δtopen, tj] and 0 otherwise. More advanced shutter
functions can be considered [15], but they are less relevant in
practice.

Since the particle moves during the recording of its position,
its measured position is affected by motion blur. That position,
xmsr(tj|xj−1, tj−1), is found as

xmsr, j ≡ xmsr(tj|xj−1, tj−1) � ∫ tj

tj−1
sj(t)x(t|xj−1, tj−1)dt

� 1
Δtopen

∫ tj

tj−Δtopen
x(t|xj−1, tj−1)dt, (1)

provided that it started at position xj−1 at tj−1 and that the
estimated position is the temporal average over the positions

in the trajectory of the particle, x(t|xj−1, tj−1), during the
exposure time Δtopen. The difference between the true
positions, xj, and the measured positions, xmsr(tj), is illustrated
in Figure 1A for free diffusion.

Below, we explore the consequences of this time-averaging on
the variance and the mean-squared displacement (MSD) for
Brownian motion in confining spaces. For free Brownian
motion, these effects are discussed at length in, e.g., [6, 14, 15].

In real measurements, the measured position of a particle also
contains a localization error due to photon shot noise. In practice,
localization errors may be important in the analysis of
experimental data, but we present our formulas without
localization errors to keep them simple. In Section 4.5, we
briefly describe how to account also for localization errors.

2.2 Free Brownian Motion
We consider a particle embedded in a fluid at rest at finite
temperature, subject only to the fluctuating thermal forces
from the fluid surrounding it. We assume that the time-lapse
Δt, with which the particle is observed, is long relatively to the
inertial time-scale of the particle’s thermal motion. Then,
Einstein’s original description of free Brownian motion

FIGURE 1 | Consequences of finite exposure time for the measured positions of a Brownian particle. (A) Simulated positions of a free Brownian particle with
D � 1 (μm)2/s, Δt � Δtopen � 0.1 s. In a time-lapse movie of it, in the (artificial) case of instantaneous recording of positions, the particle’s positions xj are its true positions
measured at the end of each time interval, i.e., at times tj � jΔt (blue dots). In the (realistic) case of finite exposure time, the measured positions xmsr(tj) are the time-
averaged positions visited by the particle during the exposure time, as defined in Eq. 1 (red dots). (B) Histograms of the displacements of the true, Δxj � xj − xj−1,
and the measured, Δxmsr(tj) � xmsr(tj) − xmsr(tj−1), positions. Note that the variance of the measured displacements is smaller than the variance of the true
displacements: motion blur effectively low-pass filters the true trajectory, which suppresses rapid displacements, so large displacements are less likely to occur within a
time-lapse in the blurred trajectory. (C) Same as (A) for a particle diffusing in a 1D box at [0, L]with τ � L2/(4D) and Δt � Δtopen � 2τ. (D)Histograms of the positions (not
the displacements) obtained as inC. Note that while the true position visits all positions in the box with equal probability, the finite exposure time reduces the variance of
the measured positions such that the confining domain appears smaller than it is.
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applies. In this case, the time-dependence of the probability
density P to find the Brownian particle at position x at time t,
given that it was at position x0 at time t0, is governed by Fick’s
second law of diffusion (1855), the Fokker–Planck
equation [20],

zP(x, t|x0, t0)
zt

� D
z2P(x, t|x0, t0)

zx2
, (2)

with the initial condition P(x, t0|x0, t0) � δ(x − x0). Here,D is the
diffusion constant.

With the boundary conditions P(x, t|x0, t0)→ 0 for x→ ± ∞,
for all t > t0 (� closed boundaries at x � ± ∞), the solution to
Eq. 2 is

Pfree(x, t|x0, t0) � 1����������
4πD(t − t0)

√ exp[ − (x − x0)2
4D(t − t0)]. (3)

That is, the conditional probability density is normal with
mean x0 and variance σ2 � 2D(t − t0).

2.2.1 Statistics of Displacements for Instantaneously
Sampled Positions
As a consequence, consecutive sampled positions of a Brownian
particle are related by displacements Δxj ≡ xj − xj−1 that are
normally distributed with mean and covariance,

〈Δxj〉 � 0 for all j, (4)

〈(Δxj)2〉 � 2DΔt for all j, (5)

〈ΔxjΔxk〉 � 0 for j≠ k. (6)

An example of time-lapse sampled positions of a Brownian
particle is shown in Figure 1A.

Equation 2 also gives the mean-squared displacement,

MSD(n) � 〈(xj+n − xj)2〉 � 2DnΔt, (7)

with its signature proportionality to the time lag nΔt with
constant of proportionality 2D. This property is often used to
estimate the diffusion coefficient from trajectory data. To this
end, 2D is determined as the slope in a fit of a straight line to the
MSD estimated from data. This and other methods for
determination of D are still discussed in the literature [7, 21],
but for trajectories with signal-to-noise ration SNR� ����

DΔt
√

/σ loc > 1,
D is certainly determined optimally by comparing the sample
variance of the particle’s positions with Eq. 5 [6, 7].

2.2.2 Motion Blur Reduces Variances of
Displacements and Correlates Them
Since motion blur effectively acts as a low-pass filter, the statistical
properties of displacements Δxmsr, j � xmsr, j − xmsr, j−1 for
measured positions are different from those of the true
positions Δxj � xj − xj−1. For the shutter function sj(t)
introduced above, the displacements of the measured positions
have the properties [6, 7, 15]

〈(Δxmsr, j)2〉 � 2DΔt(1 − Δtopen
3Δt ), (8)

〈Δxmsr, j Δxmsr, j+1〉 � DΔtopen/3, (9)

〈Δxmsr, j Δxmsr, ℓ〉 � 0 for
∣∣∣∣j − ℓ

∣∣∣∣> 1. (10)

So, the motion blur reduces the variance of the displacements
and introduces a nearest-neighbor correlation between them.
Both effects are proportional to Δtopen. The variance decreases
from its maximal value, 2DΔt, at Δtopen � 0 to its minimum,
4DΔt/3, atΔtopen � Δt, see Figure 1B. Consequently, the value for
D is underestimated even in the absence of localization errors if
motion blur is present in measurements due to finite exposure
time but is ignored, and the sample variance of the displacements
of the measured positions is used as a naive estimate of the
diffusion coefficient D.

The MSD of the measured positions for n≥ 1, however, is still
linear in the time lag nΔt with slope 2D, though offset by a
constant due to the motion blur,

MSD(n) � 〈(xmsr, j+n − xmsr, j)2〉 � 2DnΔt − 2DΔtopen/3. (11)

Consequently, a fit of a straight line to the MSD estimated
from positions subject to motion blur will return the true value of
D on average. However, unless data are very rich, superior
alternatives for the determination of D exist also for this
case [6, 7].

2.3 Brownian Motion in 1D Confinement
To account for the statistical effects of confinement, we first
consider the simplest possible case, a particle diffusing in 1D in a
box of length L. Let x denote the coordinate of the particle with
axis chosen such that the box has x ∈ [0, L]. Equation 2 holds also
in this box, but with closed boundary conditions, i.e.,

zP(x, t|x0, t0)
zx

∣∣∣∣∣∣∣x�0,L � 0 for all t > t0. (12)

For initial condition P(x, t0|x0, t0) � δ(x − x0) with 0< x0 < L,
P(x, t|x0, t0) is found by separation of variables [22] and is

P(x, t|x0, t0) � 1
L
+ 2
L

∑∞
n�1

exp[ − (nπ
2
)2 t − t0

τ
]cos(nπx

L
)cos(nπx0

L
). (13)

Here, we have introduced the characteristic time-scale
τ ≡ (L/2)2/D. Below, we use Eq. 13 to calculate an exact
expression for the variance and the MSD for positions
measured using finite exposure time.

Brownian motion confined to a 2D square or rectangular box
is described by the independent motion of each of two Cartesian
coordinates in their respective 1D boxes.

2.3.1 Variance of Positions RecordedWith Motion Blur
for a Brownian Particle in a 1D Box
In the limiting case of instantaneous recording of exact
positions, there is uniform probability density 1/L to observe
the particle anywhere in the 1D box (Figures 1D, 2A).
Consequently, the variance of the particle’s position is
var(xmsr) � L2/12. However, for Δtopen/τ non-negligible, the
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distribution of measured particle positions depends on the value
of Δtopen/τ (Figures 2B,C). This is because motion-blurred
positions are averages over consecutive true positions, and it
is unlikely that all contributions to such an average are close to a
boundary when Δtopen/τ is non-negligible. As a result, the
confining domain appears smaller than it is [17]. On the
other hand, if Δtopen/τ≫ 1, the particle visits most of the
confining domain during each exposure and all measured
positions thus appear in the center of the box with a
vanishing positional variance, var(xmsr)x0, as consequence.

In practice, Δtopen/τ is non-negligible. In order to obtain
expressions for, respectively, the variance and the MSD for a
particle in confinement including the effect of motion blur, valid
for all values of Δtopen/τ, we follow Wong and Halvorsen [23], who
used a similar calculation for a particle in a harmonic potential. In
the process, we also account for the possibility that Δtopen <Δt.

The variance of the measured positions is

var(xmsr) ≡ 〈x2msr〉 − 〈xmsr〉2 � 〈x2msr〉 −
L2

4
, (14)

where the average 〈 · 〉 is over all possible trajectories. Here,
〈xmsr〉 � L/2, due to symmetry. Assuming a uniform distribution
of initial positions, i.e., p(x0) � 1/L for 0< x0 < L and zero
otherwise, the variance is

var(xmsr) � ∫

dx0 p(x0)〈xmsr(x0)2〉0 − L2

4

� 1
L
∫

dx0〈xmsr(x0)2〉0 − L2

4
, (15)

where 〈 · 〉0 means averaging over all trajectories starting at the
position x0. We then insert xmsr(t|x0) from Eq. 1 and write

〈xmsr(x0)2〉0 �〈∫ Δt

0
dt ∫ Δt

0
dt′ s1(t′)s1(t)x(t′|x0)x(t|x0)〉

0

� 2

(Δtopen)2∫
 Δt

Δt−Δtopen
dt′ ∫  t′

Δt−Δtopen
dt 〈x(t′|x0)x(t|x0)〉0,t′ > t.

(16)

The time-ordered auto-correlation function can be expressed
via the conditional probability density in Eq. 13,

〈x(t|x0)x(t′|x0)〉0,t′ > t � ∫ L

0
∫  L

0
xx′P(x′, t′|x, t)P(x, t|x0, 0)dxdx′.

(17)

The calculation is straightforward, but lengthy
(Supplementary Material). Using Eqs. 15, 16, 17, we get that
the variance for a particle in 1D confinement is

FIGURE 2 | Histograms of measured positions for Δtopen/τ � 0.01 (A), 0.33 (B), and 2 (C) for simulated Brownian motion of a particle in a 1D box. (D) The variance
of measured positions Δtopen/τ for the exact expression in Eq. 18 (blue full line), the approximate expression in Eq. 19 valid for Δtopen/τ≫ 1 (red dashed line), and the
approximate expression in Eq. 20 valid for Δtopen/τ≪ 1 (cyan dashed line). Horizontal black dashed line: variance � L2/12, the value for Δtopen/τ→ 0. Red dots: the
sample variances of the simulated data in (A)–(C).

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5832025

Mortensen et al. Confined Brownian Motion Tracked With Motion Blur

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


var(xmsr) � L2

15
τ

Δtopen
− L2(2

π
)8( τ

Δtopen
)2 ∑∞

p�0

1(1 + 2p)8
{1 − exp[ − ((1 + 2p)π

2
)2Δtopen

τ
]}.

(18)

This expression is exact and agrees with simulated data for
Brownian motion in 1D confinement, as shown in Figure 2D.
The result for the variance was also derived in [24] in the context
of the apparent pore sizes in materials when studied with pulsed
gradient-field spin-echo NMR.

We note that the sum in Eq. 18 converges rapidly. Terms with
p> 0 are only important for Δtopen/τ→ 0 and even for, e.g.,
Δtopen/τ � 0.1, the relative difference between the exact
expression and a truncation of it, which includes the first term
only, is less than 0.5% (see Supplementary Figure S1).

When the exposure time Δtopen is much longer than the
characteristic time, i.e., Δtopen/τ≫ 1, the variance to lowest
order in τ/Δtopen is

var(xmsr)xL2

15
τ

Δtopen
. (19)

In the opposite limit, Δtopen/τ≪ 1, we Taylor expand the terms
in the curly brackets in Eq. 18 and find

var(xmsr)xL2

12
(1 − Δtopen

τ
). (20)

Note that for Δtopen/τ→ 0, the variance is identical to the
variance L2/12 for a particle in a box with side length L and
uniform probability distribution, as it should be. These limiting
behaviors are all indicated in Figure 2D.

Since both parameters of interest, D and L, appear in the
expressions for the variance, it is not possible to determine
both of them independently based on the variance alone.
Access to the full distribution of the measured positions
would, in principle, allow this (Figure 2A–C). The MSD,
however, also grants access to this information, as we shall
see below.

2.3.2 MSD of Positions RecordedWith Motion Blur, for
a Brownian Trajectory in a Box
Obviously, the MSD must be bounded for confined Brownian
motion. Here, we consider this MSD for positions recorded with
motion blur:

MSD(n) � 〈(xmsr, n − xmsr, 0)2〉 � 2 var(xmsr) − 2〈xmsr, n xmsr, 0〉,
(21)

since 〈(xmsr, n)2〉 � 〈(xmsr, 0)2〉 � var(xmsr). Here, var(xmsr) is
given by Eq. 18 and the remaining average in Eq. 21 is again
over all trajectories. The expression for the time-ordered auto-
correlation function is calculated similarly to the variance above,
and the result for the MSD is

FIGURE 3 | Mean-squared displacements (MSDs) of measured
positions for a Brownian particle in a 1D box for Δt/τ � 0.01 (top plot), 0.33
(middle plot), and 2 (bottom plot) with Δt � Δtopen. Each panel shows the MSD
for the simulated data (red), the exact expression from Eq. 22 (black), the
expression from [18] stated in Eq. 25 (cyan), and the expression without the
effect of motion blur from Eq. 24 (green). The horizontal black dashed line
marks L2/6, the limit reached for Δt/τ→ 0 and n→∞.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 5832026

Mortensen et al. Confined Brownian Motion Tracked With Motion Blur

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


MSD(n) � 2var(xmsr)

− L2(2
π
)8( τ

Δtopen
)2 ∑∞

p�0

e−[π2(1+2p)]2 (n+Δtopen /Δt)Δt
τ

(1 + 2p)8
(1 − e

[π
2(1+2p)]2Δtopenτ )2

. (22)

The details of the calculation may be found in the
Supplementary Material. This expression is exact and agrees
with simulated data for a Brownian particle confined to a 1D
box (Figure 3). For nΔt/τ≪ 1, an expansion to lowest order in
Δt/τ and Δtopen/τ shows that the expression for the MSD in Eq. 22
in this limit reduces to the MSD for free diffusion in Eq. 11. That is,
the influence of the confining walls is negligible in this case.

For nπ2Δt/4τ≫ 1, we immediately get from Eq. 22 that
MSD(n)x2 var(xmsr), where var(xmsr) is found in Eq. 18.
Additionally, still in this limit, using Eq. 20 valid for
Δtopen/τ≪ 1, we find that

MSD(n)→ L2

6
(1 − Δtopen

τ
) for n large. (23)

Thus, motion blur, described to lowest order in Δtopen/τ, reduces
the asymptotic value ofMSD(n) by a factor (1 − Δtopen/τ) relatively
to its value in the absence of motion blur (Figure 3).

Figure 3 also illustrates that both D and L, in principle, can be
determined from data, provided that Δt < τ and n is sufficiently
large. If the first condition is not satisfied, information about D is
lost, and the MSD essentially assumes its plateau value already for
n � 1. If, on the other hand, n is limited andΔt < τ, e.g., due to poor
sampling of a particle’s trajectory, information about the confining
domain is lost, since the particle, typically, does not encounter the
boundaries in this case.

In the absence of motion blur and localization errors—i.e., if
positions are recorded instantaneously with infinite
precision—the MSD can be calculated exactly for all values of
n directly from Eq. 13 (Figure 3) [22],

MSD(n) �〈[xj+n − xj]2〉
� L2

6
⎛⎝1 − 96

π4
∑∞
p�0

exp[ − (π2 (1 + 2p))2Δtτ n]
(1 + 2p)4 ⎞⎠. (24)

Results for the MSD similar to our Eq. 22 were previously
found by Destainville and Salomé [18] in order to improve
analysis of data from [17]. Considering a fully open shutter
(Δt � Δtopen), they elegantly arrived at an expression for the
MSD by considering the lowest-order expansion of the
correlation between the true positions by adjusting the
characteristic time-scales to ensure that their expression
obeys the correct scaling properties for short and
longtime-scales. In our notation, their Eq. 8 reads2

MSDDestainville(n) � L2

9
τ

Δt −
L2

27
( τ

Δt)
2{1 − exp[−3Δt

τ
]}

− L2

54
( τ

Δt)
2

e−3n
Δt
τ {e3Δtτ + e−3

Δt
τ − 2}. (25)

This is similar, but not identical to Eq. 22, see Figure 3, likely
because their parameters were chosen to produce the correct
scaling properties from a single term, i.e., similar to our term
with p � 0 in Eq. 22. Moreover, for n→∞, the MSD reaches a
plateau value equal to twice the measured variance, and keeping
only the first term in the sum for the variance in Eq. 22 gives a
more accurate expression for the plateau value than Eq. 25when
Δtopen/τ > 0.08 (see Supplementary Figure S1). For analysis of
data, they suggest to fit the measured MSD to a simpler
expression (their Eq. 2) followed by an adjustment of the
fitted parameters to account for the finite exposure time,
rather than to fit directly with the MSD of Eq. 25. It is,
however, simpler and more accurate to estimate D and L by
fitting the measured MSDs with our exact expression, Eq. 22,
using D and L as fitting parameters.

2.4 2D Brownian Motion Confined to a Disc
Another relevant case to consider is that of a Brownian particle
confined to a 2D circular disc with radius a � L/2 and reflecting
walls at the boundary. Without loss of generality, we let the disc
be centered at the origin. In this case, the problem does not
factorize into a component for each Cartesian coordinate.
Instead, we write the particle’s position in polar coordinates
as r � r(r, ϕ) with 0≤ r < a and 0≤ ϕ< 2π. If particles are
distributed uniformly over the disc, the probability density is
in polar coordinates p(r, ϕ) � r/(πa2). The mean position is at
the center, 〈r〉 � (0, 0), in Cartesian coordinates, and the
variance is

var(r) � 〈(r − 〈r〉)2〉 � ∫ 2π

0
dϕ∫ a

0
dr r2 p(r, ϕ) � a2

2
. (26)

For the case of Brownian motion confined to a 2D disc, the
solution to the diffusion Fokker–Planck equation for the
conditional probability density for the particle’s position r at
time t, given it was r0 at time t � 0, is, with closed boundary
conditions at r � a [22],

P(r, t|r0, 0) � 1
πa2

+ 1
πa2

∑∞
ℓ�−∞

cos[ℓ(ϕ − ϕ0)] ∑∞
m�1

α2
ℓm

α2
ℓm − ℓ

2

exp[ − α2
ℓm

t
τ
] Jℓ(αℓm

r
a)Jℓ(αℓm

r0
a)

Jℓ(αℓm)2 ,

(27)

where τ � a2/D and αℓm > 0 is the mth positive root, J ′
ℓ
(αℓm) � 0,

of the derivative of the Bessel function of the first kind of order ℓ,
Jℓ . The zeros are arranged in ascending order of magnitude:
0< αℓ1 < αℓ2 < . . ..

2.4.1 Variance of Positions Recorded With Motion
Blur, for a Brownian Trajectory on a 2D Disc
For the 2D case, we define the measured position similarly to
Eq. 1. The variance of the measured positions is calculated in a
manner similar to the 1D case, and the result is

2In [18], the definition of τ is L2/12, i.e., a factor of 3 smaller than our definition
of τ.
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FIGURE 4 | Simulations of 2D Brownian motion confined to a circular domain with radius a. (A)–(C) Simulated trajectories for Δt/τ � 0.01, 0.33, and 2, respectively,
and Δt � Δtopen. The measured positions, which are affected by motion blur, are indicated with black dots connected by dashed lines. The underlying positions visited by
the particle during each frame in the time-lapse movie are shown with different color for each frame, plotted on top of each other with the latest frame on top. (D) Variance
for the same values of the ratio Δt/τ as in panels (A)–(C) (red dots). Dotted curves: the exact result for the variance in Eq. 28 (black), the approximate result in Eq. 29
valid for Δtopen ≪ τ (blue), and the approximate result in Eq. 30 valid for Δtopen ≫ τ (red). Horizontal black dashed line: variance � a2/2, the value for Δtopen/τ→ 0. (E)–(G)
Mean-squared displacements (MSDs) for Δt/τ � 0.01, 0.33, and 2, respectively, and with Δt � Δtopen. Colored dots: measured positions excluding (green) and including
(red) the effect of motion blur. Dotted lines through colored dots: exact results excluding (Eq. 32) and including (Eq. 31) the effect of motion blur. The horizontal black
dashed line marks a2, the limit reached for Δt/τ→ 0 and n→∞.
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var(rmsr) � 8a2

(Δtopen)2 ∑∞
m�1

⎧⎨⎩ τΔtopen
α4
1m(α2

1m − 1)
− τ2(1 − exp[ − α2

1m
Δtopen

τ ])
α6
1m(α2

1m − 1) ⎫⎬⎭. (28)

For details of the calculation, see Supplementary Material.
This exact expression agrees with simulated data (Figure 4A–C)
of particles undergoing Brownian motion confined to a 2D disc
and subject to motion blur (Figure 4D).

In the limit where the exposure time, Δtopen, is negligible
compared to the characteristic time, τ,

var(rmsr)x4a2 ∑∞
m�1

1
α2
1m(α21m − 1) � a2

2
(1 − 4

3
Δtopen
τ

), (29)

which is equal to the variance of a particle’s positions under
instantaneous (and noise-free) recording (see Supplementary
Material).

On the other hand, for Δtopen ≫ τ, we get

var(rmsr)x 7
24

a2τ
Δtopen

. (30)

To arrive at this expression, we evaluated the relevant sum
following [25], see Supplementary Material.

These limiting behaviors are also indicated in Figure 4D.
Qualitatively, the implications of the variance of particle positions
confined to a 2D circular domain and with positions recorded
using finite exposure time are similar to the case of a particle
confined to a box.

2.4.2 MSD of Positions RecordedWith Motion Blur, for
a Brownian Trajectory on a 2D Disc
A calculation similar to that for the 1D case yields the MSD of a
2D Brownian trajectory on a disc (Supplementary Material),

MSD(n) � 2 var(rmsr)

− 8a2( τ

Δtopen
)2 ∑∞

m�1

e−α
2
1m
(n + Δtopen/Δt)Δt

τ
α6
1m(α21m − 1) (1 − eα

2
1mΔtopen/τ)2.

(31)

This expression is exact for all values of Δtopen/τ and n≥ 1, and
it agrees with simulation results for particles undergoing 2D
Brownian motion confined to a disc (Figure 4E–G). To our
knowledge, the literature contains no similar explicit expression
for the MSD under these circumstances, let alone an exact one.
When fitting Eq. 28 to a mean-squared displacement calculated
from data, the sum converges rapidly. So, we give the first five
values of α1m for completeness: α11 � 1.8412, α12 � 5.3314,
α13 � 8.5363, α14 � 11.7060, and α15 � 14.8636.

In the case of instantaneous and noise-free recording of
positions, it has been shown that the MSD can be calculated
from Eq. 27 [22, 25]. The result is

MSD(n) � a2⎛⎝1 − 8∑∞
ℓ�1

exp[ − α21ℓ
nΔt
τ

] 1
α2
1ℓ(α2

1ℓ − 1)⎞⎠. (32)

That is, Eq. 32 is the 2D version of Eq. 24, valid for instantaneous
(and noise-free) sampling. We note that this expression is
recovered from our result, Equation (31), in the limit of
Δtopen/τ→ 0 (Supplementary Material). This expression also
agrees with simulated data of a particle undergoing 2D
Brownian motion confined to a disc, with instantaneous and
noise-free recording of simulated positions (Figure 4E–G).

2.5 3D Brownian Motion Confined to a 3D
Sphere
We now consider a Brownian particle confined to a 3D sphere
with radius a � L/2. Similar to the 2D case confined to a circle,
solutions to the diffusion equation factorize when expressed in
spherical coordinates with the center of the sphere chosen as
origin. Then, r � r(r, θ, ϕ) with 0≤ r < a, 0≤ θ < π, and 0≤ ϕ< 2π.
For particles distributed uniformly within the sphere, the
probability density distribution in Cartesian coordinates is
p(x, y, z) � 3/(4πa3) for x2 + y2 + z2 < a2. This becomes
p(r, θ, ϕ) � 3r2sinθ/(4πa3) in spherical coordinates. So, the
variance is

var(r) � 〈r2〉 � ∫  π

0
dθ∫ 2π

0
dϕ∫ a

0
dr p(r, θ, ϕ)r2

� 3
4πa3

∫ π

0
dθ sinθ∫ 2π

0
dϕ∫ a

0
dr r4 � 3a2

5
. (33)

The solution to the diffusion Fokker–Planck equation for the
conditional probability density for the particle’s position r at time
t, given it was r0 at time t � 0, with closed boundary conditions at
r � a, is [22]

P(r, r′, t) �
3

4πa3
+ 2
a3

∑∞
ℓ�0

∑ℓ
m�−ℓ

Yℓm(θ, ϕ)Y *
ℓm(θ′, ϕ′)

∑∞
n�1

β2
ℓn

β2
ℓn − ℓ(ℓ + 1) exp[ − β2

ℓn

t
τ
] jℓ(βℓnra)jℓ(βℓnr′a)

jℓ(βℓn)2 . (34)

Here, τ � a2/D and jℓ(x) �
������
π/(2x)√

Jℓ+1/2(x), where jℓ(x) is a
spherical Bessel function of the first kind and ℓ is a positive
integer. The functions Yℓm(θ, ϕ) are spherical harmonics, and β

ℓn
are the (non-zero) zeros of the derivatives of the spherical Bessel
functions, j′

ℓ
(β

ℓn) � 0, which are arranged in ascending order of
magnitude 0< β

ℓ1 < βℓ2 < . . ..

2.5.1 Variance of Positions Recorded With Motion
Blur, for a Brownian Trajectory in a 3D Sphere
For the 3D case, we define once again the measured position
similarly to Eq. 1. The calculation of the variance of the measured
positions is similar to the 1D case leading to the result (for details,
see Supplementary Material),
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FIGURE 5 | Simulations of 3D Brownian motion confined to a spherical domain with radius a. (A)–(C) Simulated trajectories for Δt/τ � 0.01, 0.33, and 2,
respectively, and Δt � Δtopen. The measured positions including the effect of motion blur are indicated (black dots connected by dashed lines). The underlying positions
visited by the particle during each frame in the time-lapsemovie are shownwith different color for each frame, plotted on top of each other with the latest frame on top. (D)
Variance for the same values of the ratio Δt/τ as in panels (A)–(C) (red dots). Dotted curves: the exact result for the variance in Eq. 35 (black), the approximate result
in Eq. 36 valid for Δtopen ≪ τ (blue). Horizontal black dashed line: variance � 3a2/5, the value for Δtopen/τ→ 0. (E)–(G) Mean-squared displacements (MSDs) for Δt/τ �
0.01, 0.33, and 2, respectively, and with Δt � Δtopen. Colored dots: measured positions excluding (green) and including (red) the effect of motion blur. Dotted lines
through colored dots: exact results excluding (Eq. 38) and including (Eq. 37) the effect of motion blur. The horizontal black dashed line marks 6a2/5, the limit reached for
Δt/τ→ 0 and n→∞.
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var(rmsr) � 12a2

(Δtopen)2 ∑∞
n�1

⎡⎢⎣ τΔtopen
β41n(β21n − 2)

− τ2(1 − exp[ − β21n
Δtopen

τ ])
β61n(β21n − 2) ⎤⎥⎦. (35)

Figure 5A–C show trajectories of particles undergoing
confined Brownian motion in a 3D sphere. The exact result
for the variances of the measured positions agrees with the
simulated data (Figure 5D). When the exposure time is small
compared to the characteristic timescale, i.e., Δtopen/τ≪ 1,
the variance of the measured positions is approximately

var(rmsr)x3a2

5
(1 − 5

3

Δtopen
τ

). (36)

Details of the calculation are presented in Supplementary
Material.

2.5.2. MSD of Positions Recorded With Motion Blur,
for a Brownian Trajectory in a 3D Sphere
A calculation similar to the one done for the 1D case gives the
MSD for a 3D Brownian trajectory confined within a 3D sphere.
The result is

MSD(n) � 2var(rmsr) − 12a2
τ2

(Δtopen)2 ∑∞
m�1

1

β61m(β21m − 2)
exp[− β21m′

nΔt + Δtopen
τ

] × (1 − e
β2
1m′

Δtopen/τ)2. (37)

This expression is exact for all values of Δtopen/τ and n≥ 1.
Figure 5E–G show excellent agreement between Eq. 37 and
the MSD calculated from simulated Brownian trajectories
confined within a 3D sphere and imaged with motion blur.
This constitutes another result that, to our knowledge, does
not exist in the literature. As for the 1D and 2D cases, the
sum converges rapidly, which is useful knowledge when
applying the expression in a fit to experimental data. So,
for practical completeness and the reader’s convenience, we
again give the first five values of β1n: β11 � 2.08158,
β12 � 5.94037, β13 � 9.20584, β14 � 12.4044, and β15 �
15.5792.

In the absence of motion-blur—i.e., in the case of instantaneous
recording of exact positions—the MSD can be calculated directly
from the propagator in Eq. 34 with the result [22]

MSD(n) � a2⎛⎝6
5
− 12 ∑∞

m�1
exp[ − β21m

nΔt
τ

] 1

β21m(β21m − 2)⎞⎠.

(38)

This result is also indicated in Figure 5E–G.

2.6 2D Anisotropic Brownian Motion
Confined to a 2D Disc
So far, we only considered isotropic Brownian motion, i.e., with
identical diffusion coefficients in all directions. Now, we discuss

the implications of confinement on anisotropic Brownian motion
that is imaged with motion blur. For simplicity, we restrict the
discussion to anisotropic 2D Brownian motion confined to a disc.
In this case, the probability density is described by a
Fokker–Planck equation, which in Cartesian coordinates reads
(compare with Eq. 2)

zP(x, y, t∣∣∣∣x0, y0, t0)
zt

� (Dx
z2

zx2
+ Dy

z2

zy2
)P(x, y, t∣∣∣∣x0, y0, t0)

� Dx( z2

zx2
+ Dy

Dx

z2

zy2
)P(x, y, t∣∣∣∣x0, y0, t0).

(39)

Here, we have chosen Cartesian coordinates with axes along
the two primary axes of the diffusion tensor without loss of
generality. The isotropic case is recovered for Dx � Dy . The
boundary condition due to the confinement is no flux
perpendicular to the boundary, i.e., at x2 + y2 � a2, and the
initial condition is P(x, y, t0

∣∣∣∣x0, y0, t0) � δ(x − x0)δ(y − y0). If
we scale the y-coordinate as y � ŷ

������
Dy/Dx

√
and let D � Dx , we get

zP(x, ŷ, t∣∣∣∣x0, ŷ0, t0)
zt

� D( z2

zx2
+ z2

zŷ2
)P(x, ŷ, t∣∣∣∣x0, ŷ0, t0), (40)

and the boundary condition becomes x2/a2 + ŷ2/b2 � 1, where
b � a

������
Dx/Dy

√
. So, the problem of anisotropic diffusion in circular

confinement is equivalent to isotropic diffusion confined to an
elliptical domain.3

By introducing elliptic coordinates and rewriting Eq. 40 in
these coordinates, a solution for the propagator can be found by
separation of temporal and spatial variables, exactly as for the
other cases considered above. The solution for the spatial part is
given in terms of Mathieu functions [26], but the structure of
these functions complicates a compact analytic solution.

Instead, we simulated trajectories of anisotropic Brownian
motion confined to a 2D disc and recorded them with Δt � Δtopen
(Materials and Methods). We did this for various values of the
ratios Dy/Dx and Δt/τ. Here, we define τ ≡ a2/Dx . Figure 6A–C
shows examples of such trajectories for Dy/Dx � 10. The variance
of the measured positions for various values of Δt/τ and Dy/Dx

are shown in Figure 6D, including and excluding the effect of
motion blur. Figure 6E–G show the corresponding MSDs for the
same values of Δt/τ and Dy/Dx.

For comparison, Figure 6D–G also show the exact theoretical
results for variance and MSD for isotropic Brownian motion,
i.e., for Dx � Dy . The variances obtained from simulations
including motion blur fall below the theory for isotropic
Brownian motion and more so for increasing ratios of Dy/Dx

and intermediate ratios of Δtopen/τ, since the motion blur there
effectively limits the observed positions of the particle. Notice that
the MSD for Δt/τ � 0.01 and finite time lags exceeds the theory
for isotropic Brownian motion, since motion blur is limited and
consequently allow observation of the longer displacements of a

3If we had started out with the slightly more general case of confinement to an
ellipse with axes parallel to the axes of the diffusion tensor, we would also land on
this result after rescaling.
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FIGURE 6 | Simulations of 2D anisotropic Brownian motion confined to a circular domain with radius a. (A)–(C) Simulated trajectories for Δt/τ � 0.01, 0.33, and 2,
respectively, with Δt � Δtopen, τ � a2/Dx , and Dy /Dx � 10. The measured positions including the effect of motion blur are indicated (black dots connected by dashed
lines). The underlying positions visited by the particle during each frame in the time-lapse movie are shown with different color for each frame, plotted on top of each other
with the latest frame on top. (D) Variance for the same values of the ratio Δt/τ as in panels (A)–(C). Plusses are for Dy /Dx � 2, dots for Dy /Dx � 5, and crosses for
Dy /Dx � 10. Color: measured positions excluding (green) and including (red) the effect of motion blur. Dotted curve: the exact result for the variance for isotropic

(Continued )
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particle with Dy >Dx relatively to those of a particle with Dy � Dx

(Figure 6E). This effect flips as Δt/τ increases and motion blur in
conjunction with Dy >Dx causes the observed MSDs to fall below
the theory for isotropic Brownian motion (Figure 6F,G).

This illustrates that for anisotropic Brownian motion, the
coupling between confinement and motion blur is non-trivial
and care must be taken to rule out anisotropic diffusion before
our exact results for isotropic Brownian motion are used to
interpret experimental results.

3 DISCUSSION

In this work, we presented exact formulas for the variance and
MSD of positions of a particle undergoing Brownian motion in
confining spaces. These formulas remain valid when random
Gaussian localization errors make true and recorded positions
differ, provided that these localization errors are independently and
identically distributed, which often is the case or may be assumed.
To account for the localization error, our formulas should be offset
merely by 2σ2loc for each coordinate contributing to the quantity of
interest, the variance, or the MSD (Section 4.5). This localization
error may be found using established methods [3, 6].

We assumed normal Brownian motion throughout this article,
and our formulas are guaranteed to apply only for such motion.
On the other hand, we used only second moments of
distributions, so results may in principle generalize to other
cases with finite second moment if they exist. In some cases,
particles may exhibit more complicated, types of motion, such as
sub-diffusion due to interactions with other molecules in a
membrane or “hop-diffusion”: particles may be almost confined
to nano-domains but “hop” between neighboring domains [17, 27].

Other complication we ignored. Particles experience increased
viscous drag near surfaces, as described by Faxén [28], and may
experience attractive depletion forces near surfaces if many smaller
particles—e.g., macromolecules—are present. Results of simulations
and experiments, in which these and other effects are, respectively,
simulated or suspected, can now be compared to the exact statistics
given above for cases of steric confinement alone.

Additionally, while the approach described here delivers results
for individual molecules, precision on estimates for parameters
requires long trajectories [4]. In applications, the number of data
points in a trajectory depends, e.g., on the fluorescent label and may
be much lower than that used in our simulations. In such cases, one
may compromise as regards true single-molecule results and average
over a sample of several or many molecules to improve statistics of
results obtained with our formulas [4].

Our formulas should facilitate that as much information as
possible can be extracted about the mobility of the particles and
the confining domains. To do this, one should account for the fact
that the estimated MSD-values are correlated, since they are

obtained from the same trajectory. This makes optimal fitting to
MSDs complicated [16]. Additionally, in the present case of confined
Brownian motion, such correlations most likely also depend on the
position of the particle relative to the boundaries. Our formulas
could, in principle, also facilitate amore accurate use of theMSD as a
basis for classifying the type of motion [27].

The covariance-based estimator (CVE) introduced and
demonstrated in [6, 7, 29] is an attractive alternative;
however, away from surfaces, it estimates the bulk value of
D, does that even from short segments of the trajectory, and
does this optimally, provided its SNR � ����

DΔt
√

/σ loc > 1 [6, 7]. So,
our exact MSD is probably best used with experimental MSD-
values as a fairly simple way to gauge deviation from bulk
behavior as function of time-scale of measurement.

In conclusion, there is still work to do in the field of analysis of
single-molecule and single-particle trajectories. Trajectories of
self-propelled particles, e.g., are better understood as persistent
random motion. Tools for analysis of such trajectories with
accounting for motion blur and/or effects of confinement
would amount to quite an oeuvre even for the simplest model,
the Ornstein-Uhlenbeck process, we predict, based on [30],
though methods developed in [31, 32] may help. Here, we
have exhausted a small fraction of this field with exact formulas
for the variances andMSDs for simple Brownianmotion, valid when
particle positions are recorded using finite exposure time, which is
the typical case by far. These formulas should help researchers to get
the most out of their data for motion of Brownian particles and the
domains that confine them, e.g., for particles diffusing in cell
membranes [4, 10, 17].

4 MATERIALS AND METHODS

4.1 Simulations
Equation (3) describes the propagator P(x, t|x0, t0) of the
diffusion equation. It shows how to propagate free
diffusion between fixed points in time, tj � jΔt (j integer):
given that the particle is at position xj at time tj, simply draw a
random number from a Gaussian distribution with zero mean
and variance σ2 � 2DΔt and add this random number to xj.
The sum is xj+1. Thus, we simulate time-lapse sampled
positions on a trajectory of Brownian motion by iterating

xj+1 � xj +
�����
2DΔt

√
ηj, (41)

where (ηj)j�1,2,... is the normalized Gaussian white noise, i.e., for
all i, j, 〈ηj〉 � 0 and 〈ηiηj〉 � δij. The displacements Δxj � xj −
xj−1 are consequently by construction independent and normally
distributed, with zero mean and variance σ2 � 2DΔt. Since
independent, they are uncorrelated, 〈ΔxiΔxj〉 � 0 for i≠ j;
compare Eqs. 4–6.

FIGURE 6 | Brownian motion Dy /Dx � 1 (Eq. 28). Horizontal black dashed line: a2/2, corresponding to the variance for a uniform distribution on a circle. (E)–(G)Mean-
squared displacements (MSDs) for Δt/τ � 0.01, 0.33, and 2, respectively, and with Δt � Δtopen. The symbols and the colors are as in (D), but are slightly offset for clarity.
Dotted lines through colored symbols: Exact results for isotropic Brownian motion, Dy/Dx � 1, excluding (Eq. 32) and including (Eq. 31) the effect of motion blur. The
horizontal black dashed line marks a2, i.e., twice the variance for a uniform distribution on a circle.
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4.2 Simulation of Free Brownian Motion
With Motion Blur
We simulate the effect of motion blur by dividing the time-lapse Δt
into a large number of sub-intervals of duration δt. Instead of
iterating Eq. 41 with Δt, we iterate it with δt in Δt’s place and time-
average the resulting positions over each time-lapse of duration Δt.
These averages equal the measured positions described in Eq. 1,
except we approximated its integral with a sum over many terms.

4.3 Simulation of Brownian Motion in
Confinement
For free diffusion, it was possible to simulate a trajectory by sampling
randomnumbers from the probability density function inEq. 3, as the
function is a Gaussian. In principle, one could simulate diffusion of a
particle diffusing between walls at x � 0 and x � L in a similar
manner by drawing random number from the probability density
distribution in Eq. 13. For

�����
2DΔt

√
≪ L, which is the case in our

simulations, it is much simpler just to iterate Eq. 41 with two extra
conditions: if an iterationmakes xj+1 < 0, this position is replaced by its
image reflected in the box-wall at x � 0, i.e., with −xj+1 > 0, and
iteration is continued from this value, which is recorded as the position
at time tj+1. Entirely analogous, if an iteration makes xj+1 > L, this
position is replaced by its image reflected in the box-wall at x � L,
i.e., with 2L − xj+1 < L, and iteration is continued from this value,
which is recorded as the position at time tj+1.

This protocol assumes that xj+1 < − L and xj+1 > 2L never occurs,
which is why we assume

�����
2DΔt

√
≪ L; it ensures that these

inequalities occur with negligible probability. Not that this is
crucial. The methods of mirrors just described are easily
generalized to handle the occurrence of said inequalities.

For more complex geometries, e.g., the 2D disc, closed boundaries
can be implemented as described in [33]. For the case of anisotropic
Brownian motion confined to a 2D disc, the implementation of the
reflecting boundary is complicated. So, we implemented it by
exploiting that anisotropic Brownian motion confined to a circular
domain is equivalent to isotropic Brownian motion confined to an
elliptical domain, see Section 2.6. With this transformation, the
reflecting boundary conditions may be implemented, essentially, as
described in [33]. After generating such transformed trajectories, we
scaled positions back to original space.

4.4 Calculation of the Mean-Squared
Displacement From Data
We estimated the mean-squared displacement from the
simulated positions with [7]

MSDdata(n) � 1
N − n

∑N−n

j�1
(xj+n − xj)2, (42)

where xj, j � 1, 2, 3, . . .N , are the measured or simulated
positions in the trajectory.

4.5 Influence of Localization Errors
If the expected number of photons collected from the label on a
particle is constant in time, the standard deviation, σ loc, of the
localization error does not depend on time. Since images are
uncorrelated, so are the localization errors in different frames
in the movie of the particle. Consequently, the localization
error can be accounted for by adding 2σ2loc to any value of the
variance and/or the MSD for a position coordinate. Here, the
factor 2 is the number of positions involved in calculation of a
variance or MSD. That is, for the variances and the MSDs
stated for the 1D case in Section 2.3, simply add 2σ2loc to all
results, for the results for the 2D cases in Sections 2.4 and 2.6,
add 4σ2loc, and for the results for the 3D case in Section 2.5,
add 6σ2loc.
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