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Two-dimensional (2D) materials possess optoelectronic and nonlinear optical properties
make them used in many fields such as optical modulator, optical switch, and single
frequency (SF) fiber lasers as a saturable absorber (SA) in the laser cavity. This review deals
with recent advances in wavelength tunable single frequency fiber laser based on these
properties. It extends the contents from previous reviews on pulsed fiber lasers to SF fiber
lasers which have emerged in recent years. First, the research status of 2D materials,
including the structural characteristics and properties of some typical cases and their
saturable absorption characteristics are introduced. After that, the principle and some
applicable technologies with these 2D materials to achieve the wavelength tunable SF
operation are discussed. Further, the latest research progress on such fiber lasers are
summarized. Finally, a discussion on future prospects and challenges are included.

Keywords: single-frequency, fiber laser, two-dimensional materials, tunable wavelength, narrow linewidth,
saturable absorber

INTRODUCTION

In recent year, 2D layered materials have made rapid development after the discovery of grapheme.
Graphene, as the first 2D material have thermal transport, optical properties, and electronic
transport. After the studies of grapheme, a series of 2D layers materials such as black
phosphorus, metal chalcogenide compounds, transition metal oxides and other 2D compounds
materials have attracted research interests because of high performance in optoelectronic and
nonlinear optical properties, which make them as a saturable absorber (SA) in laser cavity. The
common feature of 2D layered materials is the massive three-dimensional crystal stack structure [1].
There is a van der Waals interaction force between adjacent sheets, and each sheet has a strong
covalent bond. This material spans all electronic structures from insulators to metals and shows
special characteristics, including topological insulator effect, superconductivity and
thermoelectricity.

Fiber laser, which combine 2D materials with optical fibers, optical resonant cavities, and optical
waveguides, have achieved breakthroughs in recent years. Many achievements have beenmade in the
research direction of laser pulse light generation, single-frequency (SF) laser and other lasers using
the 2D material, due to its advantages of narrow linewidth, excellent monochromaticity, high
coherence, low noise and compact structure, SF fiber lasers are widely used in high-frequency
resolution spectroscopy, coherent lidar, gravity wave detection, material micromachining and
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precision measurement [2–4] and have become one of the most
promising research fields in the laser field. The SF Q-switched
fiber laser has the characteristics of narrow line width and high
coherence, and can further compress the pulse width and increase
the beam power. This has great potential for applications in
spaceborne lidar and space laser communications. Therefore, the
research of SF Q-switched lasers is of great significance to
promote its application range and enhance its application
value [5–10].

The development and research of tunable single longitudinal
mode fiber lasers based on two-dimensional materials has
continued for many years. Single-frequency fiber lasers have
the characteristics of wide, low noise and compact structure,
and are widely used in fiber sensing, optical communication,
microwave generation and high-resolution spectroscopy [16, 32,
36, 40, 48, 56, 77, 78, 98]. Figure 1 shows the crystal structure of
various low-dimensional materials. Their common feature is the
layered molecular structure.

This article will discuss in detail from the aspects of 2D
material structure characteristics, saturable absorption
characteristics and the application of 2D materials in SF fiber
lasers. Make a corresponding categorization summary of the
relationship between material characterization and saturable
absorption characteristics.

2D MATERIAL STRUCTURAL
CHARACTERISTICS AND PROPERTIES

Graphene
Graphene has a Dirac gapless structure and its unique linear
energy momentum dispersion relationship is:

E(kx, ky) � ± c0
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In Eq. 1, kx and ky are the x, y components of the wave vector k, ±1
represents the conduction band and valence band, and γ0

represents the energy barrier that the valence electron must
overcome to transition between two adjacent carbon atoms as
(2.9–3.1eV), a � 30.5a (a � 0.142 nm). The carbon atom contains π
electron, so the valence band of graphene is in the full state and
the conduction band is in the empty state, and its Fermi surface is
at the Dirac point. Therefore, graphene is a zero-band gap
semiconductor material in the theoretical model.

Due to the unique crystal structure of grapheme, as shown in
Figure 2, it has special properties, various material properties are
produced. Graphene has a unique energy band structure and has
light absorption characteristics in ultraviolet light, even terahertz
and microwave bands, and a single layer of graphene can absorb
2.3% of visible light and incident light in the near infrared band,
as shown in Figure 3. It is worth noting that the Fermi level of
graphene can be adjusted by electrical gating and chemical
doping. This feature allows us to precisely modulate the
optical properties of graphene in the visible and infrared
bands. In addition, graphene exhibits ultrafast carrier
dynamics, high carrier mobility, wavelength-independent
absorption, tunable optical properties, and strong
electromagnetic field localization. Graphene also exhibits
strong nonlinear optical properties [19], with high third-order
susceptibility in the visible and near-infrared bands. Due to the
strong covalent bonding between atoms, graphene has excellent
stability and mechanical properties. All these characteristics of
graphene make it have important application value in broadband
tunable devices.

FIGURE 1 | Low-dimensional material crystal structure.

FIGURE 2 | Crystal structure of Graphene.
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Black Phosphorus
Black phosphorus (BP) is another kind of direct band gap
semiconductor. Due to BP special layered structure, the band
gap can be adjusted by changing the number of layers as shown in
Figure 4. The band gap of BP will increase as the number of layers
decreases. The single-layer BP band gap is 2 eV, which fills the
zero band. The gap between the gap graphene and the wider-band
gap transition metal sulfide can be used for light detection, light
modulation, and even biophotonics. Due to the anisotropy of BP,
in-plane electrical conductivity and photoconductivity are also
anisotropic, resulting in highly anisotropic light absorption and
photoluminescence.

Transition Metal Dichalcogenides
In addition to graphene, transition metal dichalcogenides
(TMDs) have also been extensively studied, and its chemical
formula is MX2 (M �Mo,W, Re; X � S, Se, Te). Since single-layer
metal sulfides are usually semiconductor materials, their optical
properties are different from graphene, and their application
fields are more extensive and complementary. The bandgap
coverage range is 1–2.5 eV, and the corresponding spectral
range is visible light to near infrared. One of the important
characteristics of transition metal sulfides is that with the
thickness of the material from multilayer to single layer, the
transition metal sulfur transitions from an indirect band gap to a
direct band gap, such as MoS2, MoSe2, WS2, and WSe2 are
indirect bands in the bulk Gap semiconductor form, but in a
single layer, its band gap becomes a direct band gap. In addition, a
single layer of transition metal sulfide material can achieve 20%
absorption of specific resonance energy. These characteristics are
conducive to the generation of mode-locked lasers, nonlinear
optics, and harmonics.

Other Two-Dimensional Materials
Because of the excellent optical properties and material properties
of 2D materials, the types of research on 2D materials have
exceeded these basic types. For example, topological insulators,
various heterojunction 2D materials, and even liquid materials
have optical properties similar to 2D materials.

Topological insulator is a state of matter with quantum
characteristics, and its quantum characteristics are relatively
novel. According to the band theory, solid materials can be
divided into insulators, conductors and semiconductors
according to their electrical conductivity. The different Fermi
energy levels of the three materials show different material
properties. Insulator materials have a finite energy gap at the
Fermi level, so there are no free carriers; conductor materials have
a finite electronic state density at the Fermi level, so they have free
carriers; semiconductor materials are at the Fermi level There is
no energy gap, but the density of electron states at the Fermi level
is still zero. But topological insulators are similar to insulators, but
not exactly the same. Theoretical analysis is carried out on the
energy band structure. The energy band structure of this type of
material belongs to the insulator type, and there is an energy gap
at the Fermi energy. However, on the surface of this type of
material, there is always a Dirac type that passes through the
energy gap. The electronic state, thus causing its surface to always

be metallic. The special electronic structure of the topological
insulator is determined by the special topological properties of its
band structure.

The characteristic of the 2D material is closely related with the
manufacturing process. The different manufacturing processes
directly effect the characteristics of the 2D material. Therefore, a
series of detect methods are required to characterize the prepared
2Dmaterial samples after the production and ensured that the 2D
material samples qualities to use. The main production processes
of 2D materials are mechanical stripping method, liquid phase
stripping method, chemical vapor deposition method, redox
method, photo deposition method and pulse laser deposition
method. After the preparation of the 2D material is completed, it
is generally necessary to use various detection methods to
characterize the material. At present, the characterization
methods for 2D materials mainly include electron microscope,
atomic force microscope, Raman spectrometer, XRD (X-ray
diffraction) and nonlinear saturation absorption characteristic
measurement.

Different applications have different requirements for 2D
materials. In order to meet the needs of applications, we need
to prepare 2D materials with different specifications. This
requires that many factors must be considered at the same
time, such as the thickness of the two material sheets. The size
of the nanodevices and the purity of the materials, etc., it is
necessary to explore methods that can easily and effectively
prepare and characterize the detection of 2D materials. The
following will introduce several common preparation methods.

TWO-DIMENSIONAL MATERIAL
PREPARATION AND CHARACTERIZATION

Mechanical Exfoliation Method
The van der Waals force exists between the two-dimensional
material crystal layered structure, so the van der Waals force in
the layered structure can be destroyed by external force to obtain
a single layer of two-dimensional material. As shown in Figure 5,
using tape to pick up from the bulk material, and then repeat
between tapes, and finally obtain a high-purity two-dimensional
material. The mechanical peeling method does not destroy the
covalent bond between the material layers, and the raw material
used is a high-purity bulk material, so the resulting product has
extremely high purity. Graphene was originally obtained by
mechanical peeling. Since then, it has been widely used in the
preparation of layered materials, such as black phosphorus,
MoS2, Bi2Te3, and ReS2.

Liquid Phase Exfoliation Method
The principle of the liquid phase stripping method is to use the
microwave shear force and thermal stress to destroy the van der
Waals force between the material layers, and then mix with a
specific auxiliary dispersant, such as N-methylpyrrolidone or N,
H-dimethylformamide, etc. The material is peeled off layer by
layer. The general operation flow is shown in Figure 6. First, the
powdered material and the stripping solution are mixed in
proportion. The stripping solution is generally an organic
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solvent such as N-methyl pyrrolidone or N,
H-dimethylformamide. Put the mixed liquid into the
ultrasonic crusher for water bath heating treatment, and
choose different crushing time according to different materials.
After the ultrasonic treatment, the mixed liquid is loaded into a
centrifuge tube and centrifuged. After the centrifugation process
is completed, the solution is layered, and the supernatant is
extracted for vacuum suction filtration, and a layer of material
film is covered on the filter paper. The concentration of the
solution can be changed to adjust the thickness of the material.
After removing the filter paper with an organic solvent, a
complete two-dimensional material sheet is obtained, which is
placed in a vacuum drying box for storage and drying. Or directly
use the supernatant after the centrifugation is completed for the
experiment.

The materials prepared by the liquid-phase stripping method
include carbon nanotubes, black phosphorus, WS2, BeTi2, etc.
The liquid-phase stripping has wide applicability to the materials,
the preparation process is simple, the efficiency is high, and the
experimental requirements are low. However, the solvent
requirements are higher.

Chemical Vapor Deposition
Chemical vapor deposition (CVD) is a process technology in
which a reactive substance undergoes a chemical reaction under
relatively high temperature and gaseous conditions, and the
resulting solid substance is deposited on the surface of a
heated solid substrate, and then a solid material is produced.
A gaseous mass transfer process that essentially belongs to the
category of atoms. During the preparation of graphene [20, 21],
methane or ethanol droplets are used as the carbon source, and Ar
is used as the protective gas, so that the carbon source is
introduced into the surface of the metal substrate in a gaseous
manner. After a period of reaction, the carbon source is on the
metal substrate. The graphene is decomposed and deposited in
different layers, and finally the graphene and the substrate are

separated by chemical etching to obtain graphene products.
Carbon nanotubes [22, 23] are usually generated by cracking
carbon-containing gas or liquid carbon source under the action of
a catalyst at a certain temperature, so this method is also called
catalytic cracking method. The catalyst is generally a transition
metal (such as Fe, Co, Ni, Pd, etc.), and the carbon source can be
carbon-containing gas such as methane, CO, ethylene, or liquid
such as benzene and toluene.

Electric Arc Discharge Technology
This method was first applied to carbon nanotubes [24, 25]. It
mainly uses transition metal or oxide as catalyst and graphite as
electrode. In an inert gas environment, the arc graphite electrode
is consumed by evaporation, and carbon nanotubes are deposited
on the cathode graphite electrode.

Pulsed Laser Deposition Technology
Pulsed laser deposition (PLD) is a vacuum physical deposition
process. The bulk material is usually used as the target material,
and then graphene/copper and SiO2/Si are used as the substrate
material. The pulsed light is focused on the surface of the target
material, causing it to generate high temperature and ablation,
thereby generating high temperature and pressure plasma. The
plasma is oriented to expand and deposit on the substrate to form
a thin film. Material thickness can be roughly controlled by laser
pulses.

Magnetron Sputtering Deposition Method
The working principle of magnetron sputtering is that electrons
collide with argon atoms in the process of flying to the substrate
under the action of electric field E, which ionizes to produce Ar
positive ions and new electrons. The new electrons flew to the
substrate, Ar ions accelerated to the cathode target under the
action of the electric field, and bombarded the target surface with
high energy to cause the target to sputter. In sputtered particles,
neutral target atoms or molecules are deposited on the substrate
to form a thin film. General metal compounds will use this kind of
manufacturing process to synthesize thin films, such as MoTe2
[26], WTe2 [27], MoS2-WS2 [28], etc.

Chemical Combination
Bi2Te3 nanosheets [29] were synthesized by diethylene glycol
(DEG)-mediated polyol method. In a typical synthesis,

FIGURE 3 | Diagram of graphene’s band structure and photon
absorption.

FIGURE 4 | Schematic diagram of layered BP, where the x-axis and
y-axis are along the armchair (AC) and zigzag (ZZ) directions respectively.

Frontiers in Physics | www.frontiersin.org February 2021 | Volume 8 | Article 5806024

Wei et al. Advance in Tunable Single-Frequency Fiber Laser

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


stoichiometric bismuth nitrate (Bi (NO3)) and potassium
telluride (K2TeO3) are dissolved in DEG and vigorously
stirred, and then the mixed solution is refluxed at 240°C for
4–5 h. Then, the mixture was cooled to room temperature. The
gray powder was collected by filtration, washed with distilled
water and ethanol, and finally dried under vacuum at 60°C
overnight. The powder after growth and washing is dispersed
in an ethanol solution.

After the preparation of the two-dimensional material film is
completed, a series of detection methods need to be used for
detection. The crystal structure and phase composition of the film
were analyzed by X-ray diffractometer (XRD), the surface and
cross-sectional morphology of the film were observed by
scanning electron microscope (SEM), and the physical
properties and number of layers of the two-dimensional
layered material were quickly characterized by Raman
spectrometer (Raman).

SATURABLE ABSORPTION
CHARACTERISTICS OF 2D MATERIALS

Single-frequency fiber lasers select and limit the number of
longitudinal modes that vibrate in the resonator by adding a
narrowband filter in the resonator, and only allow single-
longitudinal, single-transverse, and single-polarization laser
modes to generate stimulated amplification and final output.
Two-dimensional materials can be used to make new filter
components for pattern filtering. Most layered materials, such
as graphene, topological insulators, and black phosphorus, have a
symmetrical cone-shaped band structure. Physically, when the
intensity of incident light is greater than the band gap of the
layered material, any electrons can be excited into the conduction
band. Then, the distribution rapidly heats and cools, forming a
hot Fermi Dirac distribution. Through a dynamic process, the
electron accelerator and holes recombine until the equilibrium
distribution is restored. The linear optical transition at low
excitation intensity is described. However, as the light intensity
increases, the number of photocarriers increases rapidly, filling
the energy states near the edges of the conduction band and the
valence band. Due to the Poly blocking principle, absorption is
blocked. Finally, photons of a specific wavelength can be
transparently transmitted to the layered material without being
absorbed, thereby achieving the effect of narrowing the line width

[30]. In addition, 2D materials have very excellent thermal
conductivity. The thermal conductivity of pure defect-free
single-layer graphene is as high as 5300W/mK, which is the
carbon material with the highest thermal conductivity so far,
higher than single-wall carbon nanotubes (3500W/mK) and
multi-wall carbon nanotubes (3000W/mK). When it is used as
a carrier, the thermal conductivity can also reach 600W/mK. It is
a novel idea to use the characteristics of two-dimensional
materials to make tuning devices for center wavelength
conversion [31].

Based on such characteristics of 2Dmaterials, it has realized in
1, 1.5, and 2 μm pulsed fiber lasers. When the pulse laser passes
through the SA, due to the nonlinear saturable absorption
characteristics of the SA, the absorber will greatly absorb light
with weaker light intensity and weaker with stronger light. When
the edge part of the optical pulse passes through the SA, the
transmittance is low and the loss is large, while the peak part of
the pulse is large and the loss is low. The loss can be compensated
by the amplification of the laser working substance. Therefore,
when the light pulse circulates once in the cavity, the relative
value of the intensity of the light signal will change once. When
the optical signal in the cavity passes through multiple cycles, the
energy difference between the peak value and the edge of the pulse
will become larger and larger, the pulse will be continuously
compressed and optical pulse is narrowed in the process of
passing through the absorber, finally achieve the generation of
pulsed laser.

The detection device of the saturable absorption
characteristics of the 2D material in the fiber laser is shown in
Figure 7. Using this device diagram, the nonlinear absorption
characteristic data of the 2D material can be obtained, thereby
obtaining the modulation depth of the 2Dmaterial. Equation 2 is
as follow:

a(I) � as
1 + I/Isat + ans (2)

where as is the modulation depth, ans is the unsaturated loss, and
Isat is the saturation absorption intensity [32].

The combination method of 2D material saturable absorption
depicted in Figure 8 is generally adopted. Figure 8 shows a
combination method of combining materials with a laser cavity.
The material may be deposited on the glass plate as shown in
Figure 8A, on the end face of the optical fiber connector as shown
in Figure 8B, on the tapered fiber as shown in Figure 8C or on the

FIGURE 5 | Flow chart of two-dimensional material mechanical exfoliation method.
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side polished fiber surface as shown in Figure 8D. According to
the manufacturing process and shape characteristics of the low-
dimensional material, it is necessary to select the proper
combination with the resonant cavity to achieve the best match.

The wide absorption spectrum range, photothermal effect and
nonlinear absorption of 2D materials have made great
achievements in the direction of pulsed light generation of fiber
lasers. As show in Table 1. The use of 2D materials as optical
modulation devices in SF fiber lasers has recently become one of
research focuses. Therefore, this article focuses on discuss the recent
representative research results of 2D materials in SF fiber lasers.

TUNABLE FIBER LASER BASED ON 2D
MATERIAL

Tunable fiber lasers have attracted scholars due to their unique
advantages and excellent performance, such as wide gain
bandwidth, high stability, spectral purity, extremely narrow
linewidth, wide tunable range and precise wavelength
adjustment [41–55]. Reekie and his team studied tunable
single-mode fiber lasers in 1980. However, most techniques
are difficult to achieve wide-wavelength tuning [56–59], and
some methods are unstable [60–66]. The working substance
has a wide fluorescence spectrum in the laser, and it has the
tunability in a certain wavelength range. Currently, there are three
methods for implementing tunable fiber lasers. First, the
wavelength corresponding to the low-loss region of the
resonant cavity is controlled by the grating to change the
center wavelength of the lasing. Second, the energy level of the
laser transition is moved by changing parameters such as
temperature and magnetic field. The last one is the use of
nonlinear effects to achieve wavelength conversion and tuning.
Typical tunable fiber lasers include temperature tuned fiber

FIGURE 6 | Liquid phase exfoliation.

FIGURE 7 | Experimental device for measuring nonlinear saturation absorption characteristics.

FIGURE 8 | Different types of SAs based on nanomaterials: (A)
deposited on a glass plate, (B) on the end of the fiber connector, (C) on a
tapered fiber, (D) on a side polished fiber (RI Refractive index).
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grating lasers and stress tuned fiber lasers. In recent years, 2D
materials have been widely used in lasers, and tunable single-
frequency lasers based on 2D materials have developed rapidly.

Principle of Tunable Single Frequency Fiber
Laser
Traditional single-frequency fiber lasers are divided into short-
line cavity and ring cavity. There are several common technical
methods to realize single-frequency fiber lasers by using
polarization incoherent technology, saturable absorber devices,
and ultra-short linear cavity structures. In addition to using
Rayleigh scattering, Raman scattering, stimulated Brillouin
scattering, etc. Non-linear effects to achieve single-frequency
operation methods are constantly reported [67–70]. The
research on single-frequency fiber lasers first started in 1986.
Jauncey et al. used neodymium-doped single-mode fiber as a gain
medium and FBG as an end mirror to produce a laser output with
a linewidth of 19 GHz and a center wavelength of 1,084 nm. Then
in 1990, Iwatsuki and others successfully measured an ultra-
narrow linewidth of 1.4 KHz based on the polarization
maintaining technology with a circular cavity structure using a
72 km delay fiber [71]. In the following year, Ball et al. developed
the 1,548 nm erbium-doped communication band Research on
the narrow linewidth of fiber lasers and successfully developed a
single-frequency output of 47 KHz [72]. In the following decades,

it became one of the most promising research directions in the
laser field [73–87].

Recently, the emergence of two-dimensional materials has
attracted the attention of single-frequency fiber lasers. Scholars
believe that introducing two-dimensional materials devices into
fiber lasers has a good prospect. Since graphene was successfully
discovered in 2004, it has become the most attractive research
object for a time, due to graphene ultra-high stability [88], excellent
electrical properties [89] and optical properties [90]. Because of its
unique gapless structure, graphene absorption is only related to the
light transmission constant and does not depend on the optical
frequency [91], high mobility, good optical transparency and linear
dispersion effect of Dirac electrons, so it has ultra-broadband
Tunability [92]. As shown in Figure 9, graphene has unique
broadband absorption characteristics. Therefore, graphene has
attractive prospects in the field of ultra-wide bandwidth tuning.
Since graphene has broadband absorption characteristics, the
optical tuning device based on the two-dimensional material
graphene does not need to consider the influence of wavelength,
and has the advantages of good tuning accuracy and fast response
speed. The zero band gap system of graphene. The structure can
generate heat by absorbing photons to generate phonon relaxation
oscillations. With its thermal conductivity of 5,300W/mK,
graphene can quickly transfer the Joule heat generated by the
photothermal effect, and can easily generate controllable light with

TABLE 1 | Research progress of narrow-linewidth single-frequency pulsed fiber lasers based on low-dimensional materials.

Sas Gain length (cm) Center wavelength (nm) Maximum power (mW) Pulse duration (us) Linewidth (kHz) OSNR (dB)

MoS2 [33] 16 1,064 15.3 \ 5.89 60
Ti: Bi2Te3 [34] 100 1,542.37–1,543.16 23 \ 10 \
Graphene [35] 6 1,544.5 20 1–7 Sub-MHz 20
Graphene [36] SOA 1,544.66, 1,545.36 18.2, 67.6 \ <7.3 50
Graphene [37] 100 1,547.88–1,559.88 214 \ 206.25 66.0–68.3
Ni-MOF [38] \ 1,549.9 53 \ 3.2 52
Bi2Se3 [39] 240 1,550.50 797,000 2.54 212 62
SWCNTs [40] 300 1,525–1,561 6.9 1.1–8.1 17.5 \

SOA, semiconductor optical amplifier; SWCNTs, single wall carbon nanotubes.

FIGURE 9 | (A) shows the broadband absorption characteristics of the saturated absorber, (B) shows the narrow line width through the filter, (C) shows the
nonlinear effect of the saturated absorber, (D) single-frequency light output.
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a response time of microseconds. Thermal conversion [93].
Figure 10 shows some fiber laser functional devices.

Latest Research Progress
Harith Ahmad et al. reported a SLM tunable fiber laser based on
graphene SA to generate radio frequency (microwave) signals
[94]. Using index matching gel (IMG) to obtain ferrules for
graphene deposition, which is simpler than traditional optical

and chemical phase deposition methods. The SLM output is
mixed with another output signal from a tunable laser source
(TLS) to form a radio frequency (RF) signal. Tunable SLM fiber
ring laser uses a length of 1 m of highly doped fiber as the gain
medium in this experiment. In the past, such experiments
usually used a section of unpumped doped fiber to generate
the SLM output. This work used a novel graphene saturation
absorber to generate the SLM output. The tunable fiber grating
determines the tuning range of the fiber ring laser, and the
tunable range is 1,547.88–1,559.88 nm.

Graphene has unique optical properties, so it acts as a SA to
produce SLM operation in ring fiber lasers. The graphene SA
suppresses multiple modes and reduces noise in the cavity.
Graphene has the characteristics of saturation absorption.
Therefore, in the case of low-intensity light irradiation,
photons are highly absorbed, causing electrons in the valence
band to be excited to the conduction band. When the intensity of
irradiated light increases, a part of the photons are not absorbed
due to the occupation of electrons in the conduction band,
thereby allowing the light to pass through. Light will pass
through the SA with low loss if it is high intensity light. The
number of graphene layers is proportional to the light absorption
rate, and each layer absorbs A≈1-T≈π ≈ 2.3% in the visible
spectrum. As shown in Figure 11, the tuning range is
1,547–1,560 nm. Tunable fiber Bragg grating (TFBG) as a
tuning element, and limited by the etching fineness.

Graphene has excellent thermal conductivity and ultra-high
thermal conductivity, and has been widely used in tunable fiber
lasers. The researchers used this characteristic of graphene to
carry out temperature control tuning experiments, and achieved
certain results.

Zhu Tao et al. realized an optically controlled ultra-narrow
linewidth fiber laser [95]. This device uses saturable absorption

FIGURE 10 | Themain technology of tunable single frequency fiber laser.

FIGURE 11 | (A) Experimental setup for tunable microwave generation by beating two SLM wavelengths from a tunable SLM ring fiber laser and external TLS. (B)
Output spectra vs. wavelengths of the ring fiber laser. Copyright 2012, Optical Society of America.
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interference ring and fiber Rayleigh backscatter (RBS) to
compress linewidth and achieve mode selection. The
interference loop is used as a narrow-band filter to enable the
laser to achieve SF operation. Using graphene-covered ultra-fine
fiber Bragg grating (GCMFBG), the laser wavelength can be
precisely adjusted by controlling outpower. Finally, an output
with a sensitivity of 12.4 pm/mW, a fluctuation in operating
power of less than 0.5% and linewidth of 200 Hz was obtained
[96–98]. The experimental setup is shown in Figure 12A.

In the experiment, a dual-pump structure was used, and a
highly doped single-mode erbium-doped fiber with a length of
1 m was used in the cavity to provide gain. The output
wavelength tuning operation of the laser is achieved by
covering a single layer of graphene with a length of 12 mm
miniature fiber Bragg grating (GCMFBG). When the pump light
is absorbed by the graphene carrier, they will transition to the

conduction band of zero band gap. Then they spontaneously fall
to lower energy levels through phonon radiation to achieve self-
heating [94]. Due to the high thermal conductivity of graphene,
when increasing the control optical power, the miniature FBG is
heated to achieve spectral wavelength shift, as shown in
Figure 12D. The change in the refractive index of graphene
affects the change in the effective refractive index of GCMFBG,
which is another factor that changes the center wavelength of
reflection. Tuning devices based on two-dimensional materials
are different from the previous mechanical fine-tuning methods.
They use the photothermal effect caused by the photo-excited
interaction of carriers and phonons in graphene to achieve
precise pump power tuning operations. Therefore, the tuning
accuracy and stability are mainly controlled by the power of the
pump light and the stability of the cavity. The tested wavelength
and power stability are good under free operation. The

FIGURE 12 | (A) The setup of an optically tunable ultra-narrow linewidth fiber laser; (B) Photograph of a graphene-coated micro FBG (GCMFBG). The red shaded
area is coated with graphene. (C) The phonon relaxation process of graphene; (D) The red-shifted reflection spectrum of GCMFBG, whose control optical power is 26.8,
64.3 and 101.5 mW. Copyright 2018, Optical Society of America.
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fluctuation ranges are 0.005 nm and 0.5%, respectively, and the
operation is stable. The tuning characteristics are shown in
Figure 13.

In 2019, Yujia Li et al. verified the use of graphene-coated
filters using the narrow linewidth characteristics of Brillouin laser
oscillations for SLM work. Tunable narrow-linewidth fiber lasers
can be obtained with output linewidths as low as 750 Hz [99]. The
laser wavelength can be linearly adjusted to 0.9997 by adjusting

the laser with a wavelength of 13.2 pm/m, thereby adjusting the
performance of the laser throughout the round trip. Figure 14
shows the configuration of the light-controlled GCMFBG.

In this paper, the optically adjustable narrow linewidth fiber
laser is wavelength tuned by a graphene-coated micro Bragg fiber
grating (GCMFBG) module. Because graphene has broadband
absorption properties, there is no special requirement to control
the wavelength of light. The evanescent field of control light in
contact with graphene stimulates graphene to easily produce
photothermal effect to adjust the central reflection wavelength
of GCMFBG. Insert GCMFBG into the fiber laser cavity to adjust
the mode competition optically and achieve precise tunability of
the laser wavelength. With low propagation loss and single-mode
uniform distribution, stimulated Brillouin scattering (SBS) in the
cavity can accumulate enough pump light intensity to be used as a
narrow-band filter with a gain bandwidth of tens of megahertz
[100, 101]. This optically tunable laser is used as pump light and
injected into the polarization-maintaining cavity to excite SBS to
achieve SLM operation and narrow linewidth laser output.

SUMMARY AND OUTLOOK

Wavelength tunable SF fiber lasers have important applications in
many fields, such as spectral detection, laser radar, optical
communication, fiber sensing, interferometer and so on.
Considering the advantages of high stability, high linearity
and high precision of optical control tuning, this fiber laser

FIGURE 13 | (A)Output spectra of the ultra-narrow linewidth laser with the increment of the pump 3; (B) color-corresponded RF spectra during the tuning process;
(C) peak wavelengths with changed powers of pump three and the linear fitting curve; (D) long-term stability test of the wavelength and output power with a fixed power
of pump 3. Copyright 2018, Optical Society of America.

FIGURE 14 | (A) Experimental schematic of the fabricated GCMFBG
and (B) its reflection spectrum; (C) circular symmetrical energy distribution of
the controlling. Copyright 2019, Optical Society of America.
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has great application potential in the fields of microwave
generation, high-precision sensing and optical
communication. Due to the transmission of this tuning
method, the idea of all-optical control can be further applied
to other ultrafast laser systems, and is conducive to the
development of laser miniaturization. In this review, the
basic working principle and the latest development of
wavelength tunable SF fiber lasers with 2D materials are
summarized. As a new kind of materials, 2D materials have
excellent performance in thermal, electrical and especially
optical properties. In fiber lasers, on the one hand, the wide
absorption spectrum of 2D materials and the excellent
nonlinear saturable absorption effect increase the oscillation
threshold of specific frequency in the cavity. Combined with
filter components and frequency selective devices, the laser
finally realizes the wavelength tunable SF operation; On the
other hand, the excellent heat conduction characteristics of 2D
materials can be used to achieve the wavelength selector by
combing 2D materials with fiber Bragg grating, together with
frequency filter, the operation of wavelength tunable SF
operation can also be realized. Besides, 2D materials are also
expected to achieve SF Q-switched pulse output considering the
nonlinear saturable absorption. In addition, the excellent
photoelectric characteristics of 2D materials can also be used
to realize the photoelectric modulator, and it is expected that

this kind of photoelectric modulator can be used in the fiber
laser to realize mode-locking and Q-switched pulse output.
There are some challenges in the application of 2D materials
in the wavelength tunable SF fiber laser: 1) The existing
technologies are difficult to obtain a large area of uniform
materials; 2) The packaging technology needs to be improved
to obtain more stable laser performance. 3) Two-dimensional
materials are not abundant enough in the direction of single-
frequency lasers. Further work in these directions will certainly
promote the further development of optical fiber laser
technology.
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