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True random number generators are in high demand for secure cryptographic algorithms.
Unlike algorithmically generated pseudo-random numbers they are unclonable and non-
deterministic. A particle following Brownian dynamics as a result of the stochastic
Ornstein-Uhlenbeck process is a source of true randomness because the collisions
with the ambient molecules are probabilistic in nature. In this paper, we trap colloidal
particles in water using optical tweezers and record its confined Brownian motion in real-
time. Using a segment of the initial incoming data we train our learning algorithm to
measure the values of the trap stiffness and diffusion coefficient and later use those
parameters to extract the “white” noise term in the Langevin equation. The random noise is
temporally delta correlated, with a flat spectrum. We use these properties in an inverse
problem of trap-calibration to extract trap stiffnesses, compare it with standard
equipartition of energy technique, and show it to scale linearly with the power of the
trapping laser. Interestingly, we get the best random number sequence for the best
calibration. We test the random number sequence, which we have obtained, using
standard tests of randomness and observe the randomness to improve with
increasing sampling frequencies. This method can be extended to the trap-calibration
for colloidal particles confined in complex fluids, or active particles in simple or complex
environments so as to provide a new and accurate analytical methodology for studying
Brownian motion dynamics using the newly-emerged but robust machine learning
platform.
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1 INTRODUCTION

Stochastic processes are excellent manifestations of statistical
randomness and can be used for pedagogical study of
probabilistic models [1, 2]. Such processes are widely used to
expound phenomena like the Brownian motion of microscopic
particles, radioactive decay, Johnson Noise in a resistor; they are
even applied to financial markets [3] and population dynamics
[4] where fluctuations play a central role. The most widely
employed stochastic process is the Ornstein-Uhlenbeck
process, which can model the trajectory of an inertia-less
Brownian particle. As is well known, Brownian particles
exhibit random motion due to collisions with the surrounding
molecules that are in constant thermal motion in atomic
timescales. However, Brownian motion - being one of the
simplest stochastic processes - can be studied in an confined
environment in conjunction with optical traps. Thus, optical
traps may be employed to exert calibrated forces in order to
induce deterministic perturbations on the particles, so that the
interplay between random and deterministic forces may then be
studied [5]. The motion of an optically trapped Brownian particle
is determined by parameters such as temperature, viscosity of the
fluid and trapping power—thus it embodies the perfect model to
test parameter extraction in linear systems [6, 7]. These extracted
parameters are also used to spatially calibrate the trap, i.e., find
out the trapping potential, which is a cardinal prerequisite for
position detection and force measurement experiments. Indeed,
for the last few decades, optical tweezers are being widely used as
tools to study forces in cellular adhesion [8], DNA nanopores [9],
or Van der Waals interaction [10] only to name a few.

In recent works, machine learning (ML) has been applied to
problems of parameter estimations in stochastic time series.
Bayesian Networks [11–13] are in high demand to analyze
such processes due to their speed and reliability. Neural
networks [14] are also coming up to analyze complicated
problems including data analysis in Optical Tweezers. We take
a step in the same direction to learn the parameters of our system
from the measured time series of the stochastic Brownian motion
of a trapped particle, as well as employ the time series to generate
strings of completely random numbers. Generation of secure
random numbers underpins many aspects of internet and
financial security protocols. True random numbers, unlike
algorithmically generated pseudo-randoms, are non-cloneable
and in high demand for cryptographic purposes. Many
physical systems have been demonstrated to generate random
bits, including photonic crystals, chaotic laser fluctuations,
amplified spontaneous emission (ASE) [15], DRAM PUF
circuits [16], and even self-assembled carbon nanotubes [17].
However, the stochasticity in the Ornstein-Uhlenbeck
process—of which the Brownian motion of an optically
trapped particle is a robust example—has not yet been
considered to generate statistically random variables. Indeed,
the string of random numbers obtained by this route is a by-
product of a completely natural phenomenon, and thus superior
to algorithmically generated random strings. It is important to
remember that stochasticity is a statistical phenomenon that
emerges due to the loss of classical variables in its description,

and so—though it is has a pure classical description—it also has a
ingrained probabilistic nature.

In this paper, we present a modus operandi for estimation of
the parameters associated with the stochastic process which
governs the Brownian motion of a microscopic particle
confined in an optical trap from the partially observed
samples [18] of the position (observable) using the simple
properties of an autoregressive theory. Since such phenomena
have components of both stochastic and deterministic processes,
we can separate the fluctuations and study their aleatory traits.
Note that the stiffness of the harmonic potential k, the drag-
coefficient of the particle γ in the viscous fluid and the
temperature kBT are the three parameters of the trapped
Brownian dynamics. The Stoke’s law c � 6πηa relates the
viscosity of the simple fluid η and the radius of the spherical
particles a to the drag coefficient c. The Einstein relation D � kBT

c
introduces the diffusion parameter in our equation which we
choose to represent in terms of two independent variables k and
c. We commence our treatment by discretizing the trajectory of
the particle into finite samples taken at equal intervals of time.
Using a finite difference method we recast the Langevin equation
describing the motion of the optically trapped Brownian particle
into an iterative equation. Since we can measure the time series
for the displacement (x), the knowledge of this parameter will
enable us to solve for the stochastic part of the Langevin
equation. We construct an inverse problem of parameter
extraction, for which we use the temporal delta correlation
and flattened nature of the spectral density of the white noise
to estimate the parameters k and c in the Langevin equation. For
a particle of known size, estimation of c by this method also
allows us to find out the coefficient of viscosity if the position
detection system is pre-calibrated. Thus it becomes a viable
paradigm for performing viscometry even when the sample
volumes are in nanoliter range. Additionally any change in
the estimated parameters in our model will help to descry any
heterogeneity present in the sample and eliminate unwanted
systematic fluctuations. On the other hand, we can also use a
fluid of known viscosity to find the position sensitivity of our
detectors. It is important to note that existing methods of
calibration such as the Power Spectrum analysis [19] or
equipartition of energy per degree of freedom [20] are
efficacious only in cases where there is no drift or electronic
noise present in the system, and the presence of systematic or
non-systematic variations meddle with the analyses which are
typically done on the entire dataset. Now, the Ornstein-
Uhlenbeck process is Gauss-Markov in nature [21] and
harbors no memory earlier than the last step which makes it
profoundly useful in dealing with small fluctuations
concentrated locally in the dataset. In our treatment, we
demonstrate the entropy of randomness to increase with
increasing sampling rates asymptotically. We perform tests for
randomness using the celebrated NIST test suite [22], and our
extracted time-series pass all relevant tests at 99% confidence
level. We plan to further extrapolate this procedure, using higher
order parameter estimation, to subsume non-Markovian chains
in our protocol that will describe fluctuations in viscoelastic
fluids.
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In a nutshell, the time-series data of the probe’s displacement
is used to construct an inverse problem of parameter estimation.
The auto-correlation properties of the extracted noise term
obtained from the initial section of the data are used to learn
the parameters for trap-calibration (that closely concur with the
values extracted through conventional techniques). Then these
parameters are used to extract arrays of random numbers from
the stochastic time-series, which efficiently pass statistical tests for
randomness.

2 THEORY OF THE
ORNSTEIN-UHLENBECK PROCESS AND
ALGORITHM
The dynamics of a Brownian particle in a simple fluid with a drag
coefficient γ confined in a potential U is given by the Langevin
equation.

m€x + cx
· + ΔU � ξ (1)

where ξ is the zero-mean Gaussian stochastic white noise term
noise term. As required by the fluctuation dissipation theorem the
variance of ξ follows, 〈ξ(t)ξ(t′)〉 � 2kBTcδ(t − t′). Such a noise
term is “white” in nature which means that it has a flat spectrum.
In an overdamped system with vanishing inertial effects and a
harmonic potential, U � 1

2 kx
2 we can reduce Eq. 1 to

−x(t) − c

k
_x(t) +

�����
2kBT
c

√
ζ(t) � 0 (2)

where ζ(t) is zero mean, unit variance, Gaussian white noise. This
is the form of Ornstein-Uhlenbeck process that gives rise to
stochastic trajectories in x(t). Fourier transform of Eq. 2 gives the
power spectral density of the probe’s displacement which is a
Lorentzian function in angular frequency ω,

C(ω) � 〈|x(ω)|2〉 � 1
ω2c2 + k2

(3)

The correlation of the Brownian trajectories can be computed
exactly for arbitrary values of |t − t′| from the power spectrum of
the probe’s displacement using the Weiner-Khinchin theorem
[23] as:

C(t − t′) � 〈x(t)x(t′)〉 � kBk
T

e−
k
c

∣∣∣∣t−t′∣∣∣∣ (4)

This exponential decay holds true for all Gauss-Markov
processes. The Ornstein-Unhenbeck process is basically the
continuous time analogue of an AR (1) process, and for
experimental purposes we can discretise our time series into
steps of Δt using the Euler method to write an iterative equation
of ξn as

ξn � kxn + c
xn+1 − xn

Δt (5)

The time series x ≡ (x1, x2,/, xN ) now consists of
observations from the trajectory at discrete times t � nΔ t with

n � 1,/,N ; the vector ξ is constructed from x using 0 padding or
telomere deletion to make them of equal lengths. This simple
manipulation allows us to restore the AR (0) variable ξ from the
trajectory, if the parameter of the process is known. Thus it
provides a principled solution to this inverse problem of
parameter estimation where for the correct estimated
parameters, k* and c*, we shall get back the expected
autocorrelation properties of ξ(t). We do that by finding out
the corner frequency fc of the trap and viscosity η of the given
fluid of which k and c are direct functions givens as

k � 2πfcc (6)

c � 6πηa (7)

Samples drawn from ξ(t) are independent of each other—the
delta correlation and flat spectrum renders it perfect for
generation of random bits at a rate only limited by our
temporal resolution.

3 LEARNING ALGORITHM

Such parameter extraction problems in linear systems can be
easily solved using regression analysis and gradient descent on the
linear equation ξj � θ1xj + θ2Bxj, where B is a positive bit-shift
operator, defined as Bi,j � δi+1,j. But due to the prior knowledge of
the form of the parameters pertaining to our Langevin equation,
we can define θ1 � c(2πfc − 1

Δt) and θ2 � c
Δt. Recasting the

parameter in such a form allows effective minimization of the
cost function without invoking parameter re-scaling algorithms.
We achieve this in two main ways, by looking at the delta
correlation of the extracted noise, and, by looking at the
flatness of its power spectrum. We define the autocorrelation
vector (‘autocorr’) as

Cj � ∑j−N
i�1

ξi+jξi∀j � 0, 1,/,N − 1 (8)

We first inject test values of fc in our iterative equation which
should change the width of the symmetric 2-sided auto-
correlation function while the drag coefficient γ should change
the height. In theory, for correct estimate f *c , we expect to get
C0 � 1 and toCN−1 � 0 (In further discussion we shall call these as
the center and off-centre values, respectively.) Keeping that in
mind we normalize the autocorr vector, putting its maximum to
1. In practice, the entire off-centre values will never go to 0 (which
is also true for algorithmically generated random numbers). We
have observed different test values of fc changes the standard
deviation (stdev) of the off-centre values considerably; but the
stdev is least in the case of fc � 0 and vice versa. So this is not a
good way to characterize the noise floor.

A good way to do it is to ask the question: At which value of fc,
does C2 go to 0? Clearly, at fc � 0 the off-centre values do not
reach 0. To create a robust framework, we define a parameter
called “Autocorrelation parameter” as C2 − CN−1, which goes to 0
for the best estimate of fc. It is necessary to subtract the small
amplitude in the tail of the autocorrelation vector (CN−1) since it
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has some very small positive value in the real scenario and can
compromise the accuracy. We call this “Baseline subtraction”.
Similarly, we can show that the flatness property of the PSD of
ξ holds for the estimated parameter fc. We use this property to
generate ξn by simply fitting the double-log binned power
spectrum with a straight line. We expect that for the correct
injected parameter fc, we would retrieve an expected 0 slope of
the linear fit. We shall call the slope of this fitted line as “PSD
parameter” in further discussions. We observe a slight
systematic shift of the PSD parameter for all the
experimental data sets and modify our baseline accordingly.
This allows us to unequivocally estimate fc from both the
properties of ξ, namely the temporal delta correlation and
flatness of spectral density.

To find out the corner frequency, it is not necessary to spatially
calibrate the trap; the trap stiffness can also be found out just by
using Eq. 6 by performing the experiment in water which has
known viscosity. But to do viscometric measurement - as a bonus
- within the same framework, we use the equipartition of energy
formulation and write

η* � kBT
12π2af *c 〈x2〉

, (9)

and this enables us to obtain γ using Eq. 7 to complete the
parameter estimation process.

Once our program learns the parameters from the incoming
pool of data, it uses the iterative equation Eq. 5 to spill out the
normally distributed random numbers with a white spectrum.
This is different from the Brownian noise signature which is
generally associated with such an Ornstein-Uhlenbeck process.
To find fc we start with a guess value and then modify fc in step
sizes of s simply using fc � fc − sC2. We stop when C2 ≈ 0 either
using a threshold or a maximum iteration limit. We present a
short summary of the algorithm in Figure 1.

3.1 Scope and Applicability
Our use of the learning algorithm falls in line with the basic
philosophy of ML–that is to automate the process and leave less
requirement for human intervention. This algorithm can be
implemented easily to perform calibration of the optical
tweezers in real time [24, 25] which is often necessary in the
case of non-equilibrium systems [26, 27]. The main goal is to
generate the random numbers; the “training” set is used to
optimize the parameters, and then generate the random
numbers from the “test” set–which improves upon feeding in
more training examples. Additionally, our algorithm can be
generalized to a wide range of scenarios, for example
calibrating arbitrary potentials, other than the most common
harmonic potential studied in this paper. Only the force term in
the Langevin Equation will change on generalization, and one has
to minimize the deviation of the autocorrelation of the extracted
noise from the Dirac delta behavior for all the parameters
individually. In addition, this algorithm can be extended to
include stochastic motion in viscoelastic fluids, with multiple
parameters. Clearly the conventional methods (which are mainly
designed for the Markov time-series in harmonic
potentials–which is actually a very special case) will be
inadequate in these contexts.

4 EXPERIMENTAL SETUP AND DATA
ACQUISITION

We collect position fluctuation data of an optically trapped
Brownian particle using a standard optical tweezers setup that
is described in detail in Ref. [28]. Here we provide a brief overview
for the sake of completeness. Our optical tweezers are built
around an inverted microscope (Olympus IX71) with an oil
immersion objective lens (Olympus 100 x, 1.3 numerical
aperture) and a semiconductor laser (Lasever, 1W max power)

FIGURE 1 | Schematic of our algorithm for trap parameter extraction and random number generation.
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of wavelength 1,064 nm which is tightly focused on the sample. We
modulate the beam by using the first order diffracted beam off an
acousto-optic modulator (AOM, Brimrose) placed at a plane
conjugate to the focal plane of the objective lens. The modulation
amplitude is small enough such that the power in the first order
diffracted beam ismodified veryminimally (around 1%) as the beam
is scanned. We employ a second stationary and co-propagating laser
beam of wavelength 780 nm and very low power (< 5% of the
trapping laser power, such that the detection laser does not influence
the motion of trapped particle in any way) to track the probe
particle’s position (we call this “detection laser”), which we
determine from the back-scattered light that is incident on a
balanced detection system. The balanced-detection-system
together with a data acquisition card record the probe
displacement data into a computer. We prepare a sample
chamber of dimension around 20 mm × 10 mm × 0.2 mm by
attaching a cover slip to a glass slide by a double-sided tape
which contains our sample. The samples are prepared by mixing
mono-dispersed spherical polystyrene probe particles of radii 1.5 μm
in very low volume fraction ( ≈ 0.1%) into 10% NaCl-water
solution. For each dataset of varying power, first, we trap a single
probe particle around 30μm away from the nearest wall to get rid of
any surface effects and record its Brownian motion with sampling
frequency from 2–5 kHz over any desired timescale. We use the
initial part of the incoming dataset to calibrate our trap. Once the
trap is calibrated we re-sample our data into small batches of 5,000
data points, and make an estimate of the aforesaid parameters. Once
these parameter values are learnt, subsequently we use them to
isolate the stochastic term and scale it appropriately to generate the
desired random variable. We note that the measured data is a result
of a transformation by the detection apparatus of the physical sample
paths. But we posit it to be true for all practical purposes and any
deviation from theoretical behavior is therefore attributed to this
limitation. To perform the experiment at different trap stiffnesses, we
maximized the laser power to reduce the pointing fluctuations in the
laser beam and maintained power at ± 0.1 mW of the values in
Table 1 for all cases. To vary the power at the objective lens we have
used a combination of half-waveplate and polarizing beam cube, and
the powers noted are the powers measured before filling the high
numerical aperture lens. For the viscometry experiment, we mixed
glycerol and water at four different concentrations. The voltage-
distance sensitivity measurement was performed each time the
sample was removed and reinstalled.

5 RESULTS AND DISCUSSIONS

5.1 Relation Between the Algorithms
The autocorrelation parameter estimation is directly linked
theoretically to the Mean Squared Displacement (MSD) of
the data, a measure often exploited to estimate the trap-
stiffness. In addition, the Power Spectral Density (PSD) is
related to the time-series using a Fourier Transform; further,
autocorrelation at short time scales of measurement is related to
the PSD by the Weiner-Khinchin theorem as shown in Eq. 4. It
can be also related to the Mean Squared displacement (MSD)
using time-averaged notation as 〈Δx(τ)2〉 � 〈x2〉 − 〈x(τ)x(0)〉,
where 〈Δx(τ)2〉 is the Mean Squared Displacement, 〈x2〉 is the
variance and 〈x(τ)x(0)〉 is the autocorrelation function of
stochastic time-series. The variance is a good measure to
calibrate optical traps by equating the translational kinetic
energy per degree of freedom to 1

2kBT . In theory, all these
methods–which analyze the probe’s displacements—should
give equivalent results. However, in practice, the issues with
each method need to be addressed.

5.2 Equipartition of Energy
Figure 2A shows a typical time series obtained by discrete
observations from the position fluctuations of the Brownian
particle of diameter 3μm. The data shown in this case is taken
at 5 kHz sampling rate. The histogram of the data is plotted
and it is well approximated by a bell curve in Figure 2B. The
variance 〈x2〉 is used in the conventional Equipartition
method to estimate the spring constant k, where
1
2 k〈x2〉 � 1

2kBT . However, if random fluctuations are
prominent in some sections of the time-series, they can
overestimate the variance, and thereby interfere with the
parameter estimation procedure. These fluctuations may
arise due to changes in laser power, which will ultimately
cause small changes in the trap-stiffness. Also, local changes in
the viscosity surrounding the probe and small random drifts
can affect any parameter estimation process. For example, in
Figure 2A, a section of the data is shown to have a greater
fluctuation characterized by a greater variance from the mean
than other sections of the dataset. To picture this effect clearly,
we filter out the high-frequency components of the time-series
by integrating over the short-timescales, thus revealing the
low-frequency oscillation in the data. Thus, such unwanted
perturbations can creep into the time-series, which is a clear
deviation from the assumed Langevin dynamics of the
Brownian probe.

5.3 Addressing Random Fluctuations
This AR (1) variable of probe-displacement is a stationary
variable—evident from the measure of the AR coefficient ψ1 �(1 − 2πfc

Fs
)≪ 1 (see pg-88, 90 of Ref. [29]), and the bell shape of

the histogram. Fortunately, being a fast Markovian algorithm,
which only depends on the difference in the consecutive points in
the entire series, we can calculate the corner frequency for a
particular region subject to systematic deviation from the linear

TABLE 1 | Variation of corner frequency and related trap stiffness with varying
laser power for experiments performed at 5 kHz. The standard deviation for
each case is represented in parentheses.

Laser power (mW) Corner frequency (Hz)

Autocorr parameter PSD parameter PSD

7 34.9 (2.3) 31.5 (2.5) 31.4 (1.5)
14 51.5 (2.1) 50.8 (2.5) 49.5 (1.2)
24 77.7 (1.9) 76.1 (3.0) 76.0 (2.3)
34 103.4 (2.0) 96.7 (3.5) 106.0 (2.0)
44 131.0 (2.0) 130.0 (3.9) 124.7 (2.8)
54 145.3 (2.5) 145.3 (4.5) 143.3 (3.5)
65 155.2 (2.0) 156.9 (5.0) 155.8 (3.6)
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behavior. This makes our method more immune to these local
fluctuations interlaced in the time-series. In presence of any
additional drift in the equation the drag term get modified to
(c + α) _x(t). This additional drift in the data just becomes a
multiplicative factor on the overall noise term given by
ξ(t) � 2πfc(c + α)x(t) + (c + α) _x(t). We eventually normalize
the multiplicative factor c + α before using our parameter
extraction algorithm to estimate f *c . To demonstrate this, we
intentionally used our algorithm to compute the corner
frequency of this selected region at 44 mW laser power, which
turned out to be 132.1 ± 1.6 Hz, well within the standard error of
measurement. This provides a way to circumvent the reliability
problem that many conventional measurement processes fail to
address.

5.4 Conventional PSD Method
The squared modulus power of the Fourier Transformed time
series follows a Lorentzian function given by Eq. 3. The
parameters of this Lorentzian function gives us the required
corner frequency. But often, fitting the data becomes a
challenge because the fitted parameter values can be sensitive
to the region of the fit. So, by following the procedures portrayed
in Ref. [19], we bin every 25 points of the Fourier Transformed
data. We leave behind the less reliable tail-ends at both high and
low frequencies, which are prone to systematic errors. The
estimates of the corner frequency using this conventional
Power Spectral Density (PSD) are shown in Figures 3A,B for
two different laser powers. We made sure that there is no
unwanted leakage of the 50 Hz line or its harmonics in the

FIGURE 2 | (A) Typical time series data of the position fluctuation of an optically trapped Brownian polystyrene bead of radius a � 1.5 μm. Discrete samples are
taken from its trajectory along one coordinate at 5 kHz in this case. The box in the left shows the data where there is minimum fluctuation and the box on the right
delineates a part of the time series where there is a minor fluctuation. (B) The histogram of the position fluctuation.

FIGURE 3 | Calibration of the trap by fitting a Lorentzian to the power spectral data which has been binned over 25 points. The corner frequencies have been
obtained for two different powers, 14 and 34 mW, shown respectively in (A) and (B).
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power spectrum, the presence of which can alter the fitted
parameters.

5.5 Autocorrelation Parameter Estimation
The results obtained in the autocorrelation parameters inference
is summarized in Table 1. In Figures 4A,B, the autocorr
parameter obtained from the time series after normalization is
plotted for two different laser powers. We observe that if the
injected fc value is 0, then the two-sided autocorrelation plot will
have a smooth off-centre distribution. But the entire off-centre
region in the plot will be elevated from the 0 base-level which is
not a desirable feature. Physically having a parameter value of fc
close to 0 represents only the _x part of the equation. It is no
surprise that the velocity-autocorrelation function (VACF) will
yield a near-monotonic function [30, 31]. We follow the iterative

equation and generate the test values of fc to demonstrate how the
autocorrelation parameter changes. Since f *c is found out by
looking at the particular test value where the autocorrelation
parameter becomes zero, it can be considered an analogue to cost
functions in many ML protocols. The negative parameter value
results from the fact that we have performed baseline
subtraction–subtracted the tail ends of the autocorrelation
vectors from the original vector to scale it to 0, which is the
expected case. It is reassuring to note that all pseudo-randoms
time series also exhibit this small non zero correlation value at
non-zero time-lags [32, 33]. In Figure 5A, we demonstrated how
the correlation looks for the perfectly extracted random noise.
Compared to it, the experimentally obtained Brownian temporal
correlation is jittery at long time scales, as shown in Figure 5B,
although it has exponential decay at the short time scales.

FIGURE 4 | Autocorrelation Parameter values plotted for various corner frequencies used as a trail. As stated in the text, we look at the second point from the peak
in the Autocorrelation curve. The corner frequency at which this parameter matches the zero baseline can be considered as the correct corner frequency for our system.
Figures (A) and (B) are for two different laser powers, 14 and 54 mW, that is two different trap stiffnesses.

FIGURE 5 |Normalized position autocorrelations for various time lags for (A) the extracted random noise, and (B) the Brownian time series. The former shows near
perfect temporal delta correlation, the later exhibits exponential decay for small time lags, followed by jittery non-monotonicity.
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5.6 Optimization Process
Every Learning algorithm is based on parameter optimization on
a cost function defined by the algorithm. The algorithm
minimizes this cost using training examples by optimizing the
parameters, which often involves a gradient descent step.
Mirroring on the same notion, we define a cost function that
essentially is the deviation of the autocorrelation of the extracted
noise from the Dirac delta behavior (or the deviation from the flat
power spectrum for the noise term). There is no “label” associated
with it–indeed, the cost function is calculated from the properties
of the input data itself, so it can be classified under an
“unsupervized” learning process. We initialize a guess value of
the parameter (fc). Our goal is to reach at that value of the
parameter where the deviation is zero. So we descend/ascend on
this cost landscape until we reach sufficiently close to zero, or out-
shoot a maximum number of iterations (we used this as a
stopping point). But we do not use the gradient but the cost
function itself, as for our case we intend to reach its zero, not its
minimum. Depending on the calculated parameter values, we get
in each step, fc←fc − sC2, for step size s, until our procedure
converges. The convergence of this method depends on this step
size (commonly referred to as learning rate in ML literature).

In Figure 6 we demonstrate a particular scenario for the case
where the laser power is 54 mW. Depending on the learning rate,
the convergence toward the solution can fast or slow. In
Figure 6A two cases are shown where the parameter is
initialized at 620 and 30 Hz respectively. The algorithm takes
small steps in the direction of the solution until it converges. In
Figure 6B fc is initialized at 200 Hz. The initial value is close to the
expected value and the chosen learning rate is large, so it initially
over-shoots the solution. In spite of that, in the next steps, the
algorithm approaches the zero of the error function after
oscillating on its sides. Since in each step the value of sC2

decreases, the effective step size toward the solution decreases
as we approach the solution, which guarantees convergence.

Interestingly, when we started with a guess value within
500 Hz of the actual fc our algorithm always converged in
∼ 30 iterations, for s ∼ 100. We also follow the same
procedure with the PSD parameter (described in the next
subsection). Now, since the parameter value is 0 for the
frequency f *c , which is the focal point of interest, any
calibration of time series is redundant for this particular case.
Depending on the datasets, there can be a small “bias” term
associated. To take that into account, we perform a baseline-
correction—where we subtract the tail end CN−1 while computing
the error function.

5.7 Parameter Extraction Through Flatness
of Power Spectrum
We also fit the PSD of each parametrized time series by a straight
line in a log scale and note its slope, which we had earlier defined
as PSD parameter. The spectrum of a Brownian particle falls as
1
f 2, while a white noise has 1

f 0 signature or a constant spectral
variation with frequency. To make the fitting more reliable, we
do not bin the data into isolated blocks in this case but only fit
till the one to two orders of the expected corner frequency (Upto
5 kHz in our case). Naturally, systematic errors creep into the
analysis as a consequence of low-frequency noise coupling.
Nonetheless, we see these two estimates are in close
agreement (less than 5% deviation in all cases.) We compare
these two protocols of stiffness estimation to the conventional
method of trap calibration of fitting a binned PSD data by a
Lorentzian function as mentioned earlier and also plotted for
two different laser powers in Figure 7. These methods all render
values of the corner frequency within 5% of each other, which
corroborates the parameter estimation technique for trap
calibration. In Figure 8, we show that the corner frequency
scales linearly with the power of the trapping laser used in
each case.

FIGURE 6 | The convergence of the parameter value, corner frequency, is shown for two different learning rates, for the case where laser power is 54 mW. After
initialization at the trail value the parameter steps toward the zero of the parameter value in small steps. Figure (A) shows the case where learning rate is small, and Figure
(B) shows where for a larger learning rate the solution oscillates and moves toward the zero.
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5.8 Error Analysis
In all the columns of Table 1, the figures in parentheses represent
the 1σ standard deviations of the mean values of measured corner
frequencies. For the autocorr parameter, it is interesting to note
that the error in the correlation can be written as
ϵ(τ) � δ(τ) − C(x; fc), and C (the autocorr parameter) is also a
function of τ (the time lag). The variance in the ϵ term (only at the
non-zero τ) can be written as
Var(ϵ) � Var(δ) + Var(C) − Cov(δ,C), where the first and
third term will be zero, as all the values of δ at non-zero τ is
zero. We calculate the associated variance in the autocorrelation
parameter values from the variance of the error term. Then, from
the graph (as seen in Figure 4), we calculate the particular value of
standard deviation in the corner frequency (f *c ) (along the

horizontal axis) which gives us the associated standard
deviation in the autocorr parameter values (along the vertical
axis). Thus from the difference between the theoretical delta
function at the best estimate f *c and the obtained position
autocorrelation (for example, Figure 5A), we obtain the
standard error in the estimate of the corner frequency.

For the secondmethod (PSD parameter estimation), the errors
are again computed from the standard errors associated with
fitting the double logarithmic power spectrum vs. frequency curve
with a straight line. The errors in fitting are directly related to the
error in the estimate of corner frequency. Similarly, the standard
error in fitting the binned PSD vs. frequency with the Lorentzian
function returns the error in the estimated parameter. Generally,
due to the ambient noise sources–systematic errors such as beam
pointing fluctuations, laser drifts coupled to our signal are
prominent in lower frequencies. So the standard error in the
corner frequency measurement is rather large at low corner
frequencies.

5.9 Viscometry
Viscosity measurement requires spatial calibration of the trap,
which we do using “equipartition of energy”. Once the sensitivity
measurement is performed, it is easy to estimate η using Eq. 9.
Glycerol and water mixed at various concentrations create
solutions at different viscosity. Finding η from it requires the
variance of the actual time series (which we obtain by fitting the
gaussian distribution) and fc. The rest of the parameters, such as
the probe size and the ambient temperature, are already known.
So the standard error in η is computed from the standard error in
fitting and standard error in parameter estimation discussed
earlier. Note that we have used a temperature of 300 K, which
is the same as the lab environment temperature. This assumption
is based on studies in literature where the effects of laser heating
in water have shown to be well below 1 K at the power levels we
employ in the trap [34]. We calculate the diffusion coefficient for
our probe size, 3 μm using Stokes-Einstein’s relation. We also
perform a consistency-check measurement of viscosity for water

FIGURE 7 | Slope of the power spectrum for time series ξ(t) for various trial corner frequencies. The parameter at which after baseline correction the PSD
parameter matches the zero baseline gives the corner frequency in our system. Again, Figures (A) and (B) are for two different laser powers, 14 and 54 mW, that is two
different trap stiffnesses.

FIGURE 8 | Linear variation of corner frequency with laser power, also at
lower trapping potentials. The points are plotted with 1σ error bar. Note that
the measurements from our method agree very well with that obtained by
power spectrum analysis.
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and match all measured values of viscosity (water and glycerol-
water mixtures) with the values measured using a conventional
rheometer. All the measurements are tabulated in Table 2. This
remarkable consistency in the successful estimation of both the
parameters (fc and η or, k and c) in a stochastic process—in our
case the Ornstein-Uhlenbeck process—provides a fresh
perspective to look at the calibration problem.

6 GENERATION OF UNCLONABLE
RANDOM NUMBERS: MEASURE OF
RANDOMNESS
6.1 Origin of Stochasticity
We now move on to the other aspect of our work: generating
unclonable random numbers from the Brownian fluctuations of
the optically trapped probe. As stated earlier, the Brownian
motion of the particles in water follows Markov dynamics.
The motion of the bead in water at any instant is only
dependant on the previous instant. In other words, the system
stores no memory in the process. The motion of the colloidal
particle is a combinedmanifestation of millions of collisions it has
with the ambient water molecules. The Brownian force due to all
these collisions is summed up as ξ(t). Being classical in nature,
determinism is ingrained in theory. But from our vantage point,
we omit most of the classical variables and describe the collisions
by a statistical approximation that forms the radix to every
stochastic process. Thus the random numbers obtained from
the Ornstein-Uhlenbeck process are statistically random, not true
random (true random numbers can only be generated from a
quantum phenomenon). But these randoms are not
algorithmically generated as is the case with pseudo-randoms;
hence they are unclonable. This noise term being delta correlated
in time and having a flat power spectrum forms the foundation
for the generation of random bits. Non-overlapping sections of
random numbers always have zero correlation between them.
Moreover, the absence of any significant repetitive patterns also
results in its equal power over all frequencies.

6.2 Sampling Rate
The standard deviation of the off-centre values (the
autocorrelation values at non-zero time lag) is a good measure
of stochasticity. For the best extracted random numbers, we
expect to get the least standard deviation. In theory, the

deviation should be 0 for perfectly delta correlated numbers,
as discussed before. We have sampled our observable at different
intervals and compared the standard deviation of the off-centre
values. In Figure 9, we observe that with increasing sampling
rates, this standard deviation decreases (as expected) until it
saturates asymptotically around 2.5 kHz. When the data is
sampled over shorter time intervals, fewer effective impacts
with the surrounding molecules are averaged; naturally, the
stochasticity improves.

6.3 Tests for Randomness
We proceed to follow the relevant tests of randomness following
the NIST-test for randomness suite [22]. We performed all our
analyses using ∼ 50000 data points. To test any physical random
number generators, discretization and conversion into binary
strings are often involved. In the binary conversion step, the
values above and below the median of the time-series are marked
as 1 and 0 respectively.

Our null-hypothesis states that the numbers in the time-series
are randomly distributed. The alternative hypothesis against this
is the opposite, viz. there exists a correlation between successive
numbers (and numbers separated by finite a time interval). To
test our null hypothesis against the alternative hypothesis, we
employ various known statistical methods. Then, we test them
against mainly standard-normal, half-normal and chi-squared
distributions (χ2), depending on the type of NIST test we have
employed (see Ref. [22]). We choose the critical value, pα � 0.01,
which defines the significance level of the hypothesis-testing (the
maximum permissible limit of Type-I error). This critical p-value
of 0.01 or the (99% confidence interval) is a ubiquitous choice in
statistical inference theory. For each of the NIST-tests performed,
we obtain a p-value of the test statistic. The region where p> pα is

TABLE 2 | The first column is the viscosity of the glycerol-water solution (first row
only water) as measured in a classical rheometer, while the second column is
the diffusion coefficient. The third column provides the viscosity values as obtained
in our experiment using Eq. 9, while the fourth column again shows the diffusion
coefficient for our case. The standard errors are noted in parentheses.

η (10− 5 Pa s) D(10 − 13 ms− 1) η* (10− 5 Pa s) D*(10− 13 ms− 1)

85 1.72 84 (2.6) 1.74 (0.054)
137 1.07 135 (6.1) 1.085 (0.049)
197 0.743 196 (8.9) 0.747 (0.034)
243 0.603 251 (11.3) 0.583 (0.026)
487 0.301 506 (22.7) 0.289 (0.013)

FIGURE 9 | The standard deviation of the off-centre values are shown as
an inverse measure of randomness; the randomness asymptotically improves
with increasing sampling rates.
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where the null hypothesis cannot be rejected at pα significance
level and vice-versa.

In all the NIST sub-tests performed, we have obtained p-values
greater than 0.01 which are tabulated in Table 3. This means that
the test statistic falls outside the critical region, within the 99%
confidence interval of the tests - which implies that we have failed
to reject the null hypothesis at a 1% level of significance. Thus, we
are more than 99% confident that the array of numbers which we
obtain after solving the inverse problem of parameter estimation,
is distributed randomly. Additionally, recovering this white-noize
term ξn, helps us understand that our experimental Brownian
probe correctly follows the stochastic model of Langevin
dynamics.

7 CONCLUSION

The work we report here serves two primary goals. First and
foremost, we describe a new approach to calculate the parameters
associated with a confined Brownian motion in a fluid, exploiting
the autocorrelation physics of the white noise. A crucial
advantage of this method is that it can be implemented
“online”, which implies that the parameter can be extracted
while recording the data. Any significant fluctuation in the
parameter values can be treated as a signature of non-linearity
in the system, which precludes the need for further analysis and
saves time. Thus, we initially discretize the trajectory of an
optically trapped particle into equal-time finite samples, solve
the Langevin equation by a finite-difference method, and then
construct an inverse problem of parameter extraction by
exploiting the temporal delta correlation and flattened nature
of the spectral density of the white noise. Thus, we are able to

estimate the parameters k (stiffness of the optical trap) and c
(friction constant of the fluid where the particle is immersed) -
and use the latter to find out the coefficient of viscosity assuming
that the position detection system is pre-calibrated. Our method
of parameter estimation is thus virtually immune to electronic
noise which is not the case for the other predominantly used
methods of calibration such as the Power Spectrum analysis [19]
or Equipartition theorem. We observe that the accuracy of the
process depends on the number of data points employed, and the
entropy of randomness increases with increasing sampling rates.
We perform tests for randomness on the extracted time series
using the celebrated NIST test suite [22], and observe that our
extracted time-series pass all relevant tests at 99% confidence
level. Also, since the analysis is solely based on time domain, it has
a time complexity of ∼ O(N) for finding out the autocorr vector -
and is thus faster than conventional PSD analysis. Most
importantly, we demonstrate a new way to extract normally
distributed unclonable random variable, which is invaluable to
cryptography and financial security.

In summary, our learning algorithm uses “training” a set of
incoming data to estimate the trap parameters. These parameters
are used in the “test” set to obtain random strings. In future work,
we plan to use a similar approach to calibrate the independent
parameters of a higher-order AR process, namely Brownian
motion in a viscoelastic fluid, which will have non-Markovian
features.
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TABLE 3 | Results and p values are shown for various tests of randomness
provided in the NIST suite. In all the cases, the p-values are greater than 0.01
and result in successful randomness distributions at 99% confidence level. The
statistical tests are performed with 40,000 bit long random numbers, N/A
corresponds to those tests rendered non applicable due to the requirement of
extremely long bit string length > 106 as mentioned in Ref. [17].

Tests for randomness p Value Result

Frequency monobit test 0.841480581 SUCCESS
Frequency test within a block 0.844365973 SUCCESS
Runs test 0.898028583 SUCCESS
Longest run of 1 in a block 0.587310281 SUCCESS
Binary matrix rank 0.581749432 SUCCESS
FFT 0.27081157 SUCCESS
Serial 0.171824319 SUCCESS
Cumsum 0.038663227 SUCCESS
Approximate entropy 0.353929531 SUCCESS
Overlapping template 0.954527642 SUCCESS
Non-overlapping template 0.884521 SUCCESS
Universal N/A N/A
Linear complexity N/A N/A
Random excursions N/A N/A
Random excursions variant N/A N/A
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