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A stock market represents a large number of interacting elements, leading to complex
hidden interactions. It is very challenging to find a useful method to detect the detailed
dynamical complex networks involved in the interactions. For this reason, we propose
two hybrid methods called RMT-CN-LPAm+ and RMT-BDM-SA (RMT, random
matrix theory; CN, complex network; LPAm+, advanced label propagation
algorithm; BDM, block diagonal matrix; SA, simulated annealing). In this study, we
investigated group mapping in the S&P 500 stock market using these two hybrid
methods. Our results showed the good performance of the proposed methods, with
both the methods demonstrating their own benefits and strong points. For example,
RMT-CN-LPAm+ successfully identified six groups comprising 485 involved nodes
and 17 isolated nodes, with a maximum modularity of 0.62 (identified more groups
and displayed more maximum modularity). Meanwhile, RMT-BDM-SA provided
useful detailed information through the decomposition of matrix C into Cm
(market-wide), Cg (group), and Cr (noise). Both hybrid methods successfully
performed very detailed community detection of dynamic complex networks in the
stock market.

Keywords: randommatrix theory, complex networks, advanced label propagation algorithm, block diagonal matrix,
simulated annealing, hybrid methods

1. INTRODUCTION

Physics is the study of the structure and dynamics of various systems that exist in nature. In its
current form, the scope of the subject encompasses not only physical systems, but all complex
systems. A complex system is one that comprises parts or agents interacting with each other to
produce a new macroscopic collective behavior without a central control [1]. Such systems are easily
observed in econophysics and social physics (sociophysics).

An example of a complex system in the field of econophysics is the financial market, especially the
stock market. It has numerous investors and companies interacting with each other, exchanging
assets in their possession to determine the best price for each of them. In general, there are several
scientific reasons for physicists to be interested in learning the dynamics that underlie the stock
market system [1].
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In physical systems, the basis for each agents interactions
with another in the system is known; for example, the
electrostatic system, where the interaction between charges is
based on Coulomb forces. However, in the stock market, the
mechanisms underlying the interactions between each agent are
not yet clearly known [2]. A starting point for the study of stock
markets can be the analysis of the correlation between stocks. A
review of the relations between agents in the system is the easiest
way to determine the linearity of such relationships in the
system without the need to know their underlying cause.
From this efficient market hypothesis, it follows that all
agents in the stock market get information simultaneously,
and every time the information enters the stock market, the
stocks respond with changes in the price of the shares so that the
share prices reflect the current market conditions. Therefore,
the correlation between the stocks can be seen from fluctuations
in the share prices.

Recently, a few excellent studies have been published on
community detection based on local information and dynamic
expansion [3]; the application of random matrix theories, and
graphs or networks [4, 5]. Because each method has its strong
points and weaknesses, we propose to combine the strong points
and reduce the limitations or the weak points and use a
combination of these methods for finding the correlations
between agents in the stock market system. For example,
group mapping involves two different approaches: advanced
label propagation algorithm (LPAm+) and simulated annealing
(SA). Both methods have limitations, as shown in a few studies.
Our objective was to combine LPAm+ with a complex network
(CN) and SA with a block diagonal matrix (BDM) for improved
effectiveness. LPAm+with CN determines the group of each node
based on the most frequent label of their neighbor. Meanwhile,
SA with BDM provides the dual benefit of constructing a block
diagonal matrix and finding a global minimum, showing an
annealing concept similar to that seen while constructing a
crystal. However, the correlations still contain noise and need
to be preprocessed using an efficient method. One of the eligible
candidates to clean the stock data and remove noise is the random
matrix theory (RMT).

As stock market conditions change all the time, the
correlations among shares also change. Therefore, the
correlations contained in the stock market do not fully
describe the relationship between actual stocks. This implies
the possibility of noise in the correlation between stocks [6].
In this study, we investigated a method for separating noise from
data that contain real information using RMT. The main concept
behind RMT is a comparison of the distribution of eigenvalues
and eigenvectors in the correlation matrix data owned by a
random correlation matrix. Any part of the data that does not
display the characteristics of a random correlation matrix is the
part that actually contains the real information (non-noise) of the
stock market system; vice versa, if any part of the data displays
characteristics similar to a random correlation matrix, it is noise.

An analysis of the eigenvalues and eigenvectors of the stock
matrix correlation structure has shown that a few of the largest
eigenvector components are localized; for example, components
with the greatest contribution to each eigenvector are found in the

same sector [2]. However, these results are not sufficiently
significant to be adopted as a method for analyzing groups in
the stock market because each eigenvector is not independent of
each other (a few sectors overlap in one eigenvector). Moreover,
during the analysis of eigenvector components, only a few vector
components were observed to have the greatest contribution [7].
Therefore, in this study, another approach was used to analyze the
stock market groups and a few candidates were found. We used a
CN as the first approach and a BDM as the second.

In the CN approach, each share in the stock market is seen
as a node, and the correlation between the shares is analogous
to the connecting side between the nodes. To form a stock
market network, the LPAm+ method is used, which
determines the group (community) label of a node based on
the majority of its neighbor labels; nodes with the same label
are considered to be in the same group or community.
Conversely, in the BDM approach, the stock correlation
matrix is converted to a BDM, where each block represents
a group in the stock market; the method is chosen to create the
BDM as an SA algorithm, which mimics the annealing process
in crystal formation. The data used in the study were the daily
closing price of the shares listed on the S&P 500 from January
1, 2007 to October 28, 2016.

Our purpose was to: 1) generate a correlation filtering data
filtering program using the RMT method; 2) develop a program
for mapping the groups in the stockmarket using the LPAm+ and
SA algorithms, and 3) compare the results of the mapped groups
in the stock market by employing the CN approach using LPAm+
(namely RMT-CN-LPAm+) and the BDM approach using the SA
algorithm (namely RMT-BDM-SA).

2. METHODS

2.1. Random Matrix Theory
The application of RMT assumes a matrix whose elements are
random or not bound to one another. A random matrix has zero
average value and one variance [8]. RMT was first introduced by
Wigner to explain energy-level statistics in complex quantum
systems.Wigner created a matrix model with random elements to
explain the Hamiltonian mechanics of a heavy nucleus that fit the
experimental results [9]. In complex quantum systems, RMT
predictions can explain all the possibilities that can occur in
system [10]; in subsequent developments, it was concluded that
parts incompatible with RMT predictions can provide clues about
the interactions that underlie the system [8].

In the late 1990s, Laloux et al. and Pelrou et al. applied RMT to
correlation data based on changes in stock prices on the
American stock markets [6]. Subsequently, several physicists
tried to apply RMT to different stock markets. The results
showed similarity to the extent that RMT could identify the
noise part contained in the correlation data between stocks, and
proved that most of the stock data followed the random
correlation matrix pattern [2, 7, 10–12]. RMT can distinguish
between noise and the real information part by comparing the
data held in a random correlation matrix. When a part of the data
does not follow the properties or characteristics of a random
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correlation matrix, it is ensured that the particular part contains
real information from the stock market system; and if a part of
data has the same characteristics as a random correlation matrix,
then that part is noise.

There are several characteristics of a random correlation
matrix used in RMT. For example, if A is a random matrix
with dimensions N × Lith ith, the average value of the element is
zero and the variance is one. Then, the random correlation matrix
R is calculated using the following equation:

R � 1
L
AAT (1)

When the values N→∞, L→∞ are chosen and qualify
Q � L

N > 1, the distribution of eigenvalues from the R matrix
follows the Marchenko– Pastur distribution:

Prm(λ) � Q
2π

��������������(λ+ − λ)(λ − λ−)
√

λ
(2)

Here, λ+ and λ− are the minimum and maximum values of the
eigenvalues of matrix R. Then, the distribution of the matrix
eigenvector component Rukl ; l � 1, . . . ,N follows the Gaussian
distribution given in the following equation:

ρrm(λ) �
1���
2π

√ exp(−u2

2
) (3)

2.2. Complex Network
A network can be defined as a set of objects called vertices (nodes
or vertices); the relationships between vertices are called lines or
sides (edges or links) [13]. Suppose a network G � (N , L) consists
of two sets of N and L, where N is a set of network nodes
N ≡ n1, n2, . . . , nN and L are the network side sets
L ≡ l1, l2, . . . , lK , which are non-sequential pairs of N elements.
A network can be represented as a matrix, usually called an
adjacency matrix A. An adjacency matrix informs if there are
sides (connected or unconnected) between each two nodes in a
network.

The degree of a network is defined as the number of sides
passing through a node. The degree of node i can be calculated
using the following equation:

ki � ∑N
j�1

Aij (4)

Then, the total degree of a network can be calculated as follows:

K � ∑N
j�1

ki (5)

The shortest path that connects two vertices is commonly called
the geodesic path. Take for example, a matrix D whose elements
are geodesic distances between vertices i and j or dij. From the
shortest distance parameter, we obtain another parameter, that is
the diameter of the network, which is defined as the maximum
value of the matrix D. Then, other network characteristics
geodesic distance is the average between vertices obtained
from the following equation:

L � 1
N(N − 1) ∑

i,j∈N,i≠ j

dij (6)

The node betweenness parameter measures the effect of a node in
a network by counting the several geodesic paths through that
node. Mathematically, it is expressed as

bij � ∑
i,j∈N,i≠j

njk(i)
njk

(7)

Here, njk is the number of geodesic paths connecting vertices j
and k; njk(i) is the number of geodesic paths through node i.

The cluster coefficient parameter measures the tendency of n
from node i to become a group or cluster in a network. The cluster
coefficient of node i is calculated by the ratio between the number
of sides (ei) in the subgraph Gi to the maximum number of sides
that might form on Gi as follows:

ci � 2ei
ki(ki − 1) �

∑j,kaijajkaki
ki(ki − 1) (8)

Then, the average cluster coefficient of each node, also called the
network cluster coefficient, is calculated as follows:

C � 〈c〉 � ∑i∈Nci
N

(9)

The quality of the grouping of communities in a network can be
measured from the relationship between the intra-community
and inter-community nodes. When the relationships between the
intra-community nodes are dense and those between the inter-
community nodes are rare, then the grouping of networks, as well
as the parameters that measure the relationships, are considered
good. This is called modularity; a term first introduced by
Newman [14]. The extent of modularity in a network can be
calculated using the following equation:

Q � 1∑ijAij
∑
ij

⎡⎣Aij − kikj∑ijAij

⎤⎦⎤⎦δ(ci, cj) (10)

Here, ki and kj are the degrees of nodes i and j, ci is the
community label of node i, and cj is the community label of
node j. Practically, a modularity value above 0.3 is considered a
good grouping.

Based on their degree distribution, networks can be classified
into two most common types: exponential and scale-free. In
exponential networks, the degree distribution follows the Poisson
distribution, which means that most of the nodes in the network
have the same degree (they are homogeneous). In scale-free
networks, the distribution of degrees in heterogeneous networks
follows the power-law distribution, that is, most vertices have a
small degree; a few or a small proportion of them have a large
degree. Examples of exponential and scale-free networks can be
seen in Ref. [15] and their distribution in Ref. [16].

2.3. Block Diagonal Matrix
Noh proposed a diagonal block matrix model and demonstrated
that for stocks that belong to one group, the diagonals of the
formed correlation matrix have a value of one and the remaining
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entries have the value zero Cg
ij � δαiαj, where αi denotes the group

where shares i are Ref. [17].
Here, 1i is a matrix withNi × Ni dimensions (Ni is the number

of shares incorporated in group i). More than one diagonal
matrix array can be formed in a single correlation matrix.
Therefore, an optimal arrangement of stocks is needed to
produce a good BDM.

Kim and Jeong proposed an optimization of the BDM by
analyzing the correlation between stocks as a force that binds to
particles (in this case, stocks) [7]. Because of the binding force
between the shares, there is total energy in the system. The
equation that calculates the system energy is given in Eq. 11,
and the most stable BDM form is obtained when the energy in the
system is the minimum. An example of the BDM calculated by
Kim and Jeong using the New York Stock Exchange (NYSE) stock
data for the 1993–2003 period can be found in Ref. [7].

Etotal � ∑
i<j
Cg
ij

∣∣∣∣∣∣∣∣∣∣li − lj
∣∣∣∣∣∣∣∣∣∣⊗ (Cg

ij − cc) (11)

Here, Cg is the correlation matrix filtered by RMT, li is the
location where stock i is in stock order, and cc is a cutoff that
eliminates the remaining noise in Cg (usually cc � 0.1) [7].

2.4. Matrix Decomposition
To separate noise from the information in the correlation data
through several stages, namely, during the distribution
comparison between the correlation matrix C and the random
correlation matrix R to calculate the correlation of each share, the
return for each stock is calculated as i � 1, . . . ,N within a certain
period (t).

Gi(t) � lnSi(t + Δt) − Si(t) (12)

Here, Si(t) and Gi(t) are the price and stock return i at time Δt,
respectively. Because each stock has a different volatility value, a
normalized return is defined by

gi(t) � Gi(t) − 〈Gi(t)〉
σ i

, (13)

where σi �
�����������
〈G2

i 〉 − 〈Gi〉2
√

is the standard deviation of Gi. Then,
the correlation matrix C is calculated by

Cij ≡ 〈gi(t)gj(t)〉 (14)

In matrix representations, it is expressed by

C � 1
L
GGT , (15)

where G is a matrix N × L, with the element {gi(mΔt); i �
1, . . . ,N;m � 0, . . . , L − 1} and GT are the transpose matrices
of G.

To compare the eigenvalue distribution of the correlation
matrix C and the random correlation matrix R, the
eigenvector interpretation of the correlation matrix C that is
outside the predicted RMT tests the stability of each eigenvector
of the correlation matrix C. First, we divide the stock price data
(matrix S) into two parts (the first half S1 and the other half S2;

each of them is calculated using the correlation matrices C1 and
C2. Then, the overlap matrix is calculated as follows:

C � C1C
T
2 (16)

A matrix can be decomposed into a linear combination of from a
collection of matrices. To find a noise-free correlation matrix, the
decomposition is expressed by

C � ∑N
α�1

λα|α〉〈α|, (17)

where N is the number of shares and λ is the eigenvalue of the C
matrix sorted.

2.5. Percolation Theory
In the CN approach, the C correlation matrix (which is noise
free) can be treated as an adjacency matrix
[_Jeong_and_Kim_2005] demonstrated that to find a clear
definition for each group (community) in the network, a
weighted network needs to be chosen for the group analysis in
the stock market [7]. Because the value of the elements in the
Cg matrix is not binary (1 or 0), the percolation theory is used
to set it as the adjacency matrix. The basic idea of percolation
theory is to use a threshold value to determine whether two
nodes are connected in the network. If the correlation
coefficient is greater than the boundary value, the
adjacency coefficient is 1, and if it is below the boundary
value, then the coefficient is 0.

2.6. Advanced Label Propagation Algorithm
LPAm+ is a method for developing the label propagation
algorithm (LPA) method. The main idea of the LPA method
is to determine the community label of a node based on the
majority of labels from its neighbors; the nodes that have the same
label are grouped into one community (group) [18]. At the
beginning of the algorithm, different (unique) labels are given
for each node; then, during propagation, a node changes its label
to follow the majority of its neighboring labels, and in case of a tie
(there is more than one label with the same number), the label is
determined randomly. The iteration stops if there is no longer a
label propagation process in the network. In mathematical form,
the label update process can be written according to the following
equation:

C′
x � argmaxc(∑ Aixδ(ci, c)) (18)

Because there is a random aspect to the labeling during series
conditions as described previously, this LPA method does not
produce a unique solution for each run. As a result, more than
one community structure can exist even if they originate from the
same initial conditions. Therefore, the LPA method is generally
performed several times and a community structure that has the
greatest modularity value is taken. The main advantage of the
LPA method is its very high speed compared with other
methods [18].
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FIGURE 1 | Flowchart of the simulated annealing (SA) algorithm to form a block diagonal matrix (BDM). The most stable BDM is obtained when the energy in the
system is of the minimum value. To find the most stable BDM and avoid the local minimum, we propose to combine it with simulated annealing, bringing the concept of
annealing to the formation of crystals in optimization problems.

FIGURE 2 | Distribution of correlation coefficients of matrix C at three
different times in the S&P 500 daily stock price data for the period of January 1,
2007 until October 28, 2016. The black color is for the total period 2012‒2016
and it is decomposed into the green one for the period 2007‒2012 and
the red one for the period 2012‒2016. It shows how the black one contributes
to the different distribution of the green and red ones.

FIGURE 3 | The Probability Density Function (PDF) of the correlation
coefficient C matrix and the R matrix. The red color shows the distribution of
the Cmatrix, and the blue one indicates the distribution of the Rmatrix on the
S&P 500 daily stock price data for the period of January 1, 2007 until
October 28, 2016. It clearly shows the different distribution groups separately
for the correlation coefficient C matrix and R.
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Barber and Clark modified the LPA method by increasing
the monotonous value of the rising modularity in each
iteration [19]. The modularity equation can be rearranged
as follows:

Q � 1∑ijAij

⎛⎝ ∑
i≠,j≠x

Bijδ(ci, cj) − Bxx
⎞⎠ − 2∑ijAij

⎛⎝∑
i

Bixδ(ci, cx)⎞⎠.

(19)

Bij � Aij − kikj∑ijAij
(20)

The aforementioned equation denotes the separation of the terms
containing the label of node x from the previous modularity
equation. To maximize the modularity value, the writer must
maximize the 2nd term of Eq. 19. Therefore, the equation for label
updates becomes

C′
x � argmaxc(∑ Bixδ(ci, c)) (21)

However, the LPAm method still has a shortcoming of possibly
getting trapped in the local maximum in the modularity space;
thus, Liu and Murata modified the LPAm method by applying
agglomeration techniques to combine each of the two groups
(communities) and avoid any changes in values. The modularity
then chooses which results in the largest change in modularity
value. The combination of these methods is called LPAm+ [20].

Regardless of the first local maximum value, the LPAm steps
are repeated to reach the next local maximum value. The
aforementioned two methods (LPAm and agglomeration) are
repeated until there are no more modularity changes.

2.7. Simulated Annealing Algorithm
To find the stock arrangement that provides the most system
energy, the SA algorithm is used in Monte Carlo simulations to

FIGURE 4 | The distribution of eigenvalues from theCmatrix and theRmatrix. The blue color represents the distribution of the eigenvalues of the matrixC, and the
red one shows the distribution of the eigenvalues of the matrix R on the S&P 500 daily stock price data for the period of January 1, 2007 until October 28, 2016.
(A) eigenvalue in the scale for λ of 1‒200 and (B) The eigenvalue in the zoomed scale for λ of 1-20.

FIGURE 5 | Comparison among the distribution of eigenvector components. For example, (A) is the largest u1, (B) is the third largest u3, and (C) is the hundredth
largest u100. The blue color represents the distribution of theCmatrix, and the red one represents the distribution of theRmatrix in the S&P 500 daily share price data for
the period of January 1, 2007 until October 28, 2016.
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avoid brute force. The SA algorithm was first introduced by
Metropolis. Furthermore, SA was first applied to the optimization
issue by Kirkpatrick et al. to avoid local drinking conditions [21].
This algorithm is analogous to the annealing (cooling) process
that is applied while producing glassy materials (comprising
crystalline grains).

The annealing process can be defined as a regular or constant
temperature drop on a previously heated solid object until it
reaches the ground state or freezing point. The temperature is
reduced continuously and carefully so that a thermal balance is
attained at each level. If the temperature is not reduced stepwise,
the solid object acquires structural defects due to the formation of
only optimal local structures. This type of process that produces
only an optimal local structure is called rapid quenching. The
search for a solution with SA is similar to the hill-climbing
concept where the solution tends to change continuously until
the final temperature is reached.

In the SA algorithm, we introduce the concept of annealing to
the formation of crystals in optimization problems. The objective
function, that is to search for the minimum value in the
optimization problem, is compared with the energy of the
material in the case of the annealing process. Then, a control
parameter, which is the temperature, is used for each iteration.

The SA algorithm uses the concept of a neighborhood search
or local search in each iteration to find conditions that provide the
lowest objective function. For each iteration, if the surrounding
conditions (in the case of a BDM, the composition of shares)
provides an objective function value smaller than the original
objective function, then the initial condition is updated (the
condition of the neighbor is set as the new initial condition).
However, when the condition of the neighbor outputs a value
greater than the original objective function, the result can still be
accepted (the initial condition is enhanced by the condition of the
neighbor) with certain conditions of probability.

Classical particle probability is used in this case, which follows
Maxwell-Boltzmann statistics (P � e.

−ΔE
T ), where ΔE is an objective

function and T is the temperature control parameter. The
iteration is performed until the objective function no longer
changes or has reached its ground state [22]. Here, L1 is the
first arrangement guess , L2 is the second arrangement guess, T is
temperature, E1 and E2 are the system energies for L1 and L2,
ΔE � E2 − E1, respectively, and (P � e.

−ΔE
T ) are classical particle

probabilities that follow Maxwell–Boltzmann statistics. In this
study, we performed the calculations using the flowchart shown
in Figure 1.

3. RESULTS AND DISCUSSION

3.1. Random Matrix Theory
3.2.1. Distribution of Correlation Matrix C and Random
Correlation Matrix R
As mentioned in the previous section, the correlation value
between shares has no fixed over time, and a plot was drawn
for three different conditions of the stock correlation data. The
first is the correlation matrix extracted from the 2007 to 2016 data
(black line), the second is the correlation matrix for the data from
2007 to 2012 (green line), and the third is or the data from 2012 to
2016 (red line) using Eq. 12 through Eq. 15. The results are
shown in Figure 2. According to the figure, there is an increase in
the correlation coefficient between the stocks. The average
correlation coefficient between the shares in the data for the
periods 2007‒2012 and 2012‒ 2016 is 0.3832 and 0.2642,
respectively. Then, for the whole period (2007‒2016), the
average correlation coefficient is 0.3451.

Next, the distribution of the C correlational matrix was
compared with that of the R random correlation matrix. The
results in Figure 3 show that the distribution of the R matrix
follows a Gaussian trend, whereas the C matrix has a positive
leaning distribution, indicating that the relationship between the
stocks on the S&P 500 dominant correlates with each other
compared to those who have anti-correlation relationships.

3.2.2. Eigenvalue Distribution of Correlation Matrix C
and Random Correlation Matrix R
Figure 4 shows the eigenvalue distributions of the C matrix and
the random correlation R matrix following Eq. 1. It can be seen
that most (97%) eigenvalues of the Cmatrix are in the vulnerable
boundary of the random R matrix, which indicates that most of
the stock data are noise. Only 3% eigenvalues of the C matrix are
outside the boundary of the random matrix R, and represent the
real information from the stock market. The largest eigenvalue
produced is 185.38, which is more than 90 times the upper limit
of the eigenvalue matrix R (λ+� 2.075).

3.2.3. Distribution of Eigenvector Components in
Correlation Matrix C and Random Correlation Matrix R
Apart from looking at the distribution of eigenvalues from the C
correlation matrix, we also tested for the presence of noise in the
data by looking at the distribution of the eigenvector components.
Figure 5 shows the different distributions of eigenvector

FIGURE 6 | To validate how good the Eigen vectors, we can perform a
comparison of projections of the largest eigenvector component (blue) from
matrixCwith the S&P 500 index (red) on the S&P 500 daily share price data for
the period of January 1, 2007 until October 28, 2016. This indicates that
the method mainly follows the patterns successfully.
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FIGURE 7 | There are many information for each Eigen vectors. Some sectors overlap in several Eigen vectors. This indicates that we require a method to reveal
community detection. The vector component of u2–u8 from the matrix ofC, the arrangement of the stock based on the sectors, 1: consumer discretionary; 2: consumer
staples; 3: energy; 4: financials; 5: health care; 6: industrial; 7: information technology; 8: materials; dan 9:utilities; from the daily stocks of S&P 500 for the period of
January 1, 2007 until October 28, 2016.
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components outside and within the boundary of a randommatrix
(using RMT ). The eigenvector component within the boundary
of the random matrix in Figure 5C follows the Gaussian
distribution as given in Eq. 3. This shows that this part is
noise, whereas the distribution of the eigenvector component
outside the boundary of the random matrix in Figures 5A,B is
heavy or leaning toward one side.

3.2.4. Interpretation of the Largest Eigenvalue and
Eigenvector (u1)
After successfully distinguishing between noise and data
containing real information, we then identified each C
eigenvalue that was outside the boundary of the random
matrix. The uniqueness of the largest eigenvalue can be
observed easily when compared with other eigenvalues because
of its greater value than others, as seen in Figures 4, 5A, which
shows that all the components of the eigenvector are positive.
This demonstrates that the largest eigenvalue has a very
significant influence on the dynamics of the stock market,
commonly referred to as the market-wide effect [2].

To test the assumption that the largest eigenvalue has a
market-wide effect, a comparison between the projections of
the eigenvector components was calculated using Eq. 22 with
an S&P 500 index value. Figure 6 shows that the projections of
the largest eigenvector components and S&P 500 have the same
movement patterns. These results reinforce that the largest
eigenvalue is a representation of the movement of the stock
market itself. The equation is as follows:

S1(t) � ∑N
ix

u1j Sj(t) (22)

3.2.5. Interpretation of Eigenvalues and Other
Eigenvectors That Are Still Outside Random Matrix
Theory Predictions
After successfully identifying the largest eigenvalue, we also
performed identification on other eigenvalues that are still
outside the boundary of the random matrix. However, before
doing that, the largest eigenvalue must be removed first owing to
its market-wide effects. As the results in the previous section have
shown, the largest eigenvalue is a representation of the market
movement itself and has a very significant effect on the
components of other eigenvectors and constrains the other
eigenvectors [2]. To eliminate the market-wide effects, an
ordinary least square is expressed as follows:

Gt(t) � αi + βiG
(1)(t) + ϵi(t), (23)

where G(1)(t) is similar to Eq. 22, which is
G(1) ≡ ∑ N

j�1u1j G(1)(t), αi dan βi are constants. Then, the
correlation matrix C is re-created using ϵi(t); then each
eigenvector component can be seen.

The greater the value of an eigenvector component in its
eigenvector, the greater is its contribution to the eigenvector.
Figure 7 shows the values of each component of the eigenvectors
u2 through u8. It can be seen that a few eigenvectors are localized
to the largest components. For example, in eigenvectors u2 and
u3, the largest components are dominated by utilities in u4 and u5

by the financial sector, and in u6 by the information technology
sector. However, there is no dominant sector in u7. In the last
eigenvector u8, the largest component is dominated by the
consumer discretionary sector.

FIGURE 8 | Stability of the eigenvectors from the largest eigenvectors
(u1) to (u15) ofC in the S&P 500 daily stock price data for the period of January
1, 2007 until October 28, 2016. White blocks indicate stable areas, and black
blocks indicate unstable regions.

FIGURE 9 | Matrix decomposition shows successfully decompose the
group into three different parts. Distribution of Cm (black), Cg (blue), and Cr
(red) on the S&P 500 daily share price data for the period of January 1, 2007
until October 28, 2016. This indicates that the method successfully
shows the decomposition and contribution from each part.
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After an analysis of the eigenvector components, it can be
concluded that the groups identified are not yet comprehensive
owing to the absence of sectors such as energy, materials, industrials,
or consumer staples. This is because during the analysis of the
eigenvectors, only the components with the greatest value are noted.
Therefore, we cannot use only this method for group identification
in the stock market. For the next analysis, we used a CN approach
and BDM to identify groups in the stock market.

3.2.6. Eigenvector Stability of Correlation Matrix C
The results of mapping the stability of the eigenvectors of the C
matrix can be seen in Figure 8. The results not only show that
only the largest eigenvectors are stable over time but also
reinforce previous results that eigenvector analysis cannot be
used to determine groups in the stock market because only stable
eigenvectors can be interpreted [23].

3.2. Matrix Decomposition
From the results of the RMT method, it is evident that the stock
market data contains not only noise but market-wide effects also;
therefore, before analyzing the stock correlation data with CNs
and the BDM, it must be cleaned from noise and market-wide
effects. Matrix decomposition is used for cleaning, where matrix

C is decomposed into three parts, namely market-wide (Cm),
group (Cg), and noise (Cr), using Eq. 24. To be used as an
adjacency Amatrix in CNs and BDM analysis, only (Cg) is used.
The equation is as follows:

Ng � Cm + Cg + Cr � λ1|1〉〈1| +∑Ng

n�2
λn|n〉

〈n| + ∑N
n�Ng+1

λn|n〉〈n|
(24)

Here, Ng is the sequence of the last eigenvalue, which is still
beyond RMT prediction (λNg > λ+). Our results show the
distribution of Cm (black), Cg (blue), and Cr (red) on the
S&P 500 daily share price data for the period between January
1, 2007 and October 28, 2016, as shown in Figure 9.

3.3. Determining the Threshold Value
In a non-weighted network, the determination of the boundary
value is very important because each different boundary value
forms a different group structure. If the selected boundary value is
too small, all the nodes are connected, which means there is only
one large group, and if the chosen boundary value is too large,

FIGURE 10 | The value (A) number of clusters formed, (B) number of vertices, (C) cluster coefficients and (D) number of sides when boundary values vary from −0.2
to 0.4. The method successfully shows the threshold value. This value is important for analyzing the group effectively.
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only a small number of nodes are still connected in the network;
most of them are isolated.

Therefore, to determine the boundary value in this study, four
parameters were considered: the number of groups formed,
number of vertices, number of sides, and average cluster
coefficient [5, 11]. Figure 10 shows that the optimal boundary
value is 0.05.

3.4. Group Mapping Results With Advanced
Label Propagation Algorithm
The LPAm+ program on the S&P 500 network successfully
identified the groups on the network. As many as six groups
were observed, with the number of involved nodes reaching up to
485 out of a total 502 nodes (17 nodes were isolated from the
network) and themaximummodularity value obtained was 0.6164.

The results obtained with LPAm+ show that the shares that
belong to the same group are dominated by certain sectors
(according to the results of the eigenvector analysis with RMT).
Groupmappingwith LPAm+ can be visualized usingGephi software.
The results obtained using the Gephi software are slightly different
than those after using the LPAm+ method. In Gephi, there are six
large clusters (groups) of the stockmarket network with a total of 483
(96%) nodes out of the total, 5579 sides, and amodular value of 0.619
(there is a difference of 0.003 with the LPAm+ results). Figure 11
shows the results of the animation using Gephi.

3.5. Group Mapping Results With Simulated
Annealing Algorithm
The results obtained using the SA algorithm and the Cg
correlation matrix data show accordance with the concept of
the BDM, namely the condition of the stock arrangement that

FIGURE 11 | The method successfully performs community detection. The S&P 500 stock market network using Gephi software, there are six main clusters,
cluster 1 (black) is dominated by the financial sector, cluster 2 (pink) is dominated by the information technology sector, cluster 3 (orange) is dominated by the energy
sector, industrial and materials, cluster 4 (green) is dominated by the consumer staples, utilities, and industry sectors; cluster 5 (blue) is dominated by the consumer
discretionary sector, and finally cluster 6 (purple) is dominated by the health care sector.
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provides the minimum system energy from group blocks in the
correlation matrix.

In the SA algorithm, if the initial arrangement of the selected l1
stock is random, the results obtained are far different from the ideal
conditions (never reaching minimum energy when using the initial
order that was sorted). For example, in Figure 12, a sorted initial
arrangement provides a minimum energy of 6.5 × 104, whereas for
a randomly selected initial arrangement guess, theminimum energy
achieved at the minimum temperature is equal to 8.1 × 104.

Figure 13 shows the result obtained when the initial stock
layout guess l1 follows the order given in the eigenvector analysis,
the initial temperature T0 is 10, ΔT is 0.01, and the maximum

random step used is 10. However, if Cg is replaced with Cg + Cm,
the detected group blocks are less than those using Cg only,
although the parameters used are the same as in Figure 14. These
results show that it is very important to perform filtering for Cm
in addition to Cr in group analysis [7].

4. CONCLUDING REMARKS

We investigated complex networks in the S&P 500 stock market
using two approaches, namely, a CN approach using an LPAm+
algorithm and a BDM approach using an SA algorithm. Before
applying the two approaches, the data of the C stock correlation
matrix were filtered using the RMT. RMT succeeded in separating
the noise from non-noise data and showed that most of the data
contained in the correlation matrix C were noise; an analysis of
the distribution of eigenvector components in the RMT indicated
that stock movements were driven by groups where each group
was dominated by a particular sector. We called this analysis as
simply RMT-CN-LPAm+ and RMT-BDM-SA.

In the first approach, the noise-free correlation matrix and
market-wide (Cg) effects were analyzed using the CN approach
with a threshold value of 0.05 and an LPAm+ network structure
comprising six main groups with 485 out of a total 502 nodes
involved (17 nodes were isolated from the network) and an obtained
modularity value of 0.62. Then, in the second approach, which is a
BDM with the same data, namely Cg using a simulated annealing
algorithm, the stock structure provided a minimum energy system,
and from this arrangement, nine groups of shares were produced.
The decomposition of matrix C into Cm (market-wide), Cg
(group), and Cr (noise) was also accomplished. The combination
provides useful information to identify group classifications.

The difference between RMT-CN-LPAm+ and RMT-BDM-
SA results is that in RMT-CN-LPAm+, a group contains not only
the shares of the same sector but also of other minority sectors,
whereas in RMT-BDM-SA, a group contains shares of the same
sector. The second difference is that in MT-CN-LPAm+, a few
shares still remain that have not joined any group, whereas in
RMT-BDM-SA, not all shares have a group. In general, both

FIGURE 12 | How energy decrease by iteration in Simulated annealing
method results, for example with the initial guess set l1 is random with T0 �
10,ΔT � 0.01 and the maximum random step is 20.

FIGURE 13 | The community detection results from the Cg correlation
matrix mapping using the stock structure generated by the Simulated
Annealing (SA) algorithm with parameters T0 � 0 and ΔT � 0.01 and the
maximum randomstep is 10. Group 1 is the consumer discretionary
sector; group 2, namely the consumer staples sector; group 3, the energy
sector; group 4, the financial sector; group 5, namely the healthcare sector;
group 6, the industrial sector; group 7, namely the information technology
sector; group 8, the materials sector; and finally group 9, the utilities sector.

FIGURE 14 |Community detection results from theCg +Cm correlation
matrix mapping with the same stock structure as in Figure 13. The sectors are
group 1 consumer, 2 energy, 3 financials, 4 industrials, and 5 utilities.
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hybrid methods successfully show good performance to reveal
detailed community detections.
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