
Probability Calculations Within
Stochastic Electrodynamics
Daniel C. Cole*

Department of Mechanical Engineering, Boston University, Boston, MA, United States

Several stochastic situations in stochastic electrodynamics (SED) are analytically
calculated from first principles. These situations include probability density functions,
as well as correlation functions at multiple points of time and space, for the zero-point (ZP)
electromagnetic fields, as well as for ZP plus Planckian (ZPP) electromagnetic fields. More
lengthy analytical calculations are indicated, using similar methods, for the simple harmonic
electric dipole oscillator bathed in ZP as well as ZPP electromagnetic fields. The method
presented here makes an interesting contrast to Feynman’s path integral approach in
quantum electrodynamics (QED). The present SED approach directly entails probabilities,
while the QED approach involves summing weighted paths for the wave function.
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1 INTRODUCTION

This article is largely intended for providing a new calculational method for deducing the stochastic
properties of electromagnetic radiation and classical charged particles in the theory called stochastic
electrodynamics (SED). This new calculational method to be described here might well be useful in
some contexts outside of SED; nevertheless, the main focus here will indeed be SED.

Summarizing quickly, SED is a classical physical theory involving classical charged particles and
classical electromagnetic (E&M) radiation, where Maxwell’s classical, microscopic electromagnetic
equations hold. The motion of point charges is assumed to be described by the relativistic
Lorentz–Dirac classical equation of motion. What is particularly interesting about SED is that
the basic assumptions of SED are few, they are not complicated, and their basis makes clear physical
sense. A number of physicists over the years, including the author, have felt that SED might not only
be a substitute for the part of quantum theory (QT) consisting of quantum mechanics (QM) and
quantum electrodynamics (QED), but much more so, provide the basis to derive or deduce QM and
QED, or, at the very least, to provide a deeper physical understanding of QM and QED.

To emphasize this point, many well-known systems traditionally analyzed in QM, such as the
simple harmonic oscillator (SHO) in either one, two, or three dimensions, fluctuating electric dipole
SHOs, including interacting systems of such electric dipoles, plus van der Waals forces, Casimir
forces, the thermal-like behavior of electrodynamic systems uniformly accelerated through the
“vacuum,” diamagnetism, aspects of hydrogen, and blackbody radiation dynamics [1, 2], have all
been analyzed within the classical theory of SED. This range of “QM” phenomena, that has always
been considered outside the domain of classical physics, became understandable in a coherent,
consistent, and logical manner in SED, without needing to draw on any extraneous “physical or
phenomenological” concepts. Moreover, not only did these classical physics, calculations with ZP or
ZPP classical E&M radiation provide close connections with QED results, in some cases, the SED
results also preceded QED calculations, such as pioneered by Boyer in the case of uniformly
electrodynamic system through the “vacuum” [3–7], or even in the case of Casimir and van der
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Waals forces, where the physics in SED seems clearer, and
changing from T � 0 calculations to T > 0 calculations is much
simpler in the case of SED than QED [8].

Recently, Boyer made a strong argument [9] that SED is the
best classical physical theory for describing physical phenomena,
as it contains a range of QM and QED predictions, in addition to
the expected classical physics. Moreover, these QT predictions by
SED are remarkable, not just in their prediction via classical
physics, but also that the supposed faults of classical physics, such
as the collapse of Rutherford’s orbital model of the atom, or no
explanation for van derWaals or Casimir forces, are “repaired” by
taking into account the full interaction between classical charges
and classical electromagnetic radiation.

Some of the key original articles on SED were in the 1960s, by
Marshall [10, 11] and Boyer [12, 13]. As expected for a classical
physical theory, SED recognizes that accelerated and de-
accelerated charges create E&M radiation; in turn, E&M
radiation effects the motion of charged particles via the
Lorentz force term. However, what is significantly different for
SED from classical physics as typically taught, is the recognition
that if classical charged particles can exist in a thermodynamic
equilibrium state, such as for atoms and molecules, then this can
only be done in a stochastic equilibrium between charges and
E&M fields. The E&M fields fluctuate, as expected in blackbody
radiation, but the charges also fluctuate in position, since the two
entities are connected together. Fluctuations of one result in
fluctuations of the other. In other words, the dilemma that
Rutherford immediately recognized after proposing his
“miniature solar system” model of the atom, with electrons
orbiting the nucleus, is addressed in SED. If only classical
charges are present, then Rutherford’s model will result in
E&M energy radiated off as the electrons orbit, and the orbits
will collapse. We now know that the time for decay, for a classical
hydrogen atom, is about 1.3 × 10−11 s, starting from the Bohr
radius [14]. Moreover, if the charges were attempted to be held in
some static configuration (no orbiting), we know from
Earnshaw’s theorem that a stable stationary equilibrium
configuration is also not possible [15]. Thus, classical E&M
radiation and classical charged particles must both be present
if there is any hope for equilibrium, with of course radiation
effecting the particles, and particles creating radiation, and a
stochastic balance resulting.

What the early SED researchers recognized is that to obtain
thermodynamic equilibrium between radiation and charges,
there must be special stochastic properties of the radiation,
and consequently also of the charges. They deduced that these
interesting relationships must logically be deductible at all
temperatures, indeed, even at T � 0, which gave rise to the
notion of classical electromagnetic zero-point (ZP) radiation.

Several good reviews exist on all of this work: Ref. [16]
provides an excellent history on the development of SED.
Other reviews of interest are [9, 17–19]. These reviews discuss
the deductions made by researchers about the properties of
classical electromagnetic ZP radiation, such as Lorentz
invariant [12, 20], and that the fundamental definition of T �
0 must be obeyed by ZP radiation [1, 21, 22]. Some of the more

recent work, such as on hydrogen in SED, is briefly outlined in
Ref. [23].

The outline of this article is as follows. In Sections 2.1 and 2.2,
certain stochastic properties will be calculated for the E&M
radiation fields in SED, first using a new technique that was
covered to a lesser extent in Section 3 of Ref. [23]. Some
comparisons of this approach will also be made to earlier
n-point correlation function approaches by others, particularly
by Boyer [24], as well as Marshall [20], the results of which have
been used extensively, and extended, by others, including this
author. Section 2 has several subsections, including Section 2.3,
which provides checks on the results derived in Section 2.2.
Section 2.4 relates results in Section 2.2 to the multivariate
normal distribution, and why the latter applies to the
stochastic fields described here.

Section 3 ends with some concluding remarks. In particular,
some brief comments are first made about extending this
calculational method to the electric dipole oscillator immersed
in these stochastic fields, meaning either ZP or ZPP fields as
treated in SED. The electric dipole oscillator, one of the first
systems analyzed in SED, is discussed in terms of why this system
“easily” lends itself to the stochastic method discussed here. The
calculations are long with this method, but can be carried out. In
contrast, a system like the classical hydrogen atom is far more
difficult and has not yet been shown to be tractable. The point is
made that a similar situation existed for the Feynman path
integral approach.

2 PROBABILITY DENSITY FUNCTION
CALCULATIONS FOR ELECTRIC AND
MAGNETIC RADIATION FIELDS
2.1 Introduction to the Calculational Method
We will begin the calculations in this article by determining the
probability density functions for various stochastic properties of
the classical electromagnetic ZP radiation fields in SED, as well as
the zero-point plus Planckian (ZPP) fields. Actually, both
situations can be treated at once, with the temperature T in
the expressions allowing the distinction, with 0≤T .

The present Section 2 will address how to determine the
probabilistic functions of the E&M stochastic fields in SED. The
subsequent section, 3, will then turn to calculating the stochastic
properties of a classical electric dipole SHO within ZPP radiation.
The main difference between what will be done in this article and
what is typically done in SED is that normally the mean, the
variance, and correlation quantities of the stochastic E&M fields,
and the position and momentum of the oscillator’s fluctuating
particle are directly calculated. These quantities are sometimes,
although not always, calculated at different times and positions in
SED. For some problems, the correlations at different times and
positions are critical, although this is not the case for many other
types of SED problems. One place where clearly the different
times and positions were essential in the system analysis, had to
do with the uniform acceleration of electrodynamic systems
through the vacuum, such as in Refs. [3–7].
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Of course, given any probability distribution or density
function associated with a single random variable X, one can
calculate an infinite number of moments, such as
〈(X − 〈X〉)N〉 � ∫∞−∞ dxP(x)(x − 〈x〉)N , for N � 1, 2, 3, . . .,
where the angled brackets mean “expectation value,” and
where P(x) is the probability density function associated with
X. However, for a Gaussian probability density distribution of a
single random variable, there are only two defining parameters,
namely, the mean, or μ ≡ 〈X〉, and the variance,
σ2 ≡ 〈(X − 〈X〉)2〉. All other moments 〈(X − 〈X〉)N〉, for
N � 1, 2, 3, . . ., can be expressed in terms of just µ and σ.

For a multivariate Gaussian distribution, which actually
defines the classical ZP and ZPP E&M radiation, each
frequency and polarization component of the radiation is
assumed to be governed by an independent Gaussian process.
Thus, the situation is more complicated. Nevertheless, the
previous paragraph helps to identify the difference between
past work in SED involving stochastic process calculations,
which largely dealt with moment calculations like
〈(X − 〈X〉)N〉, whereas here we will directly calculate
quantities like P(x).

Early on in SED, the “two-point correlation functions” of the
stochastic fields, at different times and positions, were calculated
in detail, and were used to deduce “n point” correlation functions,
again where different times and spatial positions were included
when calculating these correlation functions. An excellent source
for investigating deeply these “n point” correlation functions was
by Boyer in Ref. [24], where not only were the SED correlation
functions determined, but also compared to the expectation
values of the corresponding QED functions, involving
annihilation and creation operators. The quantities were
shown to be in agreement, provided the quantum operators
were symmetrized. In contrast, in this article, the probabilities
of these quantities will be directly calculated, rather than
calculating individual moments of fields and oscillator
coordinates. This same approach can also be used in a similar
manner for the probability distribution for linear nonrelativistic
electric dipole SHOs, although the calculations become even
longer than for the fields. Brief comments will be made on
this topic in Section 3.

As often done in SED, where the ZP and ZPP fields are critically
important to the final physics results, the radiation fields at
temperature T ≥ 0 are characterized by T of course, but must
also be thought of as having a rapid variation in space and time.
This aspect was tackled by Planck using classical physics, covered in
the first half of his famous book [25], “The Theory of Heat
Radiation,” which is still basically represented by the SED theory.
The second half of his book, however, introduces quantum concepts
involving energy and frequency related to what QT now treats as
photons. SED certainly avoids this direction, but the first part of
Planck’s work, which was also used later by Einstein and Hopf [26,
27], still applies to the beginnings of SED. Indeed, the work by
Marshall and Boyer in SED has parallels to this early work by Planck
and Einstein and Hopf, with the important caveat that equilibrium
radiation must exist at T � 0 [12, 13], and the recognition that ZP
radiation is key to getting the stochastic thermodynamic behavior of
classical charged particles and classical E&M correct.

To adequately describe the “radiation dynamics” in SED,
usually a large region of space is considered, where “large”
means compared to the size that any charged particles
representing atomic systems are encompassing or traversing.
Thus, in the same vein as Planck, Einstein, and Hopf, SED
typically considers a rectangular parallelepiped region in space,
with dimensions Lx , Ly , and Lz , along the x, y, and z axes. Other
shapes can in principle be used, but a rectangular parallelepiped
offers mathematical simplicity, without effecting the physical
description if the volume is large. The radiation fields
representing ZP or ZPP conditions are typically expressed as
an infinite sum of plane waves, with periodic boundary
conditions (bcs) imposed. The imposition of periodic bcs
makes use of the Fourier analysis process for representing the
fields, such that if the region is large enough, then the imposition
of periodicity does not affect the physical analysis, but does
simplify the subsequent mathematical analysis.

Thus, the following expressions for the “free” electric E(x, t)
and magnetic B(x, t) radiation fields in this large parallelepiped
volume can be written as the following sum of plane waves [16]:

E(x, t) � 1(LxLyLz)1/2 ∑∞
nx ,ny ,nz�−∞

∑
λ�1,2

ε̂kn ,λ[Akn ,λcos(kn · x − ωnt)

+ Bkn ,λsin(kn · x − ωnt)],
(1)

B(x,t)� 1(LxLyLz)1/2 ∑∞
nx ,ny ,nz�−∞

∑
λ�1,2
(k̂n× ε̂kn ,λ)[Akn ,λcos(kn ·x−ωnt)

+Bkn ,λsin(kn ·x−ωnt)],
(2)

where

kn � 2πnx

Lx
x̂ + 2πny

Ly
ŷ + 2πnz

Lz
ẑ, (3)

and nx , ny , and nz are integers, and ωn � c|kn|,
kn · ε̂kn ,λ � kn · ε̂kn ,λ′ � 0, and ε̂kn ,λ · ε̂kn ,λ′ � 0 for λ≠ λ′, where λ
and λ′ indicate the linear polarization direction. Specifically, λ
might be represented by the values 1 or 2, and the same for λ′.
Also, k̂n � kn/|kn|. Equations 1 and 2 satisfy the wave equations
of ∇2E(x, t) � 1

c2
z2

zt2 E(x, t) and ∇2B(x, t) � 1
c2

z2

zt2 B(x, t), which
can be deduced from Maxwell’s equations for free space (charge
density and current charge density both equal to zero). Moreover,
the presence of ε̂kn ,λ and (k̂n × ε̂kn ,λ) in Eqs. 1, 2 respectively, and
the cited relationships of kn · ε̂kn ,λ � kn · ε̂kn ,λ′ � 0, and ε̂kn ,λ ·
ε̂kn ,λ′ � 0 for λ≠ λ′, provide the other needed relationships for
satisfying the four Maxwell’s equations for free fields, such as
Faraday’s law of ∇ × E � − z

czt B.
Following more or less the lead of Planck’s first half of Ref. [25],

the above radiation fields represent the stochastic fluctuations of
thermal radiation, for 0≤T (i.e., including T � 0), with the
following assumptions. The coefficients of the expressions for
E(x, t) and B(x, t) in Eqs. 1 and 2, namely, Akn ,λ and Bkn ,λ,
were assumed to be randomly distributed in the following way
initially, but once fixed, they stay fixed in all physical analysis, such
as in the interaction of charged oscillators and radiation, as in
simulations of [28–31]. In the case of simulations, the physical
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picture is conceptually fairly simple, although of course
computationally intensive. Each time a charged particle system,
such as an “oscillator or atom,” undergoes its motion due to an
atomic binding force, and due to the radiation fields in Eqs. 1 and
2, the subsequent scenario of particle motion and radiation
fluctuations would represent a real situation of say, the classical
atom inside a large cavity kept at temperature T. However,
“redoing” the simulation or “experiment” would be carried out
with a different set of Akn ,λ and Bkn ,λ coefficients, to represent a
similar but different initial set of conditions.

Each time a similar “experiment” of radiation and charges is
considered, the experiment is treated as another member of the
ensemble of similar experiments. This part of SED coincides with
the thoughts in the first half of Planck’s major treatise [25] and later
by Einstein’s and Hopf [26, 27]. Related SED discussions can be
found in Refs. [16, 17]. However, most of the following relationships
make physical sense without even referring to these references.

Specifically, the expectation value of these coefficients
characterizing the ensemble of ZPP radiation fields is of
course zero:

〈Akn ,λ〉 � 〈Bkn ,λ〉 � 0. (4)

Moreover, the “A and B coefficients” are considered to be both
independent and uncorrelated random variables in this
ensemble, so

〈Akn ,λBkn′ ,λ′
〉 � 0, (5)

as are the “A coefficients” with different indices, and the same for
the “B coefficients”:

〈Akn ,λAkn′ ,λ′
〉 � 〈Bkn ,λBkn′ ,λ′

〉 � 0, if n≠n′ or λ≠ λ′. (6)

However, for two “A coefficients” with the same indices, and
similarly for the “B coefficients,” then of course, these quantities
cannot be zero, but are assumed to be functions of the frequency
of the radiation and of the temperature T:

〈Akn ,λAkn ,λ〉 � 〈Bkn ,λBkn ,λ〉 � [σ(ωn,T)]2. (7)

Although Eqs. 4–7 are indeed assumed in SED, the more general
relationship that includes all these relationships, plus more, is that
the A′s and B′s coefficients are assumed to be independent
random variables, with zero mean as in Eq. 4, with variance
[σ(ωn,T)]2, and with probability density distributions
characterizing the ensemble of possible radiation situations
characterizing thermal radiation at temperature T, for 0≤T , as
being Gaussian distributions. Specifically:

P(Akn ,λ) � 1������������
2π[σ(ωn,T)]2
√ exp{ − 1

2
[ Akn ,λ

σ(ωn,T)]2}, (8)

with the same also holding for P(Bkn ,λ). From these independent
Gaussian distributions, Eqs. 4–7 also follow.

Initial understanding of the importance of the statistical
properties of ZP and ZPP in SED, and how these properties
relate to the resulting fluctuating and equilibrium properties

of charged particles interacting with this radiation, focused a
fair bit on [σ(ωn,T)]2 [16]. The Lorentz invariant property of
ZP found independently by Marshall [20] and Boyer [12], is
due to the functional form connected to this function. Similarly,
the thermodynamic connection of the meaning of T � 0 to
this radiation and interacting particles is also tied to
[σ(ωn,T)]2 [1, 21, 22]. Other work by Boyer deduced
additional symmetry properties of the required classical E&M
nature of ZP and ZPP radiation that involved scaling and
conformal invariances [32].

All of these analyses have led to the following in SED for the
ZPP spectrum:

[σ(ωn,T)]2 � 2πZωn + 4πZωn

exp(Zωn
kBT
) − 1

� 2πZωncoth( Zωn

2kBT
). (9)

Note: lim
T→ 0

coth( Zωn
2kBT
) � 1. Consequently, the term 2πZωn

constitutes the ZP (T→ 0) spectrum contribution, while the
4πZωn

exp(ZωnkBT
)−1 term is the Planckian part. Using Eqs. 9, 1, and 2,

the ensemble average of the net energy due to these thermal
radiation fields for 0≤T , within the Lx × Ly × Lz rectilinear
parallelepiped, can be calculated. Specifically, using the
relationships above, and the usual relationship between
electromagnetic energy in free space and the E&M fields [15], yields

E � ∫

dV
1
8π

〈E2(x, t) + B2(x, t)〉 �∑
n

⎡⎢⎣Zωn

2
+ Zωn

exp(Zωn
kBT
) − 1

⎤⎥⎦,
(10)

where ωn � c|kn| follows from Eq. 3; n is composed of {nx, ny, nz},
where nx, ny, nz are each integers, ranging from −∞ to ∞. The

term in Eq. 10 of Zωn
2 is considered the ZP radiation contribution,

since as T→ 0, the second term of Zωn

exp(ZωnkBT
)−1 vanishes. This second

term is what Planck concentrated his efforts upon, and of course is
connected to the Planck spectrum. We will refer to Eq. 10 as being
due to the ZP plus Planckian spectrum, or as the ZPP spectrum.

Now, we are in a position to calculate the probability
distributions of E(x, t) and B(x, t) in Eqs. 1 and 2, as well
as consider much more complicated joint probabilities
involving E(x, t) and B(x, t). We will carry this analysis out
now; again, in Section 3, we will apply these ideas to electric
dipole oscillators in SED.

We start by calculating the probability density function of
realizing a specific value of the electric field, for the ZPP situation.
Our ensemble varies of course due to its ensemble members,
meaning by the ensemble distribution of the A′s and B′s in Eqs. 1
and 2 each time a new radiation situation is considered, then new
A′s and B′s are realized according to the probability density
distribution in Eq. 8, that then remain of constant values over
the course of the subsequent physical analysis involving charged
particles and fields.

As a start, the probability density distribution at position x and
time t in Eq. 1 is
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P(E at x, t) � ∫
−∞

∞

dA1/∫
−∞

∞

dAN/∫
−∞

∞

dB1/∫
−∞

∞

dBN/P(A1, . . . ,

AN , . . . ,BN , . . . )δ3[E − EZPP(x, t)], (11)

where A′s and B′s here are symbolically written to represent
the coefficients in Eq. 1, but as labeled there by Akn ,λ and Bkn ,λ.
In Eq. 11, P(A1, . . . ,AN ,B1, . . . ,BN ) represents the
probability density function of all these coefficients. In the
end, we would let N→∞. By EZPP(x, t) in the Dirac delta
function, we mean Eq. 1, but where the ZPP conditions of
Eqs. 8-9 hold.

The key variables being integrated over in Eq. 11 are Akn ,λ

and Bkn ,λ variables. The integrations from −∞ to +∞ cover the
range of their full possible values, while
P(A1, . . . ,AN , B1, . . . ,BN) provides the probability density
associated with those values, and δ3[E − EZPP(x, t)] selects
the values such that the probability density P(E at x, t) arises
from all the possible matches of EZPP(x, t) to the electric field
value in question of E at x, t. As a side comment, in a sense, Eq.
11 has something in common with the Feynman path integral
method in QM and QED, as the latter integrates over all weighted
“path” contributions of a wave function evolving from one state to
another. In contrast, Eq. 11 considers all the “paths,” or allowed
values of the Akn ,λ and Bkn ,λ coefficients in the ensemble of radiation
possibilities, that result in the condition E at x, t. While Eq. 11
directly involves probabilities, the Feynman path integral involves
the QM wave function Ψ, with

∣∣∣∣Ψ|2 more indirectly providing the
probability aspect.

Returning back to our present calculation involving Eq. 11, if
either n≠ n′, or λ≠ λ′, then Akn ,λ and Akn

′
,λ′ represent independent

random variables, as do Bkn ,λ and Bkn
′
,λ′; moreover, Akn ,λ and Bkn

′
,λ′

are also independent random variables, even when n � n′ and
λ � λ′. Using the Fourier representation for the Dirac delta
function in Eq. 11 of

δ3[E − EZPP(x, t)] � 1
2π
∫∞

−∞
dsxe

isx(Ex−Ex,ZPP) 1
2π
∫∞

−∞
dsye

isy(Ey−Ey,ZPP)

1
2π
∫∞

−∞
dsze

isz(Ez−Ez,ZPP), (12)

in addition to the Gaussian distribution in Eq. 8, then Eq. 11
becomes:

P(E at x, t) � ∫
−∞

∞

dA1/∫
−∞

∞

dAN . . .
1�����

2πσ2
n1

√ exp[ − (A1)2
2σ2n1

] . . . 1�����
2πσ2nN

√ exp[ − (AN )2
2σ2

nN

] . . .
×∫
−∞

∞

dB1/∫
−∞

∞

dBN . . .
1�����

2πσ2n1

√ exp[ − (B1)2
2σ2

n1

] . . . 1�����
2πσ2

nN

√ exp[ − (BN )2
2σ2

nN

] . . .
× 1
2π
∫
−∞

∞

dsxe
isx(Ex−Ex,ZPP) 1

2π
∫
−∞

∞

dsye
isy(Ey−Ey,ZPP) 1

2π
∫
−∞

∞

dsze
isz(Ez−Ez,ZPP) ,

(13)
where to simplify notation, ωn and T will be suppressed here:

[σ(ωn,T)]2 ≡ σ2
n . (14)

To evaluate Eq. 13, Eq. 1 needs to be substituted in three places
on the last line. To simplify notation yet again, let us replace Eq. 1 via

EZPP(x, t) �∑
q

AqEcq +∑
q

BqEsq, (15)

where q represents all the indices of nx, ny, nz , λ, with their
appropriate ranges, Aq still represents Akn ,λ, and likewise for Bq

and Bkn ,λ, and we will also refer to σ2n as σ2q from here on, again
to simplify notation. Also, in Eq. 15, the expression has been
abbreviated using

Ecq ≡
1(LxLyLz)1/2 ε̂kn ,λcos(kn · x − ωnt), (16)

and

Esq ≡
1(LxLyLz)1/2 ε̂kn ,λsin(kn · x − ωnt). (17)

Hence:

P(E at x, t) � ∫

dA1/∫

dAN . . .
1����
2πσ21
√ exp[ − (A1)2

2σ21
] . . . 1�����

2πσ2N
√ exp[ − (AN )2

2σ2N
] . . .

×∫

dB1/∫ 

dBN . . .
1����
2πσ21
√ exp[ − (B1)2

2σ21
] . . . 1�����

2πσ2N
√ exp[ − (BN )2

2σ2N
] . . .

× 1
2π
∫
−∞

∞

dsxe
isx(Ex−∑

q
(AqEcq,x+BqEsq,x))

× 1
2π
∫
−∞

∞

dsye
isy(Ey−∑

q

AqEcq,y+BqEsq,y)

× 1
2π
∫
−∞

∞

dsze
isz(Ez−∑

q

AqEcq,z+BqEsq,z)
.

(18)
These integrals can be done by completing the squares of theAq and Bq

variables, then integrating over the resulting Gaussian expressions,
followed by the integrals over s1, s2, s3. For example, completing the
square:

− (Aq)2
2σ2q

− isxAqEcq,x − isyAqEcq,y − iszAqEcq,z

� − 1
2σ2q
[Aq + i(sxEcq,x + syEcq,y + szEcq,z)σ2q]2

− (sxEcq,x + syEcq,y + szEcq,z)2σ2q2
(19)

results in:

∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − (Aq)2

2σ2q
⎤⎥⎥⎥⎦e−isxAqEcq,x e−isyAqEcq,y e−iszAqEcq,z

� ∫
−∞

∞

dAq
1����
2πσ2q
√ exp

⎧⎨⎩ − 1
2σ2

q

[Aq + i(sxEcq,x + syEcq,y + szEcq,z)σ2
q]2⎫⎬⎭

× exp[ − (sxEcq,x + syEcq,y + szEcq,z)2σ2
q

2
]

� exp[ − (sxEcq,x + syEcq,y + szEcq,z)2σ2q2 ],
(20)

since the Gaussian integral in the second line equals unity.
Continuing for each Aq and Bq results in:
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P(E at x, t) � 1
2π
∫
−∞

∞

dsxe
isxEx

1
2π
∫
−∞

∞

dsye
isyEy

1
2π
∫
−∞

∞

dsze
iszEz

× exp⎡⎢⎢⎣ −∑
q

(sxEcq,x + syEcq,y + szEcq,z)2σ2q2 ⎤⎥⎥⎦
× exp⎡⎢⎢⎣ −∑

q

(sxEsq,x + syEsq,y + szEsq,z)2σ2
q

2
⎤⎥⎥⎦.

(21)

Three integrals remain, namely, over sx , sy , sz . The
arguments of the two exponential terms in the second and
third lines of Eq. 21, become, after making use of Eqs. 16
and 17:

(sxEcq,x + syEcq,y + szEcq,z)2 + (sxEsq,x + syEsq,y + szEsq,z)2
� 1(LxLyLz) (s2xε2q,x + s2yε

2
q,y + s2zε

2
q,z + 2sxsyεq,xεq,y

+2sxszεq,xεq,z + 2syszεq,yεq,z). (22)

Still, the three integrals in Eq. 21 are nontrivial to evaluate,
because of the cross terms in Eq. 22. However, the
integrals can be greatly simplified by first summing
over the polarization indices of λ � 1, 2 as part of the “q”
set of indices, and making use of the following
identities for the three perpendicular unit vectors of ε̂kn ,1,
ε̂kn ,2, and kn:

∑
λ�1,2
[(ε̂kn ,λ)i]2� 1 − [(kn)i

kn
]2, (23)

∑
λ�1,2
(ε̂kn ,λ)i(ε̂kn ,λ)j� δij − (kn)i(kn)j

k2n
. (24)

After summing over the λ part of the q indices, one obtains:

∑
q

(s2xε2q,x + s2yε
2
q,y + s2zε

2
q,z + 2sxsyεq,xεq,y + 2sxszεq,xεq,z + 2syszεq,yεq,z)σ2

q

�∑
n

{s2x[1 − (kn,xkn
)2] + s2y[1 − (kn,ykn

)2] + s2z[1 − (kn,zkn
)2]}σ2n

−2∑
n

[sxsykn,xkn,yk2n
+ sxsz

kn,xkn,z
k2n

+ sysz
kn,ykn,z
k2n

]σ2n.
(25)

Although the “cross terms” involving sxsy , sxsz , sysz still remain,
upon summing over n in the last three terms, we obtain

∑
n

kn,ikn,j
k2n

σ2
n � 0 for i≠ j , (26)

since nx , ny , nz each vary as integers symmetrically from −∞ to
+∞, where kn is given in Eq. 3.

Consequently, from Eqs. 21, 25 and 26:

P(E at x, t) � I1I2I3, (27)

where

Ii ≡
1
2π
∫∞

−∞
dsiexp⎛⎝isiEi − 1

2
s2i(LxLyLz)∑n [1 − (kn,ikn

)2]σ2
n
⎞⎠.
(28)

Simplifying notation, let

αi ≡
1(LxLyLz)∑n [1 − (kn,ikn

)2]σ2n. (29)

By then completing the square in Eq. 28 and carrying out the
integral, yields

Ii � 1
2π
∫
−∞

∞

dsiexp( − s2i αi
1
2
+ isiEi)

� 1
2π

exp( − E2
i

2αi
)∫

−∞

∞

dsiexp[ − αi

2
(si − iEi

αi
)2]

� 1
2π

exp( − E2
i

2αi
)(2π

αi
)1/2,

(30)

resulting in

P(E at x, t) � I1I2I3

� 1

(2π)32
1

(α1α2α3)1/2
exp( − E2

x

2α1
− E2

y

2α2
− E2

z

2α3
). (31)

More insight into Eq. 31 can be gained by relating αi in Eq. 29, to
〈E2

ZPP,i(x, t)〉, using Eqs. 6, 7, and 23:

〈E2
ZPP,i(x, t)〉 �〈⎧⎪⎨⎪⎩ 1(LxLyLz)1/2 ∑

nx ,ny ,nz�−∞

∞ ∑
λ�1,2
(ε̂kn ,λ)i

×[Akn ,λcos(kn · x − ωnt) + Bkn ,λsin(kn · x − ωnt)]⎫⎪⎬⎪⎭
2〉

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2
[(ε̂kn ,λ)i]2σ2n[cos2(kn · x − ωnt)

+ sin2(kn · x − ωnt)]
� 1(LxLyLz) ∑

nx ,ny ,nz�−∞

∞ [1 − (kn,i
kn
)2]σ2

n . (32)

Combining Eqs. 29, 31 and 32 and noting

αi � 〈E2
ZPP,i(x, t)〉, (33)

we obtain:

P(E at x, t) �
exp[ − E2x

2〈E2ZPP,x〉
]���������

2π〈E2
ZPP,x〉

√ exp[ − E2y
2〈E2ZPP,y〉

]���������
2π〈E2

ZPP,y〉
√ exp[ − E2z

2〈E2ZPP,z〉
]���������

2π〈E2
ZPP,z〉

√ .

(34)

Note that the mathematically detailed development of Eq. 34, and
shortly Eq. 37 for the magnetic field case, agree nicely with the less
detailed, but still the same result from Ref. [16].
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In the symmetrical situation, with Lx � Ly � Lz chosen for the
rectilinear parallelepiped, then

〈E2
ZPP,x〉 � 〈E2

ZPP,y〉 � 〈E2
ZPP,z〉 � 〈E2

ZPP,i〉

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ {1 − [(kn)i
kn
]2}σ2

n �
2

3(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

σ2
n

(35)

and

PLx�Ly�Lz(E at x, t) � 1(2π〈E2
i 〉)3/2 exp⎡⎣ − (E

2
x + E2

y + E2
z)

2〈E2
i 〉

⎤⎦. (36)

Thus, the probability density for the radiation electric field E at
position x and time t, from either Eqs. 34 or 36, equals the product of
three Gaussian functions. Moreover, the probability density of E is
independent of position x and time t. If material walls existed, as in a
cavity of arbitrary shape, as opposite to this free space situation treated
by periodic bcs, then the probability density function for the fields
could well be dependent on position. In Planck’s original treatment of
blackbody radiation [25], he considered a cavity with smooth walls
and a size that was large compared to the key wavelengths of interest.
Since his work, researchers have probed on variations of these
concerns, including small cavities, often referred to as the areas of
quantum cavity electrodynamics [33, 34]. To treat these problems in
SED, one would need to take into account the precise nodal structure
due to the cavity shape, and likely not take continuum approximation
limits.

Looking back at the calculations, it is fairly easy to show
that when analyzing magnetic fields, but now using Eq. 2,
that:

P(B at x, t) �
exp[ − B2x

2〈B2ZPP,x〉
]���������

2π〈B2
ZPP,x〉

√ exp[ − B2y
2〈B2ZPP,y〉

]���������
2π〈B2

ZPP,y〉
√ exp[ − B2z

2〈B2ZPP,z〉
]���������

2π〈B2
ZPP,z〉

√ .

(37)

Finally, a caution needs to be made upon understanding Eqs.
32–37. When ZP radiation is included in the analysis, which is
indeed a cornerstone of SED, 〈E2

ZPP,i(x, t)〉 is infinite, as the
energy spectrum monotonically grows with larger values of
frequency. If one only considers the Planckian part of the
spectrum, then this infinity does not happen. However, for
calculating quantities like Casimir forces, van der Waals
forces, and prevention of hydrogen collapse, it is absolutely
essential to include the ZP spectrum. Cutoffs of the spectrum
have been considered, but to date, the usual treatment has been to
examine changes in regions between material boundaries, such as
plates or cavity walls, when these are displaced. Such changes in
energy due to wall displacements are finite, even with ZP fields
[2]. Moreover, the results agree with experiments carried out to
date. However, when considering the calculation in the next
section, involving the probability of the electric field at two
different positions and/or times, this infinity problem does not
occur, unless the two points are chosen to be the same point both
in space and time, or if |Δx| � c|Δt|.

2.2 Joint Probability Density for Two Electric
Field Values
The method just used can in principle be carried out for a wide
range of probabilistic situations, with the key starting point
being a similar condition to Eq. 11. A second calculation for a
more complicated situation will be carried out here to
illustrate this point. Before beginning, it is interesting to
note that a number of “two-point” correlation functions of
fields in SED have been calculated before by researchers, with
the key reference being [24], but also [20], as well as by the
present author in Ref. [35] and even for two-point correlation
functions involving points in space and time following
uniformly accelerated trajectories [7]. Clearly, probability
density distributions such as in Eqs. 34 and 37 are more
general, since they can be used to deduce all possible
moments of the probability distribution; however, their
calculation is in general much more involved.

Here, we will calculate the joint probability density function of

P(E1 at x1, t1;E2 at x2, t2)
� ∫ 

dA1/∫

dAN/∫

dB1/∫ 

dBN/P(A1, . . . ,AN , . . . ,BN , . . . )
(38)

×δ3[E1 − EZPP(x1, t1)]δ3[E2 − EZPP(x2, t2)], (39)

where the semicolon in the first line is intended as a shortened
meaning for the logical “AND” symbol of ∩  .

Again, we make use of the random variable independence of the
A′s and B′s for a normal thermodynamic radiation situation, and
impose the distribution Eq. 8, plus use Eq. 12, to obtain:

P(E1 at x1 , t1;E2 at x2 , t2)

� ∫ 

dA1/∫ 

dAN/
1�����

2πσ2n1

√ exp[ − (A1)2
2σ2

n1

]/ 1�����
2πσ2nN

√ exp[ − (AN )2
2σ2nN

]/
×∫ 

dB1/∫ 

dBN/
1�����

2πσ2n1

√ exp[ − (B1)2
2σ2

n1

]/ 1�����
2πσ2nN

√ exp[ − (BN )2
2σ2nN

]/
× 1
2π
∫
−∞

∞

ds1xe
is1x(E1x−E1x,ZPP) 1

2π
∫
−∞

∞

ds1ye
is1y(E1y−E1y,ZPP) 1

2π
∫
−∞

∞

ds1ze
is1z(E1z−E1z,ZPP)

× 1
2π
∫
−∞

∞

ds2xe
is2x(E2x−E2x,ZPP) 1

2π
∫
−∞

∞

ds2ye
is2y(E2y−E2y,ZPP) 1

2π
∫
−∞

∞

ds2ze
is2z(E2z−E2z,ZPP) ,

(40)

where the positions x1 and x2 and times t1 and t2 are contained in the
radiation field expressions of Eq. 1 or 15. Thus, in Eq. 40, E1x,ZPP,
E1y,ZPP, and E1z,ZPP refer to EZPP(x1, t1) as in Eq. 15, and similarly for
EZPP(x2, t2). Again abbreviating expressions, as in 16 and 17, with
a � 1, 2, as below:

EZPP(xa, ta) � 1(LxLyLz)1/2 ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2

ε̂kn ,λ [Akn ,λcos(kn · xa

−ωnta) + Bkn ,λsin(kn · xa − ωnta)]
�∑

q

AqEa,cq +∑
q

BqEa,sq. (41)

Collecting the Aq-related terms in Eq. 40 as in the following
manner, then later doing similarly for the Bq terms:
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−(Aq)2
2σ2q

− is1xAqE1,cq,x − is1yAqE1,cq,y − is1zAqE1,cq,z − is2xAqE2,cq,x

− is2yAqE2,cq,y − is2zAqE2,cq,z

� − 1
2σ2

q

[Aq + i(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z

+ s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)σ2
q]2−(s1xE1,cq,x + s1yE1,cq,y

+ s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2
q

2
. (42)

Now integrating over each Aq term, followed later by integrating
over the related Bq term expression, results in:

∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − (Aq)2

2σ2q
⎤⎥⎥⎥⎦e−i(s1xAqE1,cq,x+s1yAqE1,cq,y+s1zAqE1,cq,z+s2xAqE2,cq,x+s2yAqE2,cq,y+s2zAqE2,cq,z)

� ∫
−∞

∞

dAq
1����
2πσ2q
√ exp⎡⎢⎢⎢⎣ − 1

2σ2q
⎡⎢⎢⎣Aq + i⎛⎝ s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z

+s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z

⎞⎠σ2q⎤⎥⎥⎦2⎤⎥⎥⎥⎦
× exp[ − (s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ]
� exp[ − (s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ].

(43)
Integrating over each Aq and Bq results in:

P(E1 at x1 , t1; E2 at x2, t2)

� 1

(2π)6 ∫−∞
∞

ds1xe
is1xE1x ∫

−∞

∞

ds1ye
is1yE1y ∫

−∞

∞

ds1ze
is1zE1z ∫

−∞

∞

ds2xe
is2xE2x ∫

−∞

∞

ds2ye
is2yE2y ∫

−∞

∞

ds2ze
is2zE2z

× exp⎡⎢⎢⎣ −∑
q

(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2σ2q2 ⎤⎥⎥⎦
× exp⎡⎢⎢⎣ −∑

q

(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2σ2
q

2
⎤⎥⎥⎦
(44)

Six integrals remain, namely, over s1x , s1y , s1z , s2x , s2y , and s2z .
The arguments of the exponential terms in the last lines of Eq.
44, using Eq. 41 as well as Eqs. 16 and 17, and recognizing that
many of the terms below have the simplification factor of

cos2(kn · xa − ωnta) + sin2(kn · xa − ωnta) � 1 , (45)
for either a � 1 or 2, then:(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2
+(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2
� 1(LxLyLz) (s21xε2q,x + s21yε

2
q,y + s21zε

2
q,z + s22xε

2
q,x + s22yε

2
q,y + s22zε

2
q,z)

+ 2(LxLyLz) (s1xεq,xs1yεq,y + s1xεq,xs1zεq,z + s1yεq,ys1zεq,z)
+ 2(LxLyLz) (s2xεq,xs2yεq,y + s2xεq,xs2zεq,z + s2yεq,ys2zεq,z)
+ 2s1xεq,x(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

+ 2s1yεq,y(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

+ 2s1zεq,z(LxLyLz) (s2xεq,x + s2yεq,y + s2zεq,z)(C1C2 + S1S2)

(46)

The meaning of the abbreviated terms (C1C2 + S1S2) is:
(C1C2 + S1S2) � cos(kn · x1 − ωnt1)cos(kn · x2 − ωnt2)

+sin(kn · x1 − ωnt1)sin(kn · x2 − ωnt2)
� cos[kn · (x1 − x2) − ωn(t1 − t2)] ≡ C12,n. (47)

Again summing over the polarization indices of λ � 1, 2 as part of the
“q” set of indices in the last lines ofEq. 44, andmaking useEqs. 23 and
24, plus noting that the cross terms of εq,iεq,j for i≠ j, will drop out due
to the sum in Eq. 26, results in:∑
q

(s1xE1,cq,x + s1yE1,cq,y + s1zE1,cq,z + s2xE2,cq,x + s2yE2,cq,y + s2zE2,cq,z)2
+∑

q

(s1xE1,sq,x + s1yE1,sq,y + s1zE1,sq,z + s2xE2,sq,x + s2yE2,sq,y + s2zE2,sq,z)2
� 1(LxLyLz) ∑

nx ,ny ,nz�−∞

∞ ⎡⎢⎢⎣(s21x + s22x)(1 − k2
n,x

k2n
) + (s21y + s22y)⎛⎝1 − k2

n,y

k2n
⎞⎠

+ (s21z + s22z)(1 − k2
n,z

k2n
)⎤⎥⎥⎦ + 2(LxLyLz) ∑

nx ,ny ,nz�−∞

∞ ⎡⎢⎢⎣s1xs2x(1 − k2
n,x

k2n
)

+ s1ys2y⎛⎝1 − k2
n,y

k2n
⎞⎠ + s1zs2z(1 − k2

n,z

k2n
)⎤⎥⎥⎦C12,n .

(48)
Hence:

P(E1 at x1, t1;E2 at x2, t2) � 1

(2π)6 ∫−∞
∞

ds1xe
is1xE1x ∫

−∞

∞

ds1ye
is1yE1y

∫
−∞

∞

ds1ze
is1zE1z ∫

−∞

∞

ds2xe
is2xE2x ∫

−∞

∞

ds2ye
is2yE2y ∫

−∞

∞

ds2ze
is2zE2z

× exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s21x + 2s1xs2xC12,~n + s22x)(1 − k2
n,x

k2n
)

+(s21y + 2s1ys2yC12,~n + s22y)⎛⎝1 − k2
n,y

k2n
⎞⎠

+(s21z + 2s1zs2zC12,~n + s22z)(1 − k2
n,z

k2n
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
σ2q
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� I1x2xI1y2yI1z2z

(49)where

I1x2x ≡
1

(2π)2 ∫∞

−∞
ds1x ∫∞

−∞
ds2x

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

is1xE1x + is2xE2x

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21x + 2s1xs2xC12,n + s22x)(1 − k2
n,x

k2n
) σ2n

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(50)

I1y2y ≡
1

(2π)2 ∫∞

−∞
ds1y ∫∞

−∞
ds2y

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
is1yE1y + is2yE2y

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21y + 2s1ys2yC12,n + s22y)⎛⎜⎜⎜⎜⎝1 − k2
n,y

k2n

⎞⎟⎟⎟⎟⎠ σ2n
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
(51)
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I1z2z ≡
1

(2π)2 ∫∞

−∞
ds1z ∫∞

−∞
ds2z

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

is1zE1z + is2zE2z

− 1(LxLyLz) ∑∞
nx ,ny ,nz�−∞

(s21z + 2s1zs2zC12,n + s22z)(1 − k2
n,z

k2n
) σ2n

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(52)

Now to evaluate one of these integrals, it does not matter
which we pick, as they all have the same form. Choosing I1x2x ,
we can first complete the square in s1x , then integrate over s1x ,
followed by completing the square in s2x , and then integrating
over s2x .

I1x2x � 1

(2π)2 ∫∞

−∞
ds1x ∫∞

−∞
ds2x

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− s21x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,x

σ2n
2

+s1x⎛⎝iE1x − 2s2x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
C12,nK

2
n

σ2n
2
⎞⎠

+is2xE2x − s22x
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,x

σ2n
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(53)

where

K2
n,x ≡ (1 − k2

n,x

k2n
). (54)

Let

Ax ≡
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
K2
n,xσ

2
n (55)

and

Bx ≡ ⎛⎝iE1x − s2x(LxLyLz) ∑∞
nx ,ny ,nz�−∞

C12,nK
2
n,xσ

2
n
⎞⎠, (56)

where C12,n was defined in Eq. 47. Then:

I1x2x � 1

(2π)2 ∫
∞

−∞
ds1x ∫∞

−∞
ds2xexp[ − 1

2
s21xAx + s1xBx + is2xE2x − 1

2
s22xAx]

� 1

(2π)2 ∫
∞

−∞
ds2xexp(is2xE2x − 1

2
s22xAx) × ∫∞

−∞
ds1xexp( − 1

2
s21xAx + s1xBx)

(57)

Completing the square with

−uu2 +Bu � −(uu2 −Bu) � −( ��
u

√
u − B

2
��
u

√ )2 +B2

4u
, (58)

results in:

I1x2x � 1

(2π)2 ∫
−∞

∞

ds2xexp(is2xE2x − 1
2
s22xAx)

×
⎧⎪⎨⎪⎩exp( B2

x

2Ax
)∫

−∞

∞

ds1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎣ −⎛⎜⎜⎜⎝ ���

Ax

2

√
s1x − Bx

2
��
Ax
2

√ ⎞⎟⎟⎟⎠2⎤⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎬⎪⎭
� 1

(2π)2 ∫
−∞

∞

ds2xexp(is2xE2x − 1
2
s22xAx)⎡⎢⎢⎢⎢⎣exp( B2

x

2Ax
) ��

π
√

(12Ax)1/2⎤⎥⎥⎥⎥⎦.
(59)

To now carry out the integration over s2, Bx in Eq. 56 must be
expanded, as Bx contains s2. Also, let

Cx ≡
1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
C12,nK

2
n,xσ

2
n, (60)

so that

Bx ≡ iE1x − s2xCx. (61)
Then:

I1x2x �
���
2π

√
(2π)2

1
A1/2

x

∫∞
−∞

ds2xexp(is2xE2x − 1
2
s22xAx)

× exp[ 1
2Ax

(iE1x − s2xCx)2]
� 1

(2π)3/2A1/2
x

∫∞
−∞

ds2xexp(is2xE2x − 1
2
s22xAx)

× exp[ − E2
1x

2Ax
− s2xiE1xCx

Ax
+ s22xC

2
x

2Ax
]

� 1

(2π)3/2A1/2
x

∫∞
−∞

ds2xexp{ − s22x[12Ax − C2
x

2Ax
]

+ s2x(iE2x − iE1xCx

Ax
) − E2

1x

2Ax
}.

Applying Eq. 58 again:

I1x2x �
exp( − E2

1x

2Ax
)

(2π)3/2A1/2
x

∫∞
−∞

ds2x

× exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣s2x(Ax

2
− C2

x

2Ax
)1/2

− (iE2x − iE1xCx
Ax
)

2(Ax
2 − C2

x
2Ax
)1/2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

+ (iE2x − iE1xCx
Ax
)2

4(Ax

2
− C2

x

2Ax
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
exp( − E2

1x

2Ax
)

(2π)3/2A1/2
x

��
π

√

[12Ax − C2
x

2Ax
]1/2 exp

⎧⎪⎨⎪⎩ − (E2x − E1xCx
Ax
)2

4[1
2
Ax − C2

x

2Ax
]
⎫⎪⎬⎪⎭

� 1

2πAx(1 − C2
x

A2
x
)1/2 exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−E2
1x − E2

2x + 2E2xE1x
Cx

Ax

2Ax(1 − C2
x

A2
x

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(62)
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As will be discussed in more detail in Section 2.4, our
deduction of Eq. 62 is actually a multivariate normal
(Gaussian) distribution involving E1x and E2x . Moreover,
this distribution depends on the spatial and time
differences, (x1 − x2) and (t1 − t2), between the two space
time points, through the quantity Cx. Moreover, since I1x2x,
I1y2y , and I1z2z will all have the same form as in Eq. 62, and the
final probability density P(E1 at x1, t1;E2 at x2, t2) in Eq. 49 is
just the product I1x2x · I1y2y · I1z2z , then we will have obtained a
multivariate normal distribution involving six field values at
two points in space and time: E1x, E1y, E1z , E2x, E2y, and E2z .
Again, these points will be made clearer in Section 2.4.

2.3 Checks on Behavior of I1x2x
To be a probability density for E1x and E2x , as given by I1x2x , certain
probabilistic properties must hold. We will examine some of them
here, such as

∫∞

−∞
dE2x ∫∞

−∞
dE1xI1x2x

should equal unity. Checking:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xI1x2x � ∫
−∞

∞

dE2x ∫
−∞

∞

dE1x
1

2πAx(1 − C2
x

A2
x
)1/2

× exp

⎧⎪⎪⎨⎪⎪⎩−E2
1x − E2

2x + 2E2xE1x
Cx

Ax

2Ax(1 − C2
x

A2
x

)
⎫⎪⎪⎬⎪⎪⎭

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − E2

2x

2Ax(1 − C2
x

A2
x

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× ∫
−∞

∞

dE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2 + E2

2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

2x

2Ax(1 − C2
x

A2
x

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ +E2

2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × ∫

−∞

∞

dE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x

) ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp( − E2
2x

2Ax
)⎡⎢⎣ ��

π
√

�����������
2Ax(1 − C2

x

A2
x

)√ ⎤⎥⎦
� 1�����

2πAx

√ ∫
−∞

∞

dE2xexp( − E2
2x

2Ax
) � 1�����

2πAx

√ �����
π2Ax

√ � 1 ,

(63)

so this is fine.

Another check is whether

∫∞

−∞
dE2iI1i2i � P(E1i), (64)

and of course the opposite situation of ∫∞−∞ dE1iI1i2i � P(E2i). In Eq.
64, we have already deduced from earlier work, including Eq. 34, that

P(Ei at x1, t1) �
exp[ − E2i

2〈E2ZPP,i〉
]���������

2π〈E2
ZPP,i〉

√ . (65)

As shown earlier, Eq. 65 turns out to be independent of x1, t1,
where i � 1, 2, 3 refers to x, y, z, respectively. Mathematically,
this independence on x1, t1 arises because 〈E2

ZPP,i〉 is
independent of x1, t1, as seen in Eq. 32. A more “physical”
view of this result is that the stochastic properties of the ZP
and ZPP fields are homogeneous and isotropic in space and
independent of time origin. In any case, from Eqs. 32, 54, and
55, and if we generalize Ax to Ai for i � 1, 2, and 3, to include
all three x, y, z cases, then:

〈E2
ZPP,i〉 � 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
(1 − k2

n,i

k2n
)σ2n � Ai. (66)

Returning to Eq. 64 and using 50:

∫∞
−∞

dE2iI1i2i �

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

1i

2Ai(1 − C2
i

A2
i

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2πAi(1 − C2
i

A2
i
)1/2 ∫∞

−∞
dE2iexp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2
2i + 2E2iE1i

Ci

Ai

2Ai(1 − C2
i

A2
i

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −E2

1i

2Ai(1 − C2
i

A2
i

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2πAi(1 − C2
i

A2
i
)1/2 exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ E2
1i

C2
i

A2
i

2Ai(1 − C2
i

A2
i

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∫∞
−∞

dE2i

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1����������

2Ai(1 − C2
i

A2
i
)√ E2i −

E1i
Ci
Ai����������

2Ai(1 − C2
i

A2
i
)√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1

2πAi(1 − C2
i

A2
i
)1/2 exp[−E

2
1i

2Ai
] ������������

π2Ai(1 − C2
i

A2
i

)√

� 1����
2πAi

√ exp[−E2
1i

2Ai
] �

exp[ − E2
1i

2〈E2
ZPP,1i〉

]���������
2π〈E2

ZPP,1i〉
√ ,

using Eq. 66 at the end. By symmetry, ∫∞−∞ dE1iI1i2i � P(E2i) then
also holds.
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Another obvious item to check is whether∫∞−∞ dE2x ∫∞−∞ dE1xE1xI1x2x � 0 (or vice versa 〈E2x〉 � 0, by
symmetry):

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xE1xI1x2x � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − E2

2x

2Ax(1 − C2
x

A2
x

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∫−∞
∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2

1x + 2E2xE1x
Cx

Ax

2Ax(1 − C2
x

A2
x

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − E2

2x

2Ax(1 − C2
x

A2
x

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠∫−∞
∞

dE1xE1x

× exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2 + E2

2x

C2
x

A2
x

2Ax(1 − C2
x

A2
x

) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp( − E2
2x

2Ax
)∫

−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x

) ⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(67)

In the integral on the far right, bottom line, let E1x − E2x
Cx
Ax

� u
and du � dE1x :

∫
−∞

∞

dE2x ∫
−∞

∞

dE1xE1xI1x2x � 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xexp( − E2
2x

2Ax
)

× ∫
−∞

∞

du(u + E2x
Cx

Ax
)exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −u2

2Ax(1 − C2
x

A2
x

)⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2x

× exp( − E2
2x

2Ax
){0 + E2x

Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}
�

Cx

Ax

(2πAx)1/2 ∫−∞
∞

dE2xE2xexp( − E2
2x

2Ax
) � 0 ,

(68)

since the integral is odd in E2x .
Now trying a check that is more involved, we will compute a 2-

point correlation function in the fields, using the probability density
I1x2x.Wewill calculate an example, along the lines of Ref. [24], but also
carrying the calculations to a final analytical expression,more along [7,
35]. Hence, this will be an example, with of course many other two
point sets of coordinates in time and space that could be carried out,
but even this single example is nontrivial to carry out. Most
importantly, however, this example shows how to carry out the
analysis in Ref. [24] via the probability density method discussed here.

Following roughly along Refs. [24, 35], and [7], then:

〈EZPP,x(0, 0)EZPP,x(ŷR, t)〉
� ⎛⎜⎝ 1(LxLyLz)1/2⎞⎟⎠

2 ∑
nx ,ny ,nz�−∞

∞ ∑
λ�1,2
(ε̂kn ,λ)x ∑

nx ′,ny ′,nz ′�−∞

∞ ∑
λ′�1,2

⎛⎝ε̂kn
′
,λ′
⎞⎠

x

×

×〈 [Akn ,λcos(kn · 0 − ωn0) + Bkn ,λsin (kn · 0 − ωn0)]×
×[Akn′ ,λ

′cos (kn′ · ŷR − ωn′t) + Bkn′ ,λ′sin (kn′ · ŷR − ωn′t)] 〉
� 1(LxLyLz) ∑∞

nx ,ny ,nz�−∞
λ�1,2

(ε̂kn ,λ)x ∑∞
nx′ ,ny′ ,nz′�−∞

∑
λ′�1,2

(ε̂k
n′ ,λ

′)
x
δnn′δλ,λ′ cos (kn′ · ŷR

− ω~n′ t)σ2(ω~n,T)
� 1(LxLyLz) ∑

nx ,ny ,nz�−∞
λ�1,2

∞ (ε̂kn ,λ)2xcos (kn · ŷR − ωnt)σ2(ωn,T)

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ [1 − (kn,x

kn
)2]cos (kn,yR − ωnt)σ2(ωn,T) (69)

Making the change of discrete to continuous variables, with
kn � 2πnx

Lx
x̂ + 2πny

Ly
ŷ + 2πnz

Lz
ẑ, for large values of Lx , Ly , Lz , with

Δnx ≈
Lx
2π

dkx,Δny ≈
Ly

2π
dky ,Δnz ≈

Lz

2π
dkz (70)

enables integrals to be carried out. Moreover, although the ZPP
spectrum in the integral could be evaluated, the ZP spectrum is
certainly much easier to do so analytically. Since this is just an
example, we will proceed with restriction to the ZP case,
or [σ(ω,T)]2 → 2πZω � 2πZkc:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉
≈

1

(2π) ∫∞
−∞

dkx
1

(2π) ∫∞
−∞

dky
1

(2π) ∫∞
−∞

dkz[1 − (kn,x

kn
)2]

× cos(kyR − ωt)2πZω
� 2πZ

(2π)3 ∫
∞

−∞
dkx ∫∞

−∞
dky ∫∞

−∞
dkzkc[1 − (kxk)2]

× [cos(kyR)cos(ωt) + sin(kyR)sin(ωt)].
The second term of sin(kyR)sin(ωt) makes the integrand odd in ky .
Hence:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � Zc

(2π)2 ∫∞

−∞
dkx ∫∞

−∞
dky ∫∞

−∞
dkz

× K[1 − (kx
k
)2]cos(kyR)cos(kct).

Next, we will make ky be the axis where the polar angle is
measured from, so that ky � kcosθ. Consequently, kx �
ksinθsinϕ and kz � ksinθcosϕ. Hence:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zc

(2π)2 ∫∞

0
dkk2 ∫π

0
dθsinθ

×∫2π

0
dϕk[1 − sin2θsin2ϕ]cos(Rkcosθ)cos(kct). (71)

Since
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1
2π
∫2π

0
dϕsin2ϕ � 1

2
,

then:

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � Zcπ

(2π)2 ∫∞

0
dkk3cos(kct)∫π

0
dθsinθ[2 − sin2θ]cos(Rkcosθ).

(72)
Using

∫π

0
dθsinθ[2 − sin2θ]cos(Rkcosθ)
� 2∫π

0
dθsinθcos(Rkcosθ) − ∫π

0
dθsin3θcos(Rkcosθ), (73)

with u � Rkcosθ, du � −Rksinθdθ, the first term in Eq. 73 becomes:

2∫π

0
dθsinθcos(Rkcosθ) � 2∫−Rk

Rk
(−du

Rk
)cos(u)

� − 2
Rk

sinu

∣∣∣∣∣∣∣∣−RkRk

� 4
Rk

sin(Rk). (74)

The second term in Eq. 73 becomes:

− ∫
0

π

dθsin3θcos(Rkcosθ) � − ∫
−Rk

+Rk
du
Rk
[1 − cos2θ]cos(u)

� − 1
Rk
∫
−Rk

+Rk
ducos(u) + 1

(Rk)3 ∫
−Rk

+Rk
du · u2cos(u)

� − 1
Rk

sin(u)
∣∣∣∣∣∣∣∣Rk−Rk + 1

(Rk)3 [4Rkcos(Rk) − 4sin(Rk) + 2(Rk)2sin(Rk)]
� + 4

(Rk)2 cos(Rk) −
4

(Rk)3 sin(Rk) . (75)

From Eqs. 73–75:

∫
0

π

dθsinθ[2 − sin2θ]cos(Rkcosθ) � 2∫
0

π

dθsinθcos(Rkcosθ)

−∫
0

π

dθsin3θcos(Rkcosθ) � 4
Rk

sin(Rk) + 4

(Rk)2 cos(Rk)

− 4

(Rk)3 sin(Rk).

Consequently, Eq. 72 becomes:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zcπ

(2π)2 ∫
0

∞

dkk3cos(kct)

[ 4
Rk

sin(Rk) + 4

(Rk)2 cos(Rk) −
4

(Rk)3 sin(Rk)]
� Zcπ

(2π)2
1
R4
∫
0

∞

dww3cos(w ct
R
)

×[4
w
sin(w) + 4

w2
cos(w) − 4

w3
sin(w)]. (76)

Substituting ct
R � b, and using an integral table [36] (p. 504, No. 8),

also discussed in the limiting sense in Ref. [7], Appendix C:∫∞

0
dwcos(wb)sin(w) � 1

(1 − b2), (77)

∫∞

0
dwwcos(wb)cos(w) � −[ 1

(1 − b2) +
2b2

(1 − b2)2], (78)

∫∞

0
dww2cos(wb)sin(w) � −2[ 1

(1 − b2) +
5b2

(1 − b2)2 +
4b4

(1 − b2)3],
(79)

enables Eq. 76 to be evaluated:

〈EZP,x(0, 0)EZP,x(ŷR, t )〉 � Zcπ

(2π)2
1
R4

4{ − 2[ 1

(1 − b2)

+ 5b2

(1 − b2)2 +
4b4

(1 − b2)3 ] − [ 1

(1 − b2) +
2b2

(1 − b2)2] − 1

(1 − b2)}
(80)

� Zcπ

(2π)2
1
R4

4
1

(1 − b2)3 { − 2(1 − b2)2 − 10b2(1 − b2) − 8b4

−(1 − b2)2 − 2b2(1 − b2) − (1 − b2)2}
� Zcπ

(2π)2
1
R4

4
1

(1 − b2)3 (−4b2 − 4) � −4 Zcπ
π2

1
R4

[1 + (ctR)2](1 − (ctR)2)3
� −4Zc

π

[R2 + (ct)2][R2 − (ct)2]3 (81)

As mentioned earlier, unless R � ct, this two-point correlation
function is not singular.

The above calculation has typically been, roughly, the means for
calculating such “two-point correlation” functions in SED, or even “n-
point correlation functions” [24].We will proceed to calculate the same
quantity as in Eq. 81, but by using the joint probability density function
for two electric field values, I1x2x , Eq. 62, deduced in Section 2.2. Of
course the two results should agree, but it is interesting to see the
difference in methods.

〈EZP,x(0, 0)EZP,x(ŷR, t)〉 � ∫
−∞

∞

dE1x ∫
−∞

∞

dE2xE1xE2xI1x2x

∣∣∣∣∣∣∣∣at x1 ,t1 & x2 ,t2

� ∫
−∞

∞

dE1x ∫
−∞

∞

dE2xE1xE2x

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1

2πAx(1 − C2
x

A2
x
)1/2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E

2
1x − E2

2x + 2E2xE1x(Cx
Ax
)

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎬⎪⎪⎪⎭

x1 ,t1 ;x2 ,t2

.

Here, the meaning of the subscript at the end of x1, t1; x2, t2 is
that the two electric field points E1x and E2x are to be evaluated
at the two space and time points, x1, t1 and x2, t2, respectively,
in the function C12,n, Eq. 47, contained within Cx , in Eq. 60.
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Thus,

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫

∞

−∞
dE2xE2x exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ − E2
2x

2Ax(1 − C2
x

A2
x
)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×

× ∫∞
−∞

dE1xE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2

1x + 2E2xE1x
Cx
Ax

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x1 ,t1 ;x2 ,t2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2πAx(1 − C2
x

A2
x
)1/2 ∫

∞

−∞
dE2xE2x exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−E2
2x + E2

2x
C2
x

A2
x

2Ax(1 − C2
x

A2
x
)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×

× ∫∞
−∞

dE1xE1x exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x1 ,t1 ;x2 ,t2

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE2xexp(−E2
2x

2Ax
)∫

−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

x1 ,t1 ;x2 ,t2

The integral over E1x on the right can be broken up as:

∫
−∞

∞

dE1xE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 ,t1;x2 ,t2

� ∫
−∞

∞

dE1x

⎧⎪⎪⎨⎪⎪⎩(E1x − E2x
Cx

Ax
)exp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭

x1 ,t1;x2 ,t2

+ ∫
−∞

∞

dE1xE2x

⎧⎪⎪⎨⎪⎪⎩Cx

Ax
exp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

x1 ,t1 ;x2 ,t2

� ∫
−∞

∞

dx · xexp⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ −x2
2Ax(1 − C2

x
A2
x
)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 ,t1 ;x2 ,t2

+
⎧⎪⎪⎨⎪⎪⎩E2x

Cx

Ax
∫
−∞

∞

dE1xexp
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x

Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭

x1 ,t1;x2 ,t2

The first integral equals zero, as it is odd in x. Hence:

∫∞

−∞
dE1xE1xexp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−(E1x − E2x
Cx
Ax
)2

2Ax(1 − C2
x

A2
x
) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1 ,t1;x2 ,t2

� E2x{Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}
x1 ,t1 ;x2 ,t2

and

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE2xexp( − E2
2x

2Ax
)

× {E2x
Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2}⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1 ,t1 ;x2 ,t2

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1

2πAx(1 − C2
x

A2
x
)1/2 ∫−∞

∞

dE2xE
2
2xexp( − E2

2x

2Ax
) Cx

Ax
[π2Ax(1 − C2

x

A2
x

)]1/2⎫⎪⎪⎪⎬⎪⎪⎪⎭
x1 ,t1 ;x2 ,t2

� 1

(2πAx)1/2
(Cx)x1 ,t1 ;x2 ,t2

Ax
∫
−∞

∞

dE2xE
2
2xexp( − E2

2x

2Ax
)

� 1

(2πAx)1/2
(Cx)x1 ,t1 ;x2 ,t2

Ax

π1/2

2
(2Ax)3/2 � (Cx)x1 ,t1 ;x2 ,t2

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞ (C12,n)x1 ,t1 ;x2 ,t2K2
n,xσ

2
n.

The last expression for Cx came from Eq. 60.
Hence, using Eqs. 47 and 54 replacing the coordinates x1 and

t1 with 0, 0, and x2 and t2 with ŷR and t, respectively, and σ2n with
ZP of 2πZωn,λ:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

cos[kn · (x1 − x2) − ωn(t1 − t2)][1− (kn,x

kn
)2]σ2n

� 1(LxLyLz) ∑
nx ,ny ,nz�−∞

∞

cos[kyR − ckt][1 − (kn,x

kn
)2]2πZωn,λ .

Implementing the same continuum approximation as with the
other method, Eq. 70, then results in:

∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x ≈ 1

(2π) ∫
−∞

∞

dkx
1

(2π) ∫
−∞

∞

dky
1

(2π)

× ∫
−∞

∞

dkzcos(kyR − ckt)[1 − (kx
k
)2]2πZω

� 1

(2π)3 ∫
−∞

∞

dkx ∫
−∞

∞

dky ∫
−∞

∞

dkz[cos(kyR)cos(ckt)
+ sin(kyR)sin(ckt)][1 − (kxk)2]2πZω

The second integral with sin(kyR) is odd in ky and equals zero by
symmetry. Hence:

Frontiers in Physics | www.frontiersin.org April 2021 | Volume 8 | Article 58086913

Cole Probability Calculations in SED

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


∫
−∞

∞

dE2x ∫
−∞

∞

dE1x(E1xE2x)I1x2x � 1

(2π)3 ∫
−∞

∞

dkx ∫
−∞

∞

dky

× ∫
−∞

∞

dkzcos(kyR)cos(ωt)[1 − (kxk)2]2πZω (82)

� 1

(2π)3 ∫
0

∞

k2dk∫
0

π

dθsinθ∫
0

2π

dϕcos(kRcosθ)cos(ωt)

× (1 − sin2θsin2ϕ)(2πZkc) � Zc

(2π)2 ∫
0

∞

k3dk∫
0

π

dθsinθ

× ∫
0

2π

dϕcos(kRcosθ)cos(ωt)(1 − sin2θsin2ϕ).
(83)

However, this result agrees exactly with the earlier result, Eq. 71,
obtained partway through the ensemble derivation of
〈EZP,x(0, 0)EZP,x(ŷR, t)〉. Thus, continuing with further steps
in evaluating Eq. 83 will provide a final result, using the joint
probability density approach of ∫∞−∞ dE2x ∫∞−∞ dE1x(E1xE2x)I1x2x ,
that exactly agrees with the ensemble derivation
〈EZP,x(0, 0)EZP,x(ŷR, t)〉 of −4Zc

π
[R2+(ct)2]
[R2−(ct)2]3 in Eq. 81.

2.4 Multivariate Normal Distribution
Much of the work carried out here can be generalized using the
multivariate normal distribution. The two key expressions for
us here are the Fourier decomposition of the radiation fields in
Eqs. 1 and 2 not just because they are Fourier decompositions,
but also that they are a linear sum of the random variables Akn ,λ

and Bkn ,λ. To put this in better perspective, if we imagine an
ensemble of boxes Lx × Ly × Lz , each the same size, but existing
at different points in space and/or in time, then
electromagnetic field fluctuations of EZPP and BZPP will
occur at each point within each box. However, for each box,
there is only one set of coefficients Akn ,λ and Bkn ,λ, as these
coefficients do not change from the initial point of field
evolution. However, as viewed over the entire ensemble of
boxes, the coefficients are assumed to be independent random
variables obeying Gaussian distributions. The mean for each,
over the ensemble, is zero, as in Eq. 4, and the normal
distribution for either Akn ,λ or Bkn ,λ is given by Eq. 8, while
the variance of each is given by [σ(ωn,T)]2, as in Eq. 8.

Thus, EZPP and BZPP can be viewed as the linear
transformation of the random variables Akn ,λ and Bkn ,λ.
However, the coefficients multiplying Akn ,λ and Bkn ,λ in these
linear sums in Eqs. 1 and 2 are not constants, as they depend on
time and space. In particular, 1

(LxLyLz)1/2ε̂kn ,λcos(kn · x − ωnt) and
1

(LxLyLz)1/2ε̂kn ,λsin(kn · x − ωnt) are the coefficients multiplying the
random variables of Akn ,λ and Bkn ,λ for E(x, t) in Eq. 1. An exactly
similar situation occurs for Akn ,λ and Bkn ,λ regarding B(x, t) in Eq.
2, except that ε̂kn ,λ is replaced by k̂n × ε̂kn ,λ. Thus, although the
probabilistic properties for the random variables Akn ,λ and Bkn ,λ

are independent of time and space, as expressed by Eq. 8, the
same is not true for the probabilistic/stochastic properties of EZPP

and BZPP, as seen for example in Eq. 81 and other related results
discussed in this subsection.

Amultivariate normal expression for the probability density of
a set of field values would be represented by:

P(E1 at x1, t1;E2 at x2, t2; . . . ;En at xn, tn;Bn+1 at xn+1, tn+1;
Bn+2 at xn+2, tn+2; . . . ;Bn+m at xn+m, tn+m

),
(84)

where there are n electric field vector values (i.e., 3 × n component
values, as indicated below) and m magnetic field vector values
(3 ×m component values), at respective positions in space and
time, as indicated. However, since this is a multivariate normal
distribution, where all 〈Ei〉 and all 〈Bi〉 ensemble averages equal
zero, then by probability theory, the above would be represented
by [37]:

P(X) � exp[ − 1
2X

TΣ−1X]���������
(2π)n+m∣∣∣∣∣∣∣∣Σ∣∣∣∣∣∣∣∣
√ , (85)

where X is the vector of(E1x, E1y , E1z , . . . , Enx , Eny, Enz ,B(n+1)x,B(n+1)y,B(n+1)z , . . . ,

B(n+m)x,B(n+m)y, B(n+m)z)
values. Moreover, Σ is the covariant matrix as expressed by

Σij � 〈XiXj〉, (86)

since 〈Xi〉 � 0 for all Ei and Bi values, due to Eqs. 4, 1 and 2. Also,
|Σ| and Σ−1 represent the determinant and inverse matrix of the
covariant matrix, Σ, respectively.

If we calculated all the components of the covariant matrix,
meaning all combinations Σij � 〈XiXj〉 of pairs of electric and
magnetic field expectation values, then the probability density,
Eq. 85, could be evaluated for any vector X of electric and
magnetic field components at different space and time points.
Two comparisons can immediately be made with work already
covered here. In Section 2.1, the probability density was deduced
for P(E at x, t) in Eq. 34, but this also follows from Eq. 85 with X
being the vector (E1x, E1y, E1z), then using Eq. 86 plus earlier
relations in Section 2.1, and

Σij � ⎡⎢⎢⎢⎢⎢⎢⎢⎣ 〈E2
1x〉 0 0
0 〈E2

1y〉 0
0 0 〈E2

1z〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

which leads to Eq. 34.
Similarly, Eq. 85 can be used to deduce the probability density

function for two electric field points that was covered in Section 2.2.
For a multivariate normal distribution for two field points, although
Eq. 85 is certainly the correct equation to use, it is usually rewritten in
the following simplified form in probability textbooks, and referred to
as the “bivariate” normal distribution [38]:

P(E1x ,E2x) �
exp{ − 1

2(1−ρ21x2x) [(E1x−μ1x)2σ21x
+ (E2x−μ2x)2

σ22x
− 2ρ1x2x(E1x−μ1x)(E2x−μ2x)

σ1xσ2x
]}

2πσ1xσ2x

�������
1 − ρ21x2x
√ .

(87)
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Here, μ1x ≡ 〈E1x〉 and μ2x ≡ 〈E2x〉 are both zero for our ZP and
ZPP cases. Also, σ21x ≡ 〈(E1x − μ1x)2〉 � 〈E2

1x〉, for our situation,
and similarly for (σ2x)2 � 〈(E2x)2〉, while

ρ1x2x ≡
〈(E1x − μ1x)(E2x − μ2x)〉

σ1xσ2x
(88)

is called the Pearson’s correlation coefficient of E1x and E2x . With
μ1x � μ2x � 0 for our case, then

ρ1x2x →
〈E1xE2x〉���������
〈E2

1x〉〈E2
2x〉

√ . (89)

Putting these expressions into Eq. 87 results in:

P(E1x , E2x) �
exp

⎧⎪⎪⎨⎪⎪⎩ − 1

2(1− 〈E1xE2x〉2
〈E2

1x
〉〈E2

2x
〉) [ E21x

〈E21x〉
+ E22x

〈E22x〉
− 2E1xE2x

〈E1xE2x〉
〈E21x〉〈E22x〉

]⎫⎪⎪⎬⎪⎪⎭
2π〈E2

1x〉〈E2
2x〉

����������
1 − 〈E1xE2x〉2

〈E21x〉〈E22x〉

√
(90)

This is then readily related to our result of I1x2x in Section 2.2, Eq.
62, since from Eq. 66, Ai � 〈E2

ZPP,i〉 for (i→ x, y, z), and is
independent of space and time, so 〈E2

1x〉 � 〈E2
2x〉, for example.

Moreover, Cx in Eq. 60 can be shown to be the two-point
correlation function of the x component of the electric field at
two different space/time points, or, 〈E1xE2x〉. Thus,

Cx

Ax
� 〈E1xE2x〉���������

〈E2
1x〉〈E2

2x〉
√ ,

which is just ρ1x2x in Eq. 89. Thus, Eq. 90 agrees with I1x2x in Eq. 62.
Extending this result to the discussion at the end of Section 2.2

involving x, y, and z components of two electric field values:

P(E1 at x1, t1;E2 at x2, t2)
� I1x2x · I1y2y · I1z2z

�
exp[−E2

1x − E2
2x + 2E1xE2xρ1x,2x

2(1 − ρ21x,2x)〈E2
1x〉

⎤⎥⎦
2π〈E2

1x〉(1 − ρ21x,2x)1/2
×
exp⎡⎣−E2

1y − E2
2y + 2E1yE2yρ1y,2y

2(1 − ρ21y,2y)〈E2
1y〉

⎤⎥⎥⎦
2π〈E2

1y〉(1 − ρ21y,2y)1/2
×
exp[−E2

1z − E2
2z + 2E1zE2zρ1z,2z

2(1 − ρ21z,2z)〈E2
1z〉

⎤⎥⎦
2π〈E2

1z〉(1 − ρ21z,2z)1/2

(91)

3 CONCLUDING REMARKS

The technique used here in Eq. 11 for one electric field value E, or
three component values Ex , Ey , Ez , or with Eq. 40 for
P(E1 at x1, t1;E2 at x2, t2), for two electric field values, or six

component values, was clearly understood to be extendable to n
electric and/or m magnetic field values. Various tests and
examinations were carried out in Section 2.3 to provide further
understanding of the results derived here. Section 2.4 showed how
to more easily use the multivariate normal distribution to obtain the
same probability densities.

However, although the methods of Eqs. 11 and 40 and the
obvious generalizations to far more electric and magnetic
radiation field values, result in long calculations, there are a
few aspects that should be noted. As briefly discussed in Ref.
[23], these techniques can readily be applied to the electric dipole
simple harmonic oscillator, in either one, two, or three oscillatory
degrees of freedom. For example, for a 1-D oscillator,

P(x1 at t1; x2 at t2) � ∫

dA1/∫

dAN . . .∫

dB1/∫

dBN . . .

P(A1,/,AN ,/,BN , . . . )δ[x1 − x(t1)]δ[x2 − x(t2)] ,
(92)

represents the probability density of finding an oscillator
extension of x1 at time t1, and extension of x2 at time t2. The
subtle point here is the expressions for x(t1) and x(t2) must be
inserted into Eq. 92, and these depend on the An and Bn values.
Equation 92 is similar to Eq. 40, but more complicated. The
electric dipole oscillator system, often phrased in terms of the
simple harmonic oscillator (SHO), was a key early system that
was studied in SED. However, the drawback is that the oscillator
computations are even longer than in Sections 2.1–2.3, which
only involved the probability states of electric radiation values in
ZP and ZPP conditions.

Another interesting aspect of the present method is that, in
principle, the method can begin to tackle other systems,
particularly one that has not yet been solved analytically in SED:
the classical hydrogen problem. Now, for that system, there is no
simplification, such as themultivariate normal distribution, to provide
a simpler method of solution. The classical hydrogen atom is not a
linear SHO system; it is nonlinear, and the multivariate normal
distribution only becomes possible for linear sums of random
variables that each obey the normal distribution. Possibly, the
classical hydrogen system in SED is intractable with the present
method, but as far as the author knows, this approach has not yet
been tried.

This brings us back to brief comments made in Section 2.1 about
the Feynman path integral for QM andQED, and how there is a slight
connection to the present method for SED. Although Feynman
developed the technique by 1948, it was initially applied only to
some relatively simple systems, such as discussed in [39]. The
hydrogen atom escaped solution by Feynman and others until
about 1979, by Duru and Kleinert. In analogy, at first blush,
although the present method for classical hydrogen in SED may
be too difficult, still it seems an interesting perspective to consider.

Finally, a last comment: many of the computations shown here for
field values could likely be extended to far more field points, simply by
writing the correct code to make a versatile program of n-point
correlation functions, such as with the aid of a symbolic mathematic
program, as has been done in some cases for Feynman diagram
calculations.
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