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For ecoSLM—an ultra coarse-grained slip link model—the ability to use a time-step

that increases with chain molecular weight is an important source of efficiency in

modeling the linear rheology of monodisperse chains. This feature is labeled “temporal

coarse-graining” in this paper. It is compromised for blends of linear chains, where the

time-step is set by the short chains, but the length of the simulation run is determined by

the long chains. The problem is present for any polydisperse sample, and is particularly

acute for binary blends with widely separated molecular weights. To recover temporal

coarse-graining, we propose an adaptive time-step algorithm, where the time-step is

determined by the shortest unrelaxed chains in the ensemble, which increases as the

simulation proceeds. It involves two additional steps: recalibration, which is triggered

when any component relaxes completely, and re-equilibration, in which slip links on

completely relaxed components are renewed. We obtain reasonable settings for these

steps, and validate the adaptive time-step algorithm by comparing it with the original,

constant time-step ecoSLM for binary, ternary, and polydisperse blends. Speedups

ranging from 50 to 1,500% are obtained when molecular weights of the components

are widely separated, without a significant loss of accuracy. Conversely, the adaptive

time-step algorithm is not recommendedwhenmolecular weights are not well-separated,

since it can be slower than the constant time-step method.

Keywords: slip links, coarse-graining, Monte Carlo, adaptive time step, algorithm

1. INTRODUCTION

Despite the popularity of the tube model (TM), the list of its shortcomings keeps getting longer
when it is subjected to strong tests [1–3], and its assumptions are scrutinized more closely [4–6].
Many of these issues stem from the difficulty in accounting for the process of constraint release
(CR), which is a relaxation mechanism by which stress on an internal portion of a test chain is
relaxed as a neighboring chain slips away.

This is quite conspicuous even in the linear viscoelasticity (LVE) of a bidisperse mixture of long
and short chains. Upon complete relaxation of the short component, does the subsequent relaxation
of the long chains occur in a “skinny tube” composed of entanglements with both short and long
chains, a “fat tube” composed of long-lived entanglements with other long chains, or something in
between [7–9]? This question, and its implications, have sparked a long discussion on which tube
to use, and when and how to switch from one to the other [3, 10–17].
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Fortunately, the class of slip spring and slip link models
(SLMs), despite their numerous individual differences, do not
suffer from these drawbacks [2, 17–23]. They discard the notion
of a tube and treat entanglements between chains in the ensemble
as slip links or slip springs. SLMs reimagine CR using a simple,
yet powerful, insight: when a slip link is destroyed on one of
the chains due to reputation or contour length fluctuations, it
is simultaneously eliminated on the “partner chain.” This gives
them a structural advantage over the TM.

The catch, however, is that SLMs are computationally
expensive. In this regard, they are no match for the TM, which
typically predicts the LVE of linear or star polymers in a fraction
of a second. This led us to pursue a “barebones” SLM, and
culminated in the ecoSLM—a lightweight, ultra coarse-grained
SLM, resolved at the level of an entanglement strand [24]. For
many polymers, this level of coarse-graining leads to several
orders of magnitude reduction in computational cost. Despite its
simplicity, ecoSLM provides quantitative descriptions of the LVE
of symmetric and asymmetric stars, H-polymers, and bidisperse
linear blends with widely separated molecular weights [24–26].

1.1. Temporal Coarse-Graining in ecoSLM
ecoSLM’s combination of speed and accuracy is attractive,
and keeps alive the dream of model-based analytical rheology,
which involves thousands of trials and model evaluations [27–
32]. For a long time, ecoSLM remained as an effective, albeit
informal, Markov Chain Monte Carlo (MCMC) algorithm. The
underlying mathematical model was not explicitly specified.
Recently however, this deficiency was rectified by articulating the
master equation animating the Monte Carlo algorithm, and a
microscopic model with repulsive interactions between adjacent
slip links, which justifies the quadratic fluctuation potential used
(the MCMC algorithm and potential are described in section 2.1)
[33]. As a result, ecoSLM rests on firmer mathematical ground,
which exposes an interface that allows fine-grained SLMs to
systematically couple with it.

Due to the level of coarse-graining, it comes as no surprise that
the ecoSLM is far from a zero-parameter model. Besides inputs
like the entanglement molecular weightMe and plateau modulus
G0, it needs additional parameters that are not required for other
SLMs. As a kineticMonte Carlo algorithm, ecoSLM links real and
Monte Carlo time using a “time shift” parameter τ0 ≈ τe, the
equilibration time of an entanglement strand. More importantly
[33], the dependence of friction on chain length in the underlying
Fokker-Planck equation has to be specified. It can be obtained
from fine-grained SLMs, or from experiments by fitting viscosity
data on monodisperse chains [24]. It is loosely related to the
average time required to equilibrate slack along its axis [24]. As
an approximation, the dependence of the friction coefficient on
chain length Z̄ (expressed as the average number of slip links
per chain) can be folded into the scaling between real and Monte
Carlo time via a time shift factor σt = τ0Z̄

γ . Fits to experimental
data on linear polymers suggest γ ≈ 1.4± 0.1 [24, 33].

The time shift factor σt results in “temporal coarse-graining.”
As shown in section 2.1, the time-step 1t corresponding to a
Monte Carlo trial increases with chain length as 1t ∼ Z̄γ .
Since relaxation time increases with chain length, roughly as

Z̄3.4, the ability to use a larger time-step is an important source
of efficiency for the ecoSLM. It allows the ecoSLM to model
ensembles of thousands of monodisperse linear chains with
hundreds of entanglements each, in under a minute.

1.2. The Problem With Polydispersity
Typical industrial polymers have broad molecular weight
distributions (MWD) that are determined by the method of
synthesis [34]. In contrast, model polymers, often synthesized
using living polymerizations [35, 36], have relatively low
polydispersity. Popular implementations of the TM deal with
polydispersity by creating an ensemble of chains from the
MWD [37–39]. The same approach can be employed with
multi-chain SLMs, although it is less common due to increased
computational cost [26, 40–42]. Recent work on discretizing
nearly monodisperse MWD (polydispersity index . 1.1)
recommends using a “blend of monodisperse fractions” of f =

5− 10 suitably selected chain lengths [43].
Blends of polymers with widely separated molecular weights

hamper the boost provided by temporal coarse-graining in
ecoSLM. For example, in a bidisperse blend of short (Z̄1) and
long (Z̄2) chains, the time-step is controlled by the short chains
1t ∼ Z̄

γ
1 , even though the final simulation time is set by

the terminal relaxation time of long chains, which may be
crudely approximated as Tsim ∼ Z̄3.4

2 . The total computational
cost increases with Tsim/1t, and can get quite expensive for
Z̄2/Z̄1 ≫ 1. The problem may be exacerbated for polydisperse
samples represented using f fractions (Z̄1, · · · , Z̄f ), since the final
simulation time is set by the longest chain, while the time-step is
set by the shortest chain. Due to this bottle-neck, it is easier for
ecoSLM to model a monodisperse polymer with Z̄ = 300 using a
large time-step, than a mildly polydisperse sample with Z̄w = 50,
where Z̄w is the weight-averaged number of slip links, and 1t is
set by the shortest chains in the ensemble.

1.3. Motivation and Scope
In blends of monodisperse fractions, the constant time-step in
ecoSLM is governed by the shortest chains in the ensemble.
This principal goal of this work is to explore whether we can
release this constraint. It considers the possibility of pursuing
an adaptive time-step kinetic Monte Carlo strategy, where 1t
increases as the simulation proceeds. Strangely, this harkens
back to the idea of tube dilation or dynamic dilution used in
the TM, where CR in entangled polymers is modeled as an
effective widening of the tube [9, 44, 45]. As stress-bearing
strands relax, they are viewed as “solvent,” whose primary action
on the remaining unrelaxed fraction is mediated through a
frictional drag that effectively rescales time. A conceptually
similar approach may be considered in the ecoSLM to mitigate
the loss of temporal coarse-graining in polydisperse mixtures.
Once the shortest chains in the ensemble have completely
relaxed, the time-step is increased, and determined by the chain
length of the shortest unrelaxed chains. In the absence of CR,
when the chains are decoupled, this idea is perfectly sound (see
section 3). However, such relaxation in a “thin tube” is cannot
explain the speeding up of long chains diluted with short chains
[9–11, 13, 46, 47], when CR is switched on.
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Instead of resorting to theory to determine the extent of
acceleration a priori [3, 17], we adopt an empirical approach in
the spirit of adaptive time-step solvers for ordinary differential
equations [48]. For illustration, consider a bidisperse blend.
Upon complete relaxation of short chains, we separately evolve
the dynamics using two different timesteps: 1t1 ∼ Z̄

γ
1

corresponding to the short chains, and 1t2 ∼ Z̄
γ
2 corresponding

the longer chains. That is, we repeat a small stretch of the
simulation using both fine-grained and coarse-grained time-
steps. We compare the evolution using the two different time-
steps to figure out the correction or acceleration to be applied
to the coarse-grained timestep. This is still to be understood as
an approximation, where we hope to trade a small amount of
accuracy for the potential of a sizable improvement in speed.

In section 2.3, the proof-of-concept idea of adaptive time-step
(ATS) ecoSLM is fleshed out, and tested thoroughly on bidisperse
blends in section 3.1. It involves two steps, recalibration and re-
equilibration, that are absent in the standard or constant time-
step (CTS) version of ecoSLM. In section 3.2, we extend this
analysis to ternary blends, and show how this method enables us
to compute the linear rheology of model polymers with modest
polydispersity at a reasonable computational cost. Throughout,
we treat the original CTS ecoSLM as the gold standard, and
measure changes in accuracy and speed with reference to it.

2. METHODS

ecoSLM is a multi-chain (uses an ensemble of hundreds
to thousands of chains), virtual-space (spatial coordinates of
slip links are not explicitly tracked) SLM, that records the
evolution of a small number of state variables. It assumes
that chains adopt Gaussian conformations, which implies that
it cannot be used to predict nonlinear rheology, where this
assumption is violated. Nevertheless, it can be used to compute
the LVE of arbitrary mixtures of polymers, by monitoring
macroscopically measurable time-correlation functions such as
stress and dielectric relaxation [25].

In the following, the standard constant time-step algorithm
(CTSA) is first recapitulated for monodisperse linear polymers.
Next, generalization of the CTSA to polydisperse polymers
is described, with an emphasis on bidisperse mixtures.
Subsequently, an adaptive time-step algorithm (ATSA) for
polydisperse polymers is described. This method entails
recalibration (RC) and reequilibration (RE) steps to account for
fast relaxing components.

2.1. CTSA: Monodisperse Linear Chains
Consider an ensemble of n chains with an average of Z̄ =

M/Me − 1 slip links per chain, where M is the molecular
weight, andMe is the entanglement molecular weight. Each chain
experiences Brownian motion that can destroy or create new slip
links at chain ends. The instantaneous number of slip links on
chain i, denoted by Zi, fluctuates around the average value Z̄
(marked with an overbar). Note that Zi is an integer, even though
Z̄ can take non-integer values. These fluctuations are governed by

changes in total potential energy,

U({Zi}) =

n
∑

i=1

Ui(Zi), (1)

where the quadratic fluctuation potential for chain i is given by,

Ui(Zi) =







ν

Z̄

(

Zi − Z̄
)2
, Zi ≥ 0,

∞, Zi < 0.
(2)

Throughout this work, energy is expressed in units of kBT, where
kB is Boltzmann’s constant, and T is the absolute temperature.
This potential was originally derived by balancing the Gaussian
spring force compressing a chain, with a fictitious force pulling
on its ends [49]. The quadratic form of the potential with ν = 3/2
arises from the assumption of a Gaussian chain [49–51].

On the other hand, Schieber considered a single chain SLM
[52], where the number of slip links was treated as a stochastic
variable controlled by an effective chemical potential. Uneyama
and Masubuchi subsequently used the label “non-interacting”
slip links to describe this microscopic model [53], because the slip
links were treated as phantom objects that could pass through
one another. For sufficiently long chains near equilibrium, this
model also leads to a quadratic fluctuation potential with ν =

1/2, instead of 3/2. This formalism can be extended to include
repulsive interaction between adjacent slip links so that they
cannot pass through one another [52]. This results in higher
values of ν [53]. Under reasonable assumptions, it takes the form
used currently in the ecoSLM with a weak dependence on Z̄ that
converges to 3/2 for long chains [33],

ν(Z̄) =
3

2

Z̄

Z̄ + 1
. (3)

A constant value of ν = 3/2 was used in most previous studies
using the ecoSLM [24–26]. Fortunately, for monodisperse linear
polymers, comparison of simulations with ν = 3/2, and those
using Equation (3) indicate that when terminal relaxation is not
governed by deep retraction of chain ends, predictions of LVE
are somewhat insensitive to the precise value of ν [33]. A vivid
example where this is not true is the relaxation of a well-entangled
star in a permanent network.

In the ecoSLM, slip links represent a physical entanglement
between two chains. The state of pair-wise entanglement between
slip links is described using a connectivity map C(·, ·). Let (i, j)
represent the jth slip link on chain i, which is paired with the slip
link (i′, j′). Duality stipulates that,

C(i, j) = (i′, j′)

C(i′, j′) = (i, j), (4)

where 1 ≤ j ≤ Zi, and 1 ≤ j′ ≤ Zi′ . Self-entanglements are
forbidden, 1 ≤ i 6= i′ ≤ n. Thus, the state of the system at any
instant can be described by specifying the number of slip links
on each chain {Zi}, and the connectivity map C. The underlying
master equation and microscopic model are specified in [33].
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To compute time-correlation functions such as stress
relaxation, it is necessary to track auxiliary properties of slip links.
Under the assumption of Gaussian chain conformations, stress
arises from unrelaxed chain segments between slip links [54–
56]. The normalized stress relaxation function φ(t) is the fraction
of original segments that survive at time t [24]. Therefore, it
is helpful to tag each slip link as “original” (surviving from
time t = 0), or “new” (resulting from a creation move during
the simulation).

ecoSLM is initialized by creating an ensemble of n chains
with Zi = Z̄ slip links each. The connectivity map C is
initialized by pairing slip links randomly. A short “burn-in” run
is performed to equilibrate the system. All the slip links in the
ensemble are initially tagged as “original.” TheMCMC algorithm
used to propagate the dynamics is fleshed out as Algorithm 1
(Supplementary Material). Since no comparisons are made with
experiments or other simulations in this work, we set τ0 = 1,
G0 = 1, and γ = 1.4 throughout this paper, without any loss of
generality. The timestep, defined as 1t ≡ Z̄γ /n, is normalized
by the number of chains to make simulations independent of
system size.

The coupling between slip links on different chains accounts
for CR. If desired CR can be turned off by breaking this
association, and setting C(i, j) = null. This is useful to study
dynamics of a chain in a fixed or permanent network, or to
isolate the effects of CR. When CR is turned off, the dynamics are
modified to an average of n independent, non-interacting, single
chain simulations. During the creation and destruction moves,
there is no partner slip link (i′, j′) to consider, and the change in
energy 1U = 1Ui (instead of 1U = 1Ui + 1Ui′ ) reflects this.

2.2. CTSA: Polydisperse Blends
Let us now generalize this method to a polydisperse blend with f
distinct components or fractions. That is, the ensemble consists
of n1 chains with Z̄1 slip links, n2 chains with Z̄2 slip links, and
so on until f chains with Z̄f slip links each. Throughout this
work, we shall assume that components are listed in increasing
order of chain lengths (Z̄1 < Z̄2 < ... < Z̄f ). To simplify
the description, we shall also provisionally assume that this is
the order in which the components relax, although we can work
around this requirement by simply reordering the components.
The weight fraction of component c is,

wc =
ncZ̄c

∑

ncZ̄c
. (5)

The CTSA is presented as Algorithm 2
(Supplementary Material); its overall structure is similar
to Algorithm 1.

Since there is more than one component, we have to generalize
three choices: (i) the timestep1t, (ii) the probability ρc of picking
component c for creation or destruction of slip links, and (iii)
the probability of selecting a partner chain during a creation step.
For monodisperse chains described earlier, (i) 1t = Z̄γ /n, (ii)
ρ1 = 1 (single component), and (iii) the probability of selecting
“component 1” as a partner is also 1.

For polydisperse polymers, it can be shown that the time step
1t [24],

1

1t
=

f
∑

c=1

1

1tc
, (6)

where 1tc = Z̄
γ
c /nc is the time-step associated with component

c. To understand its ramifications, it is illustrative to consider an
equimolar bidisperse blend (n1 = n2), where component 1 (2)
corresponds to the short (long) chains. If, for example, Z̄1 = 10
and Z̄2 = 100, 1t2 ≈ 251t1, assuming γ = 1.4. Since 1t
in Equation (6) is controlled by the smallest timestep, we find
1t ≈ 1t1. This is what we mean by “time-step is controlled by
short chains.”

The probability ρc of picking component c for creation or
destruction of slip links can be shown to be [24],

ρc = 1t/1tc. (7)

From Equation (6), it is clear that
∑

c ρc = 1. For the equimolar
bidisperse blend with Z̄1 = 10 and Z̄2 = 100, this implies ρ1 ≈

0.96. This combination of large ρ1, which means the short chain
is usually selected for a creation or destruction move, and small
1t ≈ 1t1 conspire to slow the simulation down enormously. In
this example, ecoSLM takes ≈ 0.1 s and ≈ 23 s of CPU time
to compute the LVE of n = 1, 000 monodisperse chains with
10 and 100 slip links, respectively. For an equimolar bidisperse
blend with n1 = n2 = 500, the computational time increases 6x
to≈ 120 s.

Finally, during a creation step the probability of selecting
a chain belonging to the cth component is proportional to its
weight fraction wc [24]. Note that for monodisperse chains, these
choices collapse to the usual settings considered in Algorithm 1
(Supplementary Material). Another limiting case (and indeed
the method used to originally justify these choices) is the
no CR case, where the calculation simplifies to a series of
independent simulations.

2.3. ATSA: Polydisperse Blends
The goal of the ATS algorithm (ATSA) is to mimic the
response [φ(t)] of the CTSA for polydisperse blends at a
lower computational cost. This is accomplished by mitigating
the primary factor (size of time-step) responsible for the
loss of ecoSLM’s “temporal coarse-graining” feature for
monodisperse polymers. Unsurprisingly, the ATSA is similar to
the CTSA described previously, with two additional ingredients:
recalibration (RC) and re-equilibration (RE). It takes the same
inputs as the CTSA, viz. an ensemble of f monodisperse fractions
where nc (number of chains) and Z̄c (average number of slip
links) corresponding to component c = 1, 2, · · · , f are specified
at the outset.

For a polydisperse sample, the ATSA initially proceeds just
like the CTSA, with timestep 1t and ρc given by Equations
(6) and (7), respectively. Consequently, the normalized stress
relaxation φ(t) is initially identical. At some point t = τ ∗1 , all the
original slip links on the shortest chains (component 1 with Z̄1
slip links) are replaced with new ones. The stress associated with
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chains belonging to this component is completely relaxed. In the
language of the tube model, it is now effectively a “solvent.”

Let us illustrate the subsequent steps in the ATSA without
considering the RC and RE steps. As shown later in Figure 4A,
this setting is appropriate when CR is switched off, and the f
components in the polydisperse mixture relax independently.
In this setting, for t > τ ∗

k
, where τ ∗

k
is the time at which the

stress corresponding to component k has completely relaxed, the
timestep 1t is reset according to,

1

1t
=

f
∑

c=k+1

1

1tc
. (8)

Comparing with Equation (6), we note that the time-step is
governed only by fractions that have not completely relaxed
yet. The probability of picking component c for creation or
destruction steps ρc is adjusted so that ρc = 0 for all fractions that
are completely relaxed. We renormalize the other probabilities
so that,

ρc =











0 c ≤ k
(1t/1tc)

∑f

k+1
(1t/1tc)

c ≥ k+ 1. (9)

Note that only unrelaxed components are selected for creation
or destruction steps. Let us examine how this applies to the
equimolar bidisperse case with Z̄1 = 10 and Z̄2 = 100 considered
previously (but with CR switched off for now). Upon relaxation
of the short polymers, the timestep is switched to 1t = 1t2
according to Equation (8). This implies a 25x increase in the time
step from 1t ≈ 1t1 to 1t = 1t2, and a corresponding decrease
in computational cost. Equation (9) implies that we reset ρ1 = 0
and ρ2 = 1, so that only long chains are selected for creation and
destruction moves.

When CR is switched on, the interaction between components
has to be accounted for, as alluded to earlier. Note that for t > τ ∗

k
,

while only unrelaxed chains (c > k) are selected for creation and
destruction moves, completely relaxed short chains (c ≤ k) may
still be selected as partner chains. The probability of selecting a
partner chain belonging to component c is wc, as before. The
acceleration in the dynamics due to the relaxed fraction (“fat
tube” vs. “thin tube”) is modeled by the RC step. In contrast to the
CTSA, completely relaxed components are not explicitly chosen
for creation or destruction; we attempt to indirectly account for
the renewal of slip links on these shorter chains by periodic RE
steps (see Figure 1).

2.3.1. Recalibration
RC is triggered when all the original slip links belonging to
component k are completely replaced. Let us denote the start of
a RC step by Ts = τ ∗

k
, where the subscript “s” denotes the “start”

time. It is easiest to illustrate this method for a bidisperse blend
as depicted schematically in Figure 1. To anchor to a specific
example, we go back to the equimolar (n1 = n2 = 500) bidisperse
blend with Z̄1 = 10 and Z̄2 = 100. Here, the initial time-step
1t ≈ 1t1 ≈ 0.05, which is about 25x smaller than 1t2 ≈ 1.26.

Recall that time is reported in units of τ0 throughout this work.
Using this small time-step (depicted by the fine grid in Figure 1),
we find that Ts = τ ∗1 ≈ 15,000.

Let Te > Ts denote the time corresponding to the “end” of
the RC step. Here we set Te = 2Ts ≈ 30, 000. We propagate
the dynamics in the time interval Ts ≤ t ≤ Te using two
different timesteps: a fine-grained (or “current”) time step 1tfg,
and a coarse-grained timestep 1tcg. In our example, 1tfg ≈

1t1 ≈ 0.05, and 1tcg = 1t2 ≈ 1.26. In general, upon complete
relaxation of component k for a polydisperse mixture,

1

1tfg
=

f
∑

c=k

1

1tc

1

1tcg
=

f
∑

c=k+1

1

1tc
. (10)

In the first pass, we continue calculating φ(t) over the interval
Ts ≤ t ≤ Te with time step 1tfg (fine grid in Figure 1). Let us
denote this φ(t) with a subscript as φfg(t). In the second pass,
we recompute dynamics over the interval Ts ≤ t ≤ Te with the
larger time step 1tcg, and label the corresponding response as
φcg(t). For our particular bidisperse example, the relevant portion
of the relaxation window (marked by Ts and Te) is shown in
Figure 2. The blue and orange curves correspond to φfg(t) and
φcg(t), respectively.

With CR switched on, the coarse-grained calculation results in
slower relaxation, because it ignores the acceleration in dynamics
due to the relaxed fraction. In this work, we quantify the
extent of acceleration using a scalar factor frc. We define frc =

t∗
fg
/Te, where t

∗
fg
is defined by asserting φfg(t

∗
fg
) = φcg(Te). The

temporally coarse-grained timestep is then set to,

1t = frc1tcg (11)

In the bidisperse blend example considered in Figure 2,
φcg(Te) = 0.726, which is shown by the gray horizontal line.
The time at which it intersects the φfg curve is t∗

fg
≈ 28, 500,

so that frc = 0.94. The calculation for t > Te is performed
with a time-step recalibrated as 1t = 0.941tcg ≈ 1.18, in this
example. This is still of order 1t2, but is subtly corrected to
account for accelerated dynamics. It is evident from Figure 2 that
the scaling factor frc depends on Te. It increases with Te initially,
approaching a constant value for sufficiently large Te. We section
3, we revisit this issue quantitatively.

A recalibration step is initiated when one of the components
completely relaxes. Thus, for a binary blend, there is a single
recalibration step that occurs, when the short chains relax. For
a polydisperse blend with f fractions, there may be up to f −1 RC
steps. The time-step after each RC event increases, and is set by
the smallest unrelaxed fraction, suitably modified to account for
acceleration via frc.

2.3.2. Re-equilibration
In the ATSA, the identity of a completely relaxed species
is retained after all its slip links are replaced. In particular,
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FIGURE 1 | Structure of ATSA. For a bidisperse blend of short and long chains, the fine-grained time-step 1tfg (blue grid) is initially controlled by the short chains.

Recalibration (RC) is triggered at time Ts = τ ∗
1 , when the short chains completely relax. For times Ts ≤ t ≤ Te, the dynamics are evolved using two time-steps 1tfg

(blue) and a larger coarse-grained 1tcg (orange). Beyond, Te the suitably adjusted larger time-step is used to further evolve the dynamics. Re-equilibration (RE) is

performed periodically, approximately at intervals of τ ∗
1 starting from time Te.

FIGURE 2 | Recalibration. Vertical dashed lines mark Ts and Te for an

equimolar mixture of (Z̄1, Z̄2) = (10, 100), where dynamics are propagated

using a fine-grained (blue) and coarse-grained (orange) time-step. The

horizontal line marks φcg(Te), which is used to find the RC scaling factor frc.

relaxed components continue to serve as partner chains for the
remaining unrelaxed components. The RE step, which refreshes
the connectivity information of all the completely relaxed species,
by sampling from the equilibrium distribution, is initiated
periodically (see schematic in Figure 1). This connectivity
altering step has no instantaneous effect on the stress, since
it does not affect original slip links. However, it can alter the
subsequent course of evolution.

Again, it is easiest to describe the RE step for a bidisperse blend
with short and long chains. We shall discuss the frequency of re-
equilibration after we discuss what a RE step entails. Consider
a time t > τ ∗1 , when the short chains have completely relaxed,
but the long chains still bear significant amount of residual stress.
If a RE step is initiated, the number distribution of slip links on
the short chains and their connectivity is resampled from the
equilibrium distribution in three steps:

1. all the existing slip links on the short chains are destroyed;
2. using the fluctuation potential (Equation 2), the number of

new slip links on these short chains Zi are directly sampled;

3. partner chains for these newly created slip links are selected as
in the creation step, i.e., in proportion to the weight fraction
of all chains.

The time interval between RE steps, Tre, may be approximated
in several ways. The simplest method is to set Tre = τ ∗1 .
However, we recognize that τ ∗1 is the result of one numerical
experiment, and like all extreme value measurements, it is noisy.
Therefore, it is perhaps useful to sample Tre from a distribution.
From numerical experiments, results are found to be somewhat
insensitive to the precise method used, with a few caveats that are
discussed in section 3. Thus, here, we describe a simple method
(based on assumptions that we know are not strictly valid) that
is easy to implement. Surprisingly, it appears to work as well as
other, more sophisticated, methods.

Suppose the relaxation time of the component 1 is τ1, so
that the probability that a chain is unrelaxed at time t may be
approximated by the survival probability, p1(t) = 1 − e−t/τ1 .
Now consider an ensemble of n1 similar chains; if we assume that
the relaxation of these chains proceeds independently, then the
probability that all the chains in the ensemble have relaxed at time
t is given by,

pens(t) = pn11 =
(

1− e−t/τ1
)n1

. (12)

We assume that τ ∗1 is one observation from this cumulative
probability distribution. Subsequent RE times Tre may also be
sampled from this distribution. The probability density function
(PDF) is obtained by differentiating Equation (12) with respect to
t as,

πens(t) =
n1

τ1
e−t/τ1

(

1− e−t/τ1
)n1−1

(13)

Figure 3 plots πens(t) as a function of the number of chains n1.
The distribution gets wider as the number of chains n1 decreases,
reflecting the increased uncertainty in overinterpreting a single
observed value of τ ∗1 . We identify the observed value τ ∗1 with the
most probable value of the PDF (the maxima of the PDF). With
this approximation, it can be shown that τ1 = τ ∗1 / log n. Armed
with this information, we can sample Tre from πens(Tre) using
standard sampling techniques.

To complete the discussion, we tie couple of loose threads.
First, the time elapsed since the last RE step Telapse is tracked, and
a new RE step is carried out when it exceeds Tre. The clock is reset
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FIGURE 3 | Reequilibration. The PDF (Equation 13) from which the RE time Tre
is sampled narrows as the number of chains n1 increases from 100 to 1,000.

(Telapse = 0), and a new Tre is drawn from πens(Tre). For a binary
blend, RE is performed “most probably” around Tre ≈ τ ∗1 , as
shown in Figure 3. Second, the extension to the polydisperse case
is straightforward. We record the time for the last component
to completely relax τ ∗

k
, and the time elapsed since the previous

RE step, Telapse, as before. A RE step in which all the relaxed
components i ≤ k are re-equilibrated is carried out when Telapse

exceeds Tre. Salient modifications to the CTSA are highlighted in
Algorithm 3 (Supplementary Material).

3. RESULTS AND DISCUSSION

The two main features of the ATSA are (i) partial recovery of
temporal coarse-graining due to larger time-steps upon complete
relaxation of a component, and (ii) corrections due to RC and RE
steps that account for accelerated dynamics in the presence of CR.
When CR is switched off, the second feature becomes irrelevant
as the chains relax independently. To test this, we first perform a
simulation in which CR is suppressed.

As a base case, we consider a bidisperse blend with (Z̄1, Z̄2) =
(10, 40) at a weight fraction of w1 = 0.5. We use n1 = 800 and
n2 = 200 chains for an ensemble of 1,000 total chains. Figure 4A
compares the φ(t) obtained from the CTSA and ATSA, averaged
over five independent replicas. The agreement between the two
curves is excellent. The dashed and dotted lines depict the φ(t)
of the monodisperse short and long chains, respectively. The
terminal relaxation of the bidisperse blend is controlled by the
relaxation of the long chains.

In the CTSA, a constant time-step of 1t ≈ 0.03 (via Equation
6) is held fixed through the simulation. The ATSA starts with
this small value for 1t. At τ ∗1 ≈ 18 ± 0.4 × 103, the short
chains completely relax, shown by vertical gray line in Figure 4A.
Since CR is suppressed, the RC step is irrelevant (even if it is
artificially triggered it leads to frc ≈ 1). Thus, for t > τ ∗1 , 1t
is temporally coarse-grained to 1t = 1t2 ≈ 0.875, according

to Equation (11). Again, since CR is suppressed, the RE step is
irrelevant, and does not affect the evolution of the system, even if
it is artificially triggered.

In this particular example, the final simulation timewhere φ(t)
falls below the threshold 10−4, is tfinal ≈ 1, 000τ ∗1 . The ATSA thus
uses the smaller 1t = 1t1 for the first 0.1% of the simulation,
and switches to a time-step that is 30x larger for the remaining
99.9% of the simulation. This is reflected in the significantly faster
runtimes: on a single modern CPU, the ATSA takes 0.23 s, while
the CTSA takes 3.03 s. Due to (common) overhead associated
with operations like initialization, file input and output etc., the
gain is smaller than the theoretical maximum of 30x.

Figure 4B repeats the calculation on this bidisperse blend, but
with CR switched on. As before, the dashed and dotted gray lines
depict the response of the monodisperse constituents. It should
be noted that these responses are not the same as in Figure 4A,
because CR is active even in the monodisperse samples. The
CTSA response is shown as a solid blue line, and τ ∗1 ≈ 11.7 ±

0.4×103 when the short chains completely relax is marked with a
vertical gray line. The ATSA response with both RC and RE steps
included is shown by the dashed orange line, and is in excellent
agreement with the CTSA. Since a larger time-step is used, the
ATS calculation is ∼6x faster than the CTS calculation (0.27 vs.
1.63 s).

Figure 4B also shows the impact of not incorporating the RC
or RE steps. When neither RC nor RE steps are included, the
response obtained is shown by the solid black line. This response
is much slower than response of the CTSA. This shows why
the RC and RE steps are important when CR is switched on; in
contrast, Figure 4A in unaffected by the inclusion or exclusion
of the RE or RC steps. The effect of including RC (RE) while
excluding RE (RC) is shown by the dotted (dashed) black line
in Figure 4B. Note that in the “no RC” case, we assume frc = 1.
As expected, including either of these steps accelerates dynamics,
and pushes the response toward the CTSA; when both steps are
included simultaneously, the ATS calculation essentially overlaps
with the CTS response.

Next, we isolate and study different aspects and choices of the
ATSA, primarily for binary blends. Based on calculations on a
number of different binary blend systems, we study the speed
versus accuracy tradeoff. We then show that the method still
works for ternary blends, and finish by computing the LVE of a
polydisperse sample.

3.1. Bidisperse Blend
We start by exploring the choices made in the RC and RE steps
for the “base case” bidisperse blend (Z̄1 = 10, Z̄2 = 40, with
w1 = 0.5) studied above. For the RC step, we study the effect
of the size of the interval Te − Ts on the recalibration factor
frc. For the RE step, we study the effect of RE frequency Tre on
the dynamics.

3.1.1. RC Overlap Duration
In the ATSA, the RC step involves repeating a FG and CG
calculation over a time period Ts ≤ t ≤ Te (see Figures 1, 2 for
example). For binary blends, Ts = τ ∗1 is the time when the short
chains completely relax. The stress relaxation for the bidisperse
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FIGURE 4 | CR switched off and on. Normalized stress relaxation of a bidisperse blend (Z̄1 = 10, Z̄2 = 40) with w1 = w2 = 0.50 using the CTSA (solid blue) and

ATSA (dashed orange). The dashed and dotted gray lines mark the normalized stress relaxation of the monodisperse Z̄ = 10 and Z̄ = 40 components, respectively.

The vertical gray line marks τ ∗
1 , when the stress associated with the short chains is completely relaxed. CR is switched off in (A), but switched on in (B), where the

dashed, dotted, and solid black lines show the ATS calculation without RC, RE, and both RC and RE, respectively.

FIGURE 5 | Recalibration duration. Normalized stress relaxation of the

bidisperse blend (Z̄1 = 10, Z̄2 = 40) with w1 = 0.50 reported in Figure 4B is

zoomed into. The CTS (solid blue), ATS (dashed orange), and Ts = τ ∗
1 (vertical

gray) lines are identical. The dotted and dashed black curves denote ATS

simulations performed where Te is selected according to Te − Ts = 0.5τ ∗
1 and

2τ ∗
1 , respectively. Vertical lines of the same kind mark Te. In the standard

ATSA, Te − Ts = τ ∗
1 (dashed orange).

blend (Z̄1 = 10, Z̄2 = 40) with w1 = 0.50, previously shown in
Figure 4B, is zoomed into in Figure 5. The CTS (solid blue), ATS
(dashed orange), and Ts = τ ∗1 (vertical gray) lines are the same.

We use three different choices for the duration of the RC step,
namely Te − Ts = 0.5τ ∗1 , τ ∗1 , and 2τ ∗1 . The default choice in
the ATSA corresponds to Te − Ts = τ ∗1 , which is shown by
the dashed orange curve. The interval over which the RC step

is carried out corresponds to the distance between the vertical
gray line (Ts) and the vertical dashed orange line (Te). The other
two choices explore what happens when we increase or decrease
Te around this choice. When the RC time interval is doubled
(dashed black) to Te − Ts = 2τ ∗1 , the effect of the resulting φ(t)
is essentially negligible. However, when the RC time interval is
halved (dotted black) to Te − Ts = 0.5τ ∗1 , the predicted response
is noticeably slower.

The origin of this slow response can be traced back to frc. For

Te − Ts = 0.5τ ∗1 , frc ≈ 0.9, whereas for the two longer RC

intervals frc ≈ 0.8. This difference may be understood through
the lens of Figure 2. When RC interval is small, the “distance”

between the FG and CG curves is small. In this regime, increasing

the interval, leads to a decrease in frc. Beyond a certain point

(comparable with τ ∗1 ), frc approximately settles to a constant

value. This phenomenon is also on display in Figure 4B, when we

consider the curves corresponding to “no RC” (frc = 1) and the

CTSA. In this particular figure, we can think of the CTSA as the

FG calculation, and the “no RC” case as the CG calculation with

a long Te. On a log-log plot, frc corresponds to the “horizontal
distance” between the no RC and CTSA curves. After the short
chains completely collapse (vertical gray line), the two curves
separate out. Beyond a certain point comparable with τ ∗1 , this
distance becomes approximately constant, and corresponds to a
constant value of frc.

For this reason, it is better to err on the side of using a
longer RC interval. However, the computational cost increases
with Te − Ts, since two different calculations (FG and CG) are
performed over the same interval. In practice, we find that using
Te − Ts = τ ∗1 offers a reasonable trade-off. It is simpler to justify,
since we seek to approximate processes faster than the timescale
at which the short chains have completely relaxed into a simple
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FIGURE 6 | Re-equilibration frequency. Normalized stress relaxation of the

bidisperse blend (Z̄1 = 10, Z̄2 = 40) with w1 = 0.50 reported in Figure 4B is

zoomed in. The CTS (solid blue), ATS (dashed orange), and τ ∗
1 (vertical gray)

lines are identical. The dashed, solid, and dotted black lines denote ATS

simulations performed with constant Tre = 0.5τ ∗
1 , τ

∗
1 , and 2τ ∗

1 , respectively.

scalar factor. Indeed, it is possible to develop more sophisticated
estimates of frc by monitoring the evolution of frc as a function of
the RC interval. In particular, we could track the first derivative
dfrc/dTe to further optimize the algorithm. Since this is a proof-
of-concept paper, we do not perform this analysis here. However,
it might definitely be a worthwhile idea to pursue.

3.1.2. RE Frequency
In the ATSA, we sample the RE time Tre from the PDF πens given
by 13. As shown in Figure 3, for bidisperse blends, the PDF has
a maxima at τ ∗1 , and its width depends on the number of short
chains n1 in the ensemble. As n1 → ∞, the PDF converges to a
Dirac delta function πens(t) → δ(t − τ ∗1 ).

Figure 6 zooms in on the CTSA and ATSA results depicted
in Figure 4B to highlight the relaxation response around t ≈

τ ∗1 (denoted by vertical gray line), and beyond. As observed
previously, the agreement between the ATSA and CTSA is
excellent. We first consider the alternative of using a constant
frequency of Tre = τ ∗1 (solid black line), instead of sampling
stochastically from πens. We note from the figure, that this
simple choice also performs quite well, especially considering the
uncertainty associated with the simulation. From experience with
a number of different bidisperse samples, it appears that using
a constant Tre = τ ∗1 leads to slightly slower relaxation than
sampling from the PDF πens. If we artificially set a higher RE
frequency Tre = 0.5τ ∗1 , we obtain the dotted line in Figure 6,
which provides a better correspondence with the CTS calculation.
Decreasing the frequency to Tre = 2τ ∗1 (dashed line), results in
significantly slower relaxation, as expected.

It is interesting that stochastically sampling Tre from a PDF
with a maxima at τ ∗1 has roughly the same effect as choosing a
constant Tre = 0.5τ ∗1 for this example. It is possible to conceive
of different RE algorithms. For example, instead of completely

re-equilibrating all the short chains at a constant or stochastic RE
time Tre, we could re-equilibrate a fraction of the slip links on the
completely relaxed chains more frequently. We did not explore
this direction in this work, since the ATSA, as specified, appears
to offer a good compromise between simplicity and effectiveness.

3.1.3. Speed and Accuracy
Thus far, we have primarily focused on a single bidisperse blend
with (Z̄1 = 10, Z̄2 = 40,w1 = 0.5). In this part, we vary the
molecular weight of the long chain Z̄2 = 20, 40, and 80, and the
composition of the blend w1 = 0.25, 0.5, 0.75. The array of panels
in Figure 7 compares the ATSA and CTSA for these 9 cases. Note
that the base case (w1, Z̄2) = (0.50, 40) is plotted at the center.

From left to right, the length of the long chain Z̄2 increases,
and from top to bottom, the fraction of the short chain w1

increases. When Z̄2 = 20, the lengths of the two components
are comparable, and we do not observe a distinct shoulder. For
Z̄2 = 40 and 80, however, we can distinguish the relaxation
of the short and the long chains. As w1 increases, the height of
the shoulder which arises primarily from entanglements between
long chains, decreases (approximately as w2

2) [24]. It is clear from
Figure 7 that the ATSA does a remarkable job of approximating
the φ(t) obtained from the CTSA.

Figure 8 studies trends in these systems more quantitatively.
The four subfigures explore (Figure 8A) the variation of the
scaling factor frc, (Figure 8B) the time at which the short
chains completely collapse τ ∗1 , (Figure 8C) the speedup obtained
by using the ATS approximation, and (Figure 8D) the error
incurred in the approximation. These factors are plotted as a
function of w1, with Z̄2 as a parameter.

From Figure 8A, we note that frc decreases with increasing
fraction of short chains w1. This indicates a stronger acceleration
of the dynamics of the long chains, as they are diluted with
an increasing amount of short chains. This trend may be
justified using the lens of tube dilation in the TM. While the
correspondence is not perfect, fs = 1 roughly corresponds to
relaxation of the long chain in a thin tube. As w1 increases,
the tube dilates, leading to progressively faster dynamics. For
monodisperse long chains, corresponding to w1 = 0, we expect
frc = 1.0, independent of Z̄2. Thus, we would expect the three
curves to approximately overlap at small w1. Beyond this early
regime, frc appears to decrease with Z̄2 initially at a fixed w1, but
appears to settle to a constant value for Z̄2 = 40 and 80.

In Figure 8B, τ ∗1 increases as Z̄2 or w2 increase. When Z̄2
increases, the relaxation of the short chains is slowed because the
lifetime of slip links associated with long chains increases. When
w2 increases, the fraction of short-long slip links increase thereby
increasing the average lifetime of slip links on short chains,
leading to a slowdown in relaxation. It is useful to compare these
τ ∗1 to that in Figure 4A when CR is completely suppressed and
the dynamics of the short chains are decoupled from both long
chains and other short chains. In this scenario, τ ∗1 /103 ≈ 18, is
independent of Z̄2 or w2. It represents an upper-threshold; when
CR is turned back on, τ ∗1 begins to approach this level as Z̄2
increases. This is especially pronounced near w1 → 0 for long
Z̄2, where nearly all the slip links on the short chains are paired
with relatively long-lived slip links on longer chains.
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FIGURE 7 | Bidisperse blends. Normalized stress relaxation predictions [φ(t) vs. t] using the CTS (solid blue) and ATS (dashed orange) methods with Z̄1 = 10. The

composition (w1) and long chain length (Z̄2) are indicated in parenthesis. Note that the figure in the center corresponds to the base case studied in Figure 4B.

We measure speed up in Figure 8C using the ratio of the
CPU times required for the ATSA and CTSA calculations. When
the computational cost is same or comparable, the speedup is
approximately one; larger (smaller) values denotes improvement
(deterioration) in computational efficiency. The first thing that is
visible from Figure 8C is that the ATSA improves as Z̄2 increases.
In comparison, the variation with blend composition at a given
value of Z̄2 is relatively modest. For Z̄2 = 40 and 80, speedups
of 3–6x and 10–15x are obtained, respectively. Interestingly, the
speedup is in the range of 0.55–0.8x for Z̄ = 20. Since this
is less than one, it implies that we are actually worse off with
the approximate method. How does this happen? ATSA requires
additional overhead during the recalibration process including
repeating the calculation with two different timesteps, besides
additional file operations. This fixed cost cannot be amortized
over the relatively short remainder of the simulation, with only
a marginally larger 1t corresponding to Z̄2 = 20. In general,
speedups from the ATSA for binary blends are greatest, when
the terminal relaxation time is much greater than τ ∗1 (or Z̄2 ≫

Z̄1), where the cost of the overhead can be spread over a long
simulation run with a much larger timestep.

We measure accuracy of the ATSA by comparing it with the
CTSA, which is treated as a gold-standard. Let the response
of the CTS and ATS calculations be labeled as φcts(t) and
φats(t), respectively. In the best case scenario, the two curves are
identical, and their ratio r(t) = φats(t)/φcts(t) ≡ 1. However,
since ecoSLM is a stochastic simulation, we would not expect this
equality to hold even for two independent runs using the CTSA.
The variability between different runs has to be accounted for.
We use the ratio as an error measure instead of the difference
|φats(t) − φcts(t)| for two reasons. First, the ATS calculation
initially (when φ values are largest) exactly follows the CTS
calculation and does not contribute to error. Often after a RC
event a substantial fraction of the initial stress has relaxed, and
the values of φ are small, which might potentially understate the
possible deviations between ATSA and CTSA. Second, since φ(t)
typically displayed on a log-log plot, a ratio is a geometric better
measure of the difference between two curves.
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FIGURE 8 | Bidisperse blends quantitative analysis. The acceleration factor frc (A), τ ∗
1 (B), speedup due to ATSA (C), and the difference between the ATS and CTS

responses (D) are shown for the blends considered in Figure 7. In each subfigure, the blue, orange, and green lines depict Z̄2 = 20, 40, and 80, respectively.

In Figure 8D, we incorporate the variability between different
runs, and plot the mean value of the ratio r̄ ≡ 〈r(t)〉. We
observe r̄ ≈ 1 is tightly clustered around its expected value. This
indicates that the ATSA provides a reasonably approximation to
the CTSA, across all blends. Overall, this presents the advantages
and disadvantages of the ATSA. For Z̄2 ≫ Z̄1, which present the
hardest cases for the CTSA, the ATSA provides speed ups of
an order of magnitude or more without much loss in accuracy.
Conversely, when Z̄2 is not significantly greater than Z̄1, it is
preferable to use the CTSA. This will manifest itself again, when
we consider polydisperse samples below.

3.2. Ternary and Polydisperse Blends
We briefly consider extensions to ternary blends (f = 3), and
a single polydisperse sample with f = 8. For the ternary blend,
we consider chains with (Z̄1, Z̄2, Z̄3) = (10, 40, 80), and a total
of ∼2,000 chains in the ensemble. We consider two different
compositions: (i) equal number fraction so that the same number
of chains (n1 = n2 = n3 = 667) are used for each component,
and (ii) equal weight fraction, so that w1 = w2 = w3 ≈ 1/3. This
case corresponds to n1 = 1, 450, n2 = 362, and n3 = 186.

Figure 9 plots the φ(t) using the CTSA and ATSA. As before,
the ATSA offers a good approximation to the φ(t) obtained from
the CTSA for both cases. The τ ∗1 corresponding to the Z̄1 = 10
component is approximately 17.4 × 103 and 16.4 × 103 for the
equal number and weight fraction calculations, respectively. This
decrease is directionally consistent with Figure 8B, where τ ∗1 for

a given blend decreases as w1 increases. A similar decrease is also
observed for the Z̄2 = 40 component, with τ ∗2 ≈ 1.6×106 for the
equal number fraction case, decreasing to 1.1× 106 for the equal
weight fraction case.

The speedups obtained using the ATSA are 2.7x and 6.5x for
the equal number and weight fraction calculations, respectively.
Note that 1tc = Z̄

γ
c /nc varies inversely with the number of

chains of a particular species in the ensemble. In the equal weight
fraction case, the time step following the first RC step increases
to 0.34 compared to 0.18 for the equal number fraction case.
After the second RC step, the corresponding numbers for 1t are
2.0 and 0.67, respectively. Thus, the difference in the speed-ups
is largely explained by the larger time-steps in the equal weight
fraction case.

Finally, Figure 10 uses a blend of f = 8 monodisperse
fractions to represent a polydisperse sample with weight-
averaged number of slip links Z̄w = 50 and polydispersity index
of 1.2. A log-normal distribution is assumed, and the method
outlined in [43] is used to obtain the chain lengths and weight
fractions of the components. The average number of slip links of
the components range from Z̄1 = 10 to Z̄8 = 138. Note that the
time-steps (Equation 6) corresponding to the shortest and longest
chains differ by a factor of 30.

The dotted line shows the sharp stress decay of a
monodisperse polymer with Z̄ = 50. The response of the
polydisperse sample shows a wider spread of timescales as
expected. The agreement between the CTSA and the ATSA is
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FIGURE 9 | Ternary blends. Normalized stress relaxation curves using the CTS (blue) and ATS (dashed orange) algorithms for ternary blends with

(Z̄1, Z̄2, Z̄3) = (10, 40, 80). The number and weight fractions of the components are equal in (A,B), respectively. The gray lines mark τ ∗
1 and τ ∗

2 in both subfigures mark

the times at which components 1 and 2 relax completely.

FIGURE 10 | Polydisperse sample. Normalized stress relaxation of a sample

with Z̄w = 50, and polydispersity index of 1.2 using f = 8 fractions. Gray lines

indicate complete relaxation of shorter components. The dotted line shows

φ(t) of a monodisperse polymer with Z̄ = 50.

quite good. Due to the smooth unimodal distribution, we do not
observe multiple shoulders in the figure following the complete
relaxation (indicated by vertical gray lines) of faster components.
On average it took 13.5 s of CPU time to compute the ATSA
response. While this is indeed faster than the CTSA, it represents
speedup of a modest factor of 1.5. While a 50% improvement in
speed is quite substantial, it is far from the order of magnitude
improvement in computational efficiency observed for binary
blends with widely separated chain lengths.

The polydisperse example is also significant because it shows
both the promise and limits of the ATSA.We obtain a substantial

improvement in speed (50%) without sacrificing accuracy too
much. However, the improvement in speed is nevertheless
underwhelming. The underlying reason is not dissimilar from
the (Z̄1, Z̄2) = (10, 20) blend studied in Figure 8. The RC
step following the complete relaxation of a species requires an
investment of resources that is recouped subsequently. Small or
modest increases in the time step, impairs the potential speedup
of the ATSA, and as observed previously, it is indeed possible for
the ATSA to underperform the CTSA.

When a polydisperse sample is discretized the chain lengths
of consecutive components are not widely separated. In this case,
the number of slip links are {Z̄i} = {10, 15, 21, 31, 45, 66, 95, 138},
and the corresponding number of chains are {ni} =

{6, 66, 296, 626, 630, 300, 68, 8}. There is of course room for
improvement of the ATSA. In the current version, a RC step
is triggered when any component completely collapses. It is
possible to imagine an algorithm in which an RC step is
triggered only when a significant jump in time-step (1tcg/1tfg)
is on the table. Such an algorithm, or some variation thereof,
would essentially revert to CTSA, and avoid situations like the
(Z̄1, Z̄2) = (10, 20) blend studied previously. It also has the
potential to improve performance on polydisperse samples where
the change in timestep may not always be significant.

4. SUMMARY

For monodisperse polymers, the standard or CTSA algorithm
for ecoSLM has a desirable property of temporal coarse
graining which permits larger time-steps for longer chains,
thereby expediting the simulation. However, this property is
compromised for blends of polymers, and is keenly evident in
binary blends with widely separated molecular weights. Here, the
time-step is limited by the short chains, while terminal relaxation
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is governed by the long chains. The primary contribution of
this paper is an ATSA for ecoSLM which recovers, at least
partially, this lost property of temporal coarse-graining. The goal
of the ATSA is to mimic the CTSA at a significantly lower
computational cost.

In the ATSA, the time-step is determined by the shortest
unrelaxed chains in the ensemble, which increases as
the simulation proceeds. It involves two additional steps:
recalibration and re-equilibration. During recalibration, which is
triggered when any component completely relaxes, we repeat a
segment of the simulation with fine-grained and coarse-grained
time-steps, to figure out the appropriate 1t. A re-equilibration
step, in which slip links on completely relaxed components
are renewed, is triggered periodically. Both steps are necessary
to get the ATSA to match the CTSA. Since this is a proof-of-
concept paper, we did not fully optimize the recalibration and
re-equilibration steps. For RC, we found that setting the duration
of the RC step to Te ≈ 2Ts or slightly larger is sufficient. For
RE, we found that stochastically drawing Tre ≈ τ ∗

k
provides

reasonable results.
For binary blends, we validated the ATSA by comparing

it with the CTSA for a variety of different chain lengths and
blend compositions. As an approximation, the accuracy of the
ATSA was found to be within an acceptable range, without any
systematic deviations. From an efficiency standpoint, the sweet
spot for the ATSA is when Z̄2 ≫ Z̄1, where speedups of orders of
magnitude are possible. On the flip side, when Z̄2 ∼ Z̄1, the ATSA
can actually be slower than the CTSA, as the overhead associated
with the RC and RE steps cannot be sufficiently amortized over a
short simulation run with a marginally larger time-step.

For a ternary blend with two different blend compositions, we
again observed a reasonable tradeoff between speed and accuracy,
with speedups between 2.5 and 6x for the two cases studied.
We also studied a polydisperse sample with f = 8 fraction,
seeking to mimic the response of a log-normal distribution with

a modest polydispersity index. For this case, the ATSA was

found to be 50% faster than the CTSA. While significant, this is
somewhat muted because the chain lengths of the fractions are
not spaced sufficiently apart, and the change in 1t following a
RC step is not always significant. We discussed potential ways
to improve the performance of the ATSA further. The ATSA
resembles to the idea of dynamic tube dilation in the tube model.
However, instead of using theory to determine the extent of
“tube dilation,” it determines it empirically by matching the
response with that of the CTSA. It might be most useful for
star-linear, star-star blends, or other branched polymers like H-
polymers or combs where the disparity in relaxation times can
be wider.
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