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The fluctuation-dissipation theorem (FDT) connecting the response of the system to

external perturbations with the fluctuations at thermodynamic equilibrium is a central

result in statistical physics. There has been effort devoted to extending the FDT in several

different directions since its original formulation. In this work we establish a generalized

form of the FDT for spatially extended non-equilibrium stochastic systems described by

continuous fields. The generalized FDT is formulated with the aid of the non-equilibrium

force decomposition in the potential landscape and flux field theoretical framework. The

general results are substantiated in the setting of the Ornstein-Uhlenbeck (OU) process

and further illustrated by a more specific example worked out in detail. The key feature of

this generalized FDT for non-equilibrium spatially extended systems is that it represents

a ternary relation rather than a binary relation as the FDT for equilibrium systems does.

In addition to the response function and the time derivative of the field-field correlation

function that are present in the equilibrium FDT, the field-flux correlation function also

enters the generalized FDT. This additional contribution originates from detailed balance

breaking that signifies the non-equilibrium irreversible nature of the steady state. In the

special case when the steady state is an equilibrium state obeying detailed balance, the

field-flux correlation function vanishes and the ternary relation in the generalized FDT

reduces to the binary relation in the equilibrium FDT.

Keywords: fluctuation-dissipation theorem, spatially extended system, stochastic field equation, non-equilibrium

steady state, non-equilibrium force decomposition

1. INTRODUCTION

The fluctuation-dissipation theorem (FDT) is a cornerstone in equilibrium statistical physics, which
establishes a connection between the response of the system to external perturbations and the
correlation of fluctuations at thermodynamic equilibrium [1]. Thus it is a very useful tool for
investigating the properties of the system at thermodynamic equilibrium. Since its first derivation
from fundamental postulates [2], important progress has been made in testing the boundary of
its range of applications [3–5] and finding possible directions of extension [6–16]. Much effort
has been devoted to the study of the violation of the FDT in systems out of equilibrium, for
instance, in glassy systems [3], granular matter [4] and colloidal suspensions [5]. There has been
growing interest in recent years to construct modified forms of the FDT beyond its original range
of applications [6–16]. Deviations of the form of the FDT in out-of-equilibrium systems from the
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equilibrium FDT have been investigated [6–9]. Effort has also
been directed to modifying the forms of the FDT around non-
equilibrium steady states [10–15]. Restoring equilibrium forms
of the FDT in non-equilibrium regimes has also attracted much
attention [10, 12]. Study also been carried out to generalize the
FDT to non-stationary states and other directions [16]. The logic
behind the equilibrium FDT based on a stochastic approach and
the reason for its violation due to detailed balance breaking in
non-equilibrium systems will be clarified in section 2.3.

In this work we study the FDT for non-equilibrium spatially
extended systems governed by stochastic field equations. Spatially
extended systems are systems with a large number of degrees of
freedom distributed across space, so that spatial extension (spatial
distribution or spatial inhomogeneity) plays an important role
in the behavior, function and dynamics of the system. Spatially
extended systems are ubiquitous in the natural and the human
world. Many physical, chemical and biological systems are
spatially distributed and spatial inhomogeneity is an important
factor in the system dynamics. Examples of spatially extended
systems with the spatial-temporal dynamics of self-organization
and pattern formation include the growing interface described
by the Kardar-Parisi-Zhang (KPZ) equation [17], the Turing
pattern in chemical morphogenesis [18], the Rayleigh-Bénard
convection in fluids [19], Drosophila embryo differentiation in
developmental biology [20], and plant distribution dynamics in
ecological systems [21]. At the macroscopic scale, the spatially
extended system can usually be characterized by continuous
fields, with the granularity of its components ignored. The
deterministic dynamics of a large class of spatially extended
systems with local interactions can be studied in terms of partial
differential equations (PDEs). Non-local interactions are also
possible in the non-relativistic physics of spatially extended
systems, which are typically described by integro-differential
equations. Peridynamics as a non-local theory of continuum
mechanics is an example of this type of dynamics that has
become popular in recent years [22]. In a noisy world, stochastic
fluctuations with internal or external origins are unavoidable.
There are many situations in which the roles of noise on
the dynamics of spatially extended systems cannot be ignored,
necessitating a stochastic description of the system dynamics
[23–27]. Stochastic partial-differential equations (SPDEs) are a
common tool for studying the stochastic dynamics of spatially
extended system with local interactions [24, 25]. More generally,
spatially extended systems with local or non-local interactions
under the influence of stochastic fluctuations can be described
by stochastic field equations in the form of stochastic differential
equations in infinite-dimensional spaces [23, 27], with SPDEs
included as an important special class. Alternatively, master
equations have also been employed to investigate the stochastic
dynamics of spatially extended systems [25, 26]. Furthermore,
open systems (including open spatially extended systems) that
constantly exchange matter, energy or information with the
environments can sustain non-equilibrium steady states that
break detailed balance and time reversal symmetry [25, 28–30].
Systems with non-equilibrium steady states have been an active
research area in recent years [31–36]. Much effort has been
devoted to the development of non-equilibrium thermodynamics

based on Markovian stochastic dynamics described by Langevin
equations, Fokker-Planck equations and master equations [29–
36]. Spatially extended systems capable of sustaining non-
equilibrium steady states typically exhibit spatial-temporal
dynamics of pattern formation and self-organization [17–21].
Field-theoretic techniques [37] and approaches based on the non-
equilibrium potential landscape [26, 27, 38, 39], among others,
have been utilized to study the non-equilibrium dynamics of
spatially extended systems.

The formulation of the FDT for spatially extended stochastic
systems with non-equilibrium steady states are complicated by
several factors. Spatially extended systems have many degrees of
freedom and much more complicated spatial-temporal dynamics
compared to spatially homogeneous systems. Study of these
types of systems typically requires field-theoretic descriptions.
The stochastic nature of the system dynamics arising from
intrinsic or external fluctuations also adds to the difficulty in the
description and investigation of the property and dynamics of
the system. Furthermore, spatially extended systems sustaining
non-equilibrium steady states have an intrinsic non-equilibrium
nature signified by the violation of detailed balance and time
reversal symmetry, which makes them even more difficult to
handle than equilibrium systems obeying detailed balance and
time reversal symmetry. Therefore, it is a challenging task
to develop a reasonably general formulation of the FDT for
spatially extended systems with an intrinsic non-equilibrium
nature governed by stochastic field dynamics.

The objective of the present work is to establish such a
reasonably general formulation of the FDT for spatially extended
non-equilibrium stochastic systems in such a way that, on the one
hand, the formulated FDT highlights its qualitative distinction
from the equilibrium FDT due to the non-equilibrium nature
of the steady state, and on the other hand, its connection
to the equilibrium FDT is as transparent as possible. This
objective is achieved with the help of the non-equilibrium
force decomposition in the potential landscape and flux field
theoretical framework [26, 27, 33, 36, 40]. The non-equilibrium
force decomposition relates the driving force of the system to
the defining characteristics of non-equilibrium steady states [33],
which plays an important role in the study of the global dynamics
and non-equilibrium thermodynamics of spatially extended
stochastic systems in the context of this theoretical framework
[27, 36]. Its extension into the concept of non-equilibrium trinity
offered some fresh insights into the turbulence dynamics [40].
In this work it also facilitates the formulation of the generalized
FDT. We first formulate the generalized FDT in the general
setting of spatially extended systems governed by stochastic field
equations. Then we substantiate the general formulation in the
more special setting of the Ornstein-Uhlenbeck (OU) process for
spatially extended systems, and further study in detail a more
specific example based on a modified version of the stochastic
cable equation (SCE) [41] to illustrate the general results.

The form of the generalized FDT obtained in this work
has a structure that is qualitatively different from the FDT for
equilibrium spatially extended systems. Yet its connection to the
equilibrium FDT is also transparent. In addition to the response
function and the time derivative of the field-field correlation
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function, which are exactly the two quantities related by the FDT
for equilibrium spatially extended systems, there is an additional
quantity, the field-flux correlation function, which enters the
generalized FDT and transforms it into a ternary relation. The
additional contribution of the field-flux correlation function
arises from detailed balance breaking that characterizes the non-
equilibrium nature of the steady state without time reversal
symmetry. For equilibrium systems obeying detailed balance
this additional contribution vanishes and the generalized FDT
reduces to the usual equilibrium FDT.

The rest of this article is organized as follows. In section 2,
we develop the generalized FDT for spatially extended systems
in a general setting within the context of the potential landscape
and flux field theoretical framework. Then we demonstrate and
verify the generalized FDT for a class of spatially extended
systems described by the OU Process in section 3. Amore specific
spatially extended system governed by a modified version of the
SCE is studied in detail in section 4 to further illustrate the
generalized FDT. Finally, the conclusion is given in section 5.

2. GENERAL FORMULATION OF THE

GENERALIZED FDT

In this section, we formulate the generalized FDT for stochastic
spatially extended systems in a general setting. We first set up
the background by introducing the field dynamical equation
and the functional Fokker-Planck equation (FFPE). Then we
briefly present the potential landscape and flux field framework,
with an emphasis on the non-equilibrium force decomposition
that will be used to formulate the generalized FDT. After that
the generalized FDT is established step by step by putting
together the various ingredients needed for the formulation,
namely the time-dependent perturbation, the linear response
function, and the correlation function. We end this section with
discussions on the physical meaning and the implications of the
generalized FDT.

2.1. Field Dynamical Equation
Consider a general spatially extended system, with its
state at time t described by the continuous vector field
φ(x, t) = (φ1(x, t), · · · ,φi(x, t), · · · ,φn(x, t)). If there is only
one component, then the vector field reduces to a scalar field.
We focus on fields that are even variables (i.e., do not change
sign) under time reversal. Examples of such even-variable fields
include the height field of the growing interface in the KPZ
equation [17], the concentration field of a chemical substance
in the Turing pattern [18], the population density field of a
biological species [21], and the electric potential field on a
neuron fiber [41]. The velocity field as in the Rayleigh-Bénard
convection [19] is an example of an odd-variable field that
changes sign under time reversal. The state space (or phase
space) of the spatially extended system is an infinite-dimensional
function space, consisting of the field configurations that may
be subject to certain boundary conditions or other technical
requirements [23]. Each field configuration (the field φ(x) in

this entirety) represents a “point” in this infinite-dimensional
state space.

From the dynamical system perspective, the autonomous
deterministic dynamics of the spatially extended system takes
place in the infinite-dimensional state space, which, in general,
can be described by the deterministic field dynamical equation

∂tφ(x, t) = F(x)[φ], (1)

where F(x)[φ], short for F(x)[φ(y, t)], is the deterministic
driving force governing the deterministic dynamics of the
spatially extended system. The notation [φ] represents functional
dependence (i.e., dependence on the field configuration as a
whole) and (x) denotes spatial dependence. Mathematically,
F(x)[φ(y, t)] is a vector-field-valued functional, which takes in
the state of the system at time t described by the vector field
φ(y, t) as a whole, and spits out another vector field F(x)
that determines the time rate of change of the state of the
system at time t, i.e., ∂tφ(x, t). Equation (1) is an extension
of the deterministic dynamics of dynamical systems with a
finite-dimensional state space, and it represents a very general
formulation of the deterministic dynamics of spatially extended
systems with an infinite-dimensional state space. (In accord
with φ(x), we assume F(x) to be even variables under time
reversal, though.) PDEs modeling the deterministic dynamics
of spatially extended systems with local interactions are an
important class of the dynamics in Equation (1). In this case,
the vector field F(x) is determined by the vector field φ(y, t)
with y limited to the vicinity of x, so that F(x)[φ(y, t)] =
F(φ(x, t),∇φ(x, t),∇∇φ(x, t), · · · ,∇kφ(x, t)), where k indicates
the highest order of the differential operator. For instance, in the
case of the diffusion equation ∂tφ(x, t) = D∇2φ(x, t), F(x)[φ] =
D∇2φ(x, t) has the form of a differential operator (of second
order) acting on the field. More generally, Equation (1) can also
model the deterministic dynamics of spatially extended systems
with non-local interactions by using a non-local functional
F(x)[φ(y, t)], where the value of F(x) at x is not necessarily
determined by φ(y, t) at y near x, but may depend on y that is
far away from x. A simple example of the non-local dynamics
is of the form ∂tφ(x, t) = −

∫
γ (x, y) · φ(y, t)dy. In this case,

F(x)[φ(y, t)] = −
∫

γ (x, y) · φ(y, t)dy has the form of an integral
operator acting on the field. This dynamics in general represents
non-local interactions as the field at location x is instantaneously
influenced by the field at another location y that may be far away
from x. The two examples given above are both linear dynamics.
In general, the dynamics can also be non-linear in the field.

When stochastic fluctuations are important to the system
dynamics, a stochastic description is required. We consider the
stochastic dynamics of spatially extended systems that can be
described by the following form of stochastic field equations
[23, 25, 27, 36, 40]

∂tφ(x, t) = F(x)[φ]+ ζ (x, t), (2)

where the stochastic driving force ζ (x, t) is the space-dependent
additive Gaussian white noise in time with zero mean,

Frontiers in Physics | www.frontiersin.org 3 October 2020 | Volume 8 | Article 567523

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wu and Wang Generalized FDT for Extended Systems

〈ζ (x, t)〉 = 0, and has the correlation

〈ζ (x, t)ζ (x′, t′)〉 = 2D(x, x′)δ(t − t′). (3)

In the above we used the dyadic notation in which the dyadic
product ab of two vectors a and b returns a matrix with elements
[ab]ij = aibj. The spatial correlator D(x, x′) characterizes the
spatial correlation of the stochastic driving force ζ (x, t), which
is assumed to be independent of the field φ(x) (thus additive
noise). By allowing D(x, x′) to be generalized functions that
include Dirac delta functions and its derivatives of various orders,
the space-time Gaussian white noise, e.g., 〈ζ (x, t)ζ (x′, t′)〉 =
2D(x)δ(x − x′)δ(t − t′), is contained in Equation (3) as an
important class of stochastic driving forces with local correlations
in space. In general, the form of Equation (3) allows the stochastic
driving force to have non-local correlations in space. The KPZ
equation, which is a non-linear SPDE [17], is a special example of
the above stochastic field equation.

2.2. Functional Fokker-Planck Equation
The stochastic field equation in Equation (2) is a Langevin
equation in the infinite-dimensional state space (the field
configuration space). Its solution traces a stochastic trajectory in
the state space. The evolution of the corresponding probability
distribution in the state space is governed by the FFPE [24, 25,
27, 36, 40]

∂tPt[φ] =−
∫

dx δφ(x) ·
(
F(x)[φ]Pt[φ]

)

+
∫∫

dxdx′δφ(x) ·D(x, x′) · δφ(x′)Pt[φ],
(4)

where Pt[φ] ≡ P[φ, t] is the (transient) probability distribution
functional and δφ(x) ≡ δ/δφ(x) is the short notation for the
vector-valued functional derivative. The FFPE is an extension
of the Fokker-Planck equation (FPE) for systems with a finite-
dimensional state space to spatially extended systems with an
infinite-dimensional state space. The two terms on the right-hand
side (RHS) of the FFPE represent the drift and the diffusion,
respectively, in the state space. The drift vector is given by
the deterministic driving force F(x)[φ] in the stochastic field
equation, and the diffusion matrix D(x, x′) is determined by the
spatial correlator of the stochastic driving force.

The FFPE has the symbolic form

∂tPt = LPt , (5)

where L is the generator of the probability evolution dynamics. It
is an operator in the state space with the form

L =−
∫

dx δφ(x) · F(x)[φ]

+
∫∫

dxdx′δφ(x) ·D(x, x′) · δφ(x′).
(6)

The operator L acts on functionals of the field in a way similar to
that on the RHS of Equation (4). Its adjoint in the state space is
given by

L† =
∫

dx F(x)[φ] · δφ(x)

+
∫∫

dxdx′δφ(x) ·D(x, x′) · δφ(x′).
(7)

The FFPE can also be reformulated into a continuity equation in
the state space

∂tPt[φ] = −
∫

dx δφ(x) · Jt(x)[φ], (8)

where Jt(x)[φ] is the probability flux field with the expression

Jt(x)[φ] = F(x)[φ]Pt[φ]−
∫

dx′D(x, x′) · δφ(x′)Pt[φ]. (9)

It is instructive to observe the time reversal property of the FFPE
in the form of Equation (8). The left-hand side (LHS) of the
equation changes sign when time is reversed since ∂t changes sign
while the probability density Pt does not. In contrast, the RHS
of the equation does not change sign for even-variable systems
considered in this work. Therefore, the time reversal symmetry
of the FFPE is broken, except for the special case of a vanishing
probability flux field.

2.3. Potential Landscape and Flux Field
Steady states that do not vary with time are of interest.
Equilibrium steady states obey the detailed balance condition
which characterizes the time reversal symmetry of the underlying
dynamics. Open systems constantly exchanging matter, energy or
information with the environments can sustain non-equilibrium
steady states that break detailed balance and time reversal
symmetry [31]. The presence of matter, energy or information
flow is a distinguishing feature of non-equilibrium steady
states, which is reflected on the dynamical level by the
irreversible steady-state probability flux that signifies detailed
balance breaking and time irreversibility in non-equilibrium
steady states.

When the drift vector (the deterministic driving force) and
the diffusion matrix (the correlator of the stochastic driving
force) satisfy certain conditions, the FPE has a unique steady-
state probability distribution completely determined by the drift
vector and the diffusion matrix, which every initial probability
distribution converges to in the long time limit [28]. (The
conditions for the existence of such a steady-state probability
distribution, however, is likely to be violated by glassy systems.)
For the FFPE described by Equation (4), we assume that the
conditions for the existence and uniqueness of the steady state
are fulfilled. We denote the steady-state probability distribution
functional as Ps[φ].

Accordingly, the steady-state probability flux field reads

Js(x)[φ] = F(x)[φ]Ps[φ]−
∫

dx′D(x, x′) · δφ(x′)Ps[φ]. (10)
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As a result of the steady-state condition, ∂tPs[φ] = 0, the steady-
state probability flux field satisfies the ‘divergence-free’ condition
in the state space:

∫
dx δφ(x) · Js(x)[φ] = 0, (11)

which means it is a solenoidal vector field in the state space.
Non-vanishing Js breaks the time reversal symmetry of the FFPE
and is a signature of non-equilibrium steady states with time
irreversibility.

For systems sustaining non-equilibrium steady states,
according to Equation (10), the driving force has the
following potential-flux decomposed form, referred to as
the non-equilibrium force decomposition [27, 33, 36, 40]:

F(x)[φ] = −
∫

dx′D(x, x′) · δφ(x′)U[φ]+ Vs(x)[φ], (12)

where U[φ] = − ln Ps[φ] is the potential landscape associated
with the steady-state probability distribution functional, and
Vs(x)[φ] = Js(x)[φ]/Ps[φ] is the steady-state probability flux
velocity. Non-vanishing Vs(x)[φ] is also a signature of detailed
balance breaking and time irreversibility in non-equilibrium
steady states as Js(x)[φ] is. For the special case of equilibrium
systems with detailed balance, Vs(x)[φ] vanishes and, as a
result, the driving force F(x)[φ] has the form, F(x)[φ] =
−

∫
dx′D(x, x′) · δφ(x′)U[φ], which is a generalized functional

gradient of the potential landscape in the state space. This
form that relates the potential landscape U[φ] (the steady-
state probability distribution Ps[φ]), the stochastic fluctuation
characterized by the diffusionmatrixD(x, x′), and the irreversible
dissipative driving force F(x)[φ] is the ultimate origin of the
equilibrium FDT. However, this structure of the driving force is
qualitatively changed by the presence of non-vanishing Vs(x)[φ]
for systems sustaining non-equilibrium steady states that violate
detailed balance and time reversal symmetry. As a consequence,
the generalized FDT for non-equilibrium systems with detailed
balance breaking also has a qualitatively different structure
compared to the equilibrium FDT.

The structure of the driving force in relation to the
characteristics of non-equilibrium steady states, namely the non-
equilibrium force decomposition in Equation (12), is critical for
the understanding of the effects of detailed balance breaking on
the global dynamics and the non-equilibrium thermodynamics
of stochastic spatially extended systems in the framework of the
potential landscape and flux field theory [27, 36]. Its extension
into the concept of non-equilibrium trinity and the implications
thereof for turbulence dynamics can be found in [40]. In this
work the non-equilibrium force decomposition also plays a key
role in the formulation of the generalized FDT, where the effect of
detailed balance breaking on the qualitative structural change of
the FDT is highlighted. In the following we proceed to formulate
this generalized FDT step by step.

2.4. Time-Dependent Perturbation
Suppose that we perturb the system in such a way that the
stochastic field equation becomes

∂tφ(x, t) = F(x)[φ]+ h(t)ejδ(x− x′)+ ζ (x, t), (13)

where ej = (0, · · · , 1, · · · , 0) is the standard base vector with the
element 1 at the j-th component and 0 otherwise. The form of
the perturbation in Equation (13) means the perturbative force
is applied locally at the position x′ on the j-th component of
the field, with a magnitude h(t) that may vary with time but is
independent of the system state (the field φ).

The FFPE for the perturbed system then becomes

∂tP = L(t)P = [L+ Lext(t)]P, (14)

where Lext(t) is the perturbation operator with the expression

Lext(t) = −h(t)δφj(x′) (15)

according to Equation (6) and the form of the perturbative force.
The formal solution of the perturbed FFPE is given by

P(t) = T̂e
∫ t
t0
(L+Lext(t

′))dt′
P(t0), (16)

where T̂ is the time-ordering operator. When Lext(t) is small, the
perturbation expansion yields [28]

P(t) = eL(t−t0)P(t0)+
∫ t

t0

dt′eL(t−t′)Lext(t
′)eL(t

′−t0)P(t0). (17)

For systems initially in the steady state (i.e., P(t0) = Ps) as
considered in this article, this reduces to

P(t) = Ps +
∫ t

t0

dt′eL(t−t′)Lext(t
′)Ps, (18)

where we have used the steady-state FFPE for the unperturbed
system, LPs = 0. Written more specifically, the perturbative
solution reads

Pt[φ] = Ps[φ]+
∫ t

t0

dt′h(t′)eL(t−t′)
(
−δφj(x′)

)
Ps[φ]. (19)

2.5. Linear Response Function
As the system is perturbed, it responds to the perturbation
by changing the time evolution of its states and thus also the
observables depending on the states. The response of the system
can be studied by investigating how the observables of the system
vary before and after the perturbation. We choose the basic
observable of the field φi(x), namely the i-th component of the
field at the location x, and investigate how its average changes in
response to the perturbative force applied at the j-th component
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of the field at the location x′. The change of the average of this
observable in response to the perturbation is given by

δ〈φi(x)〉(t)
=〈φi(x)〉pert − 〈φi(x)〉s

=
∫
φi(x)(Pt[φ]− Ps[φ])Dφ

=
∫
φi(x)

[∫ t

t0

dt′h(t′)eL(t−t′)
(
−δφj(x′)

)
Ps[φ]

]
Dφ

=
∫ t

t0

dt′h(t′)Rij(x, x
′, t − t′),

(20)

where 〈φi(x)〉pert is the average of the observable at the perturbed
state, 〈φi(x)〉s is that at the unperturbed steady state, and

∫
Dφ

represents functional integration in the state space. In the above
we have used the perturbative solution in Equation (19). Thus the
linear response function can be identified as

Rij(x, x
′, t) = θ(t)

∫
φi(x)e

Lt
(
−δφj(x′)

)
Ps[φ]Dφ, (21)

where θ(t) is the step function taking the value 1 for t ≥ 0 and
0 otherwise. Rij(x, x

′, t) characterizes how the i-th component of
the field at the location x responds, after the lapse of time t, to a
perturbative impulse force applied on the j-th component of the
field at the location x′, when the system is initially prepared at the
steady state. The linear response function can also be rewritten in
the matrix form

R(x, x′, t) = θ(t)

∫
φ(x)eLt

(
−δφ(x′)

)
Ps[φ]Dφ. (22)

2.6. Correlation Functions
For spatially extended systems, observables in general are
functionals of the field φ(x). The correlation function of two
general observablesA[φ] at time t andB[φ] at time t′ in the steady
state is denoted by 〈A(t)B(t′)〉s. Since the steady state has time
translation invariance, the correlation function only depends on
the time difference t− t′. Without loss of generality, we only need
to consider 〈A(t)B(0)〉s.

Following the derivation for systems without spatial extension
[28], the expression of the correlation function for spatially
extended systems can be found as follows (for t ≥ 0):

〈A(t)B(0)〉s

=
∫∫

A[φ]W[φ, t;φ′, 0]B[φ′]DφDφ′

=
∫∫

A[φ]P[φ, t|φ′, 0]B[φ′]Ps[φ
′]DφDφ′

=
∫∫

A[φ]
(
eLtδ[φ − φ′]

)
B[φ′]Ps[φ

′]DφDφ′

=
∫

A[φ]eLt (B[φ]Ps[φ])Dφ,

(23)

where W[φ, t;φ′, 0] and P[φ, t|φ′, 0] are the joint probability
distribution and the transition probability distribution in the

state space, respectively, and δ[φ −φ′] is the Dirac delta function
in the state space. For readers concerned with the use of such
highly singular function(al)s as δ[φ − φ′], a family of Gaussian
distributions on the (infinite-dimensional) state space [23] can
be used to approximate the delta function.

The correlation function has the equivalent expression

〈A(t)B(0)〉s =
∫ (

eL
†tA[φ]

)
B[φ]Ps[φ]Dφ, (24)

where we have performed integration by parts in the state
space. One may define the time-dependent observable A[φ, t] =
eL

†tA[φ] with its time evolution generated by the operator L†.
Note that the time evolution of the probability distribution is
generated by the operator L. The situation here resembles the
relation between the Heisenberg picture and the Schrödinger
picture in quantum mechanics.

The correlation function of the field is of particular
importance, which has the following expressions (for t ≥ 0):

〈φ(x, t)φ(x′, 0)〉s =
∫ (

eL
†tφ(x)

)
φ(x′)Ps[φ]Dφ

=
∫

φ(x)eLt
(
φ(x′)Ps[φ]

)
Dφ.

(25)

We will also need the time derivative of the field correlation
function to formulate the generalized FDT. Direct calculation
yields

∂

∂t
〈φ(x, t)φ(x′, 0)〉s

=
∫

φ(x)LeLt
(
φ(x′)Ps[φ]

)
Dφ

=
∫ (

L†φ(x)
)
eLt

(
φ(x′)Ps[φ]

)
Dφ

=
∫

F(x)[φ]eLt
(
φ(x′)Ps[φ]

)
Dφ

=〈F(x, t)φ(x′, 0)〉s,

(26)

where we have used L†φ(x) = F(x)[φ]. This can be shown using
the expression of L† in Equation (7).

However, the simple relation in Equation (26) is not sufficient
for the purpose of formulating the generalized FDT. We need
to relate the time derivative of the field correlation function to
〈φ(x, t)F(x′, 0)〉s instead of 〈F(x, t)φ(x′, 0)〉s for reasons that will
become clear later. For equilibrium steady states with detailed
balance and time reversal symmetry, these two correlation
functions 〈φ(x, t)F(x′, 0)〉s and 〈F(x, t)φ(x′, 0)〉s are equal to each
other as will be shown later. For non-equilibrium steady states
violating detailed balance, 〈φ(x, t)F(x′, 0)〉s and 〈F(x, t)φ(x′, 0)〉s
differ from each other, which is a manifestation of time
irreversibility in non-equilibrium steady states.

Given the above considerations, we calculate the time
derivative of the field correlation function in an alternative way
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as follows:

∂

∂t
〈φ(x, t)φ(x′, 0)〉s

=
∫

φ(x)eLtL
(
φ(x′)Ps

)
Dφ

=
∫ (

eL
†tφ(x)

)
P−1
s L

(
Psφ(x

′)
)
PsDφ

=
∫ (

eL
†tφ(x)

) [(
P−1
s LPs

)
φ(x′)

]
PsDφ

=
∫ (

eL
†tφ(x)

) (̃
Lφ(x′)

)
PsDφ,

(27)

where

L̃ = P−1
s LPs = L† − 2

∫
dxVs(x)[φ] · δφ(x). (28)

The last expression of the operator L̃ is proven in the Appendix,
with the help of the non-equilibrium force decomposition in
Equation (12). Given this expression of L̃, we further derive

L̃φ(x′) = L†φ(x′)− 2Vs(x
′)[φ]

= F(x′)[φ]− 2Vs(x
′)[φ].

(29)

Therefore, we obtain the alternative expression of the time
derivative of the field correlation function:

∂

∂t
〈φ(x, t)φ(x′, 0)〉s =〈φ(x, t)F(x′, 0)〉s

− 2〈φ(x, t)Vs(x
′, 0)〉s.

(30)

This is the relation needed in the formulation of the
generalized FDT.

We remark that the two expressions of ∂t〈φ(x, t)φ(x′, 0)〉 in
Equations (26) and (30) imply the following interesting result in
the form of asymmetry of the correlation function:

〈φ(x, t)F(x′, 0)〉s − 〈F(x, t)φ(x′, 0)〉s
=2〈φ(x, t)Vs(x

′, 0)〉s.
(31)

For equilibrium steady states,Vs vanishes and 〈φ(x, t)F(x′, 0)〉s =
〈F(x, t)φ(x′, 0)〉s. This symmetry of the correlation function is a
reflection of time reversal symmetry in equilibrium states, which
is broken for non-equilibrium steady states with non-vanishing
Vs. It may be possible to test this relation in experiments,
at least the qualitative character of the asymmetry of the
correlation functions.

2.7. Generalized FDT
Now we are in a position to formulate the generalized FDT for
stochastic spatially extended systems sustaining non-equilibrium
steady states. First notice that the linear response function in
Equation (22) can be rewritten in the following form:

R(x, x′, t) = θ(t)

∫
φ(x)eLt

(
−δφ(x′)

)
Ps[φ]Dφ

= θ(t)

∫
φ(x)eLt

(
δφ(x′)U[φ]

)
Ps[φ]Dφ, (32)

where U[φ] = − ln Ps[φ] is the potential landscape. The RHS of
this equation also has the form of a correlation function, namely
θ(t)〈φ(x, t)δφ(x′,0)U〉s. Hence, this relation may be considered
as a FDT as it relates the response function to the correlation
function. However, this form of FDT does not provide insight
into some important questions, such as how the non-equilibrium
nature of the system affects the FDT. Neither does it relate
the response function to (the time derivative of) the field-
field correlation function as the equilibrium FDT for spatially
extended systems does.

To gain insight into how the FDT is affected by detailed
balance breaking that characterizes the non-equilibrium nature
of the steady states, we invoke the non-equilibrium force
decomposition in Equation (12). Inverting the diffusion matrix
in the state space, it can be reformulated as

δφ(x′)U[φ] =−
∫

dx′′D−1(x′, x′′)

·
(
F(x′′)[φ]− Vs(x

′′)[φ]
)
,

(33)

where D−1(x′, x′′) is the state-space matrix inversion of D(x′, x′′)
defined by

∫
D−1(x, x′)D(x′, x′′)dx′ = Iδ(x− x′′). (34)

Here I is the n × n identity matrix. With the help of the above
form of the non-equilibrium force decomposition, Equation (32)
is brought into the form

R(x, x′, t) = −θ(t)
∫ [

〈φ(x, t)F(x′′, 0)[φ]〉s

−〈φ(x, t)Vs(x
′′, 0)〉s

]
D−1(x′′, x′)dx′′. (35)

To further bring it closer to the form of the equilibrium FDT,
in which the time derivative of the field-field correlation function
appears, we use the alternative expression of the time derivative of
the field-field correlation function in Equation (30) (its derivation
also used the non-equilibrium force decomposition) to obtain

R(x, x′, t) = −θ(t)
∫ [

∂

∂t
〈φ(x, t)φ(x′′, 0)〉s + 2〈φ(x, t)Vs(x

′′, 0)〉s

−〈φ(x, t)Vs(x
′′, 0)〉s

]
D−1(x′′, x′)dx′′

= −θ(t)
∫ [

∂

∂t
〈φ(x, t)φ(x′′, 0)〉s

+〈φ(x, t)Vs(x
′′, 0)〉s

]
D−1(x′′, x′)dx′′. (36)

We have thus finally formulated the generalized FDT for
stochastic spatially extended systems sustaining non-equilibrium
steady states:

R(x, x′, t) = −θ(t)
∫ [

∂

∂t
〈φ(x, t)φ(x′′, 0)〉s

+〈φ(x, t)Vs(x
′′, 0)〉s

]
D−1(x′′, x′)dx′′. (37)
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2.8. Discussion
We first consider some special forms of the generalized FDT. For
diffusion matrices (spatial correlators of the stochastic force) of
the particular form D(x, x′) = DIδ(x − x′), the generalized FDT
reads

R(x, x′, t) = −θ(t)
D

[
∂

∂t
〈φ(x, t)φ(x′, 0)〉s + 〈φ(x, t)Vs(x

′, 0〉s
]
.

(38)
For equilibrium states with detailed balance indicated by Vs = 0,
the generalized FDT further reduces to the more familiar form of
the equilibrium FDT:

R(x, x′, t) = −θ(t)
D

∂

∂t
〈φ(x, t)φ(x′, 0)〉eq, (39)

which relates the response function to the time derivative of the
field-field correlation function.

If the system under consideration is not spatially extended, but
one that can be described by a finite-dimensional state vector
X, then the generalized FDT in Equation (37) reduces to the
following form:

R(t) = −θ(t)
[
d

dt
〈X(t)X(0)〉s + 〈X(t)Vs(0)〉s

]
D−1. (40)

Some modified forms of the FDT in the literature have a close
connection to the above form but may differ in certain aspects
[11, 13, 15].

Now we discuss the implications of the generalized FDT.
Compared to the FDT for equilibrium spatially extended systems
preserving detailed balance and time reversal symmetry, the
generalized FDT for non-equilibrium spatially extended systems
in Equation (37) has a qualitatively different structure. It is no
longer a binary relation that connects the response function
to the field-field correlation function (field correlation for
short). Instead, the generalized FDT is a ternary relation that
connects three objects together, namely the response function,
the field correlation, and the additional flux correlation (or
field-flux correlation function). The flux correlation originates
from detailed balance breaking and time irreversibility in non-
equilibrium steady states. It vanishes for systems obeying detailed
balance with equilibrium steady states, which reduces the ternary
relation of the generalized FDT to the binary relation of the
equilibrium FDT. We note that the feature of the generalized
FDT for non-equilibrium steady states as a ternary relation
instead of a binary relation also carries over to systems that are
not spatially extended, as is evident from Equation (40).

One way to understand the physical meaning of the
generalized FDT is to interpret the flux correlation as a form
of dissipative response associated with detailed balance breaking
in non-equilibrium steady states, which contributes to how the
system responds to perturbations in totality. In other words,
the total response of the system to perturbations described
by the response function consists of a part that is related to
the fluctuations at the steady state characterized by the field
correlation and another part that is associated with the non-
equilibrium nature of the steady state quantified by the flux

correlation. For systems with a stable steady state, it is typical that
the system responds to perturbations that kick the system out of
the steady state by going through a transient relaxation process
that brings the system back to the steady state. This dissipative
relaxation process the system goes through in response to
perturbations can be characterized by the response function.
The steady state is the reference state on which this relaxation
process is targeted. When the steady state of the system is a non-
equilibrium state violating detailed balance, the target state which
the system relaxes back to in general has changed compared to
that of the equilibrium steady state obeying detailed balance. In
addition, the conditions for sustaining non-equilibrium steady
states may also affect the dynamical process of the transient
relaxation (e.g., how fast the system relaxes back to the steady
state). Therefore, it is not surprising that the non-equilibrium
nature of the steady state reflected by the flux correlation affects
how the system responds to perturbations. This is the rationale
behind the interpretation of the flux correlation as part of the
response function associated with the non-equilibrium nature of
the steady state signified by detailed balance breaking.

To further appreciate the physical meaning of the generalized
FDT from a different perspective, we reformulate it into the
following form

−θ(t) ∂
∂t

〈φ(x, t)φ(x′, 0)〉s =
∫

R(x, x′′, t)D(x′′, x′)dx′′

+ θ(t)〈φ(x, t)Vs(x
′, 0)〉s.

(41)

We simply inverted back the diffusion matrix and grouped
the response function and the flux correlation together. The
logic here is to interpret the response function and the flux
correlation as two ‘sources’ of fluctuations characterized by the
field correlation. This logic is based on the distinction of two
basic types of non-equilibrium processes, namely the transient
and the steady-state non-equilibrium processes. When a system
is in a state different from the steady state (e.g., kicked out of
the steady state by an external perturbation), it goes through
the transient process of relaxing back to the steady state,
which is an irreversible dissipative non-equilibrium process.
However, for systems capable of sustaining non-equilibrium
steady states, the steady state itself also has an intrinsic non-
equilibrium nature with an arrow of time indicated by the
irreversible probability flux. Even if the system remains in the
steady state without going through the transient relaxation
process, it is still going through the non-equilibrium steady-
state process with time irreversibility. These two basic types of
non-equilibrium processes both have associated fluctuations. The
transient relaxation of the system back to the steady state upon
perturbation characterized by the response function is associated
with the fluctuations around the steady state. The flux correlation
originating from detailed balance breaking in non-equilibrium
steady states is associated with the fluctuations inherent within
non-equilibrium steady-state processes.

With these two connections established, we can now interpret
the generalized FDT in the form of Equation (41) as follows. The
field correlation (also its time derivative) is a characterization
of the non-equilibrium fluctuations of the stochastic spatially
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extended system, which come from two different sources
corresponding to two basic types of non-equilibrium processes.
One part of the non-equilibrium fluctuations originates from
the process of transient relaxation back to the steady state
characterized by the response function. The other part of the
non-equilibrium fluctuations captured by the flux correlation
arises from the inherent fluctuations within the steady-state non-
equilibrium processes with detailed balance breaking. The latter
part exists only for systems sustaining non-equilibrium steady
states with an intrinsic arrow of time.

For inherently equilibrium systems that obey detailed balance,
the steady state is an equilibrium state. The fluctuations around
the equilibrium state characterized by the field correlation
is directly linked to the transient process of relaxing back
to equilibrium upon perturbation captured by the response
function. However, for intrinsically non-equilibrium systems
violating detailed balance, the steady state itself form a stationary
non-equilibrium background embedded with intrinsic non-
equilibrium fluctuations, upon which transient relaxation of
returning to the steady state takes place. As a result, the field
correlation characterizing non-equilibrium fluctuations around
the non-equilibrium steady state can no longer be directly
connected to the response function, as it only captures the part
of fluctuations associated with relaxing back to the background
upon perturbation. The flux correlation describing the intrinsic
non-equilibrium fluctuations within the stationary background
itself also has to be taken into account.

In general, the non-equilibrium nature of the steady state
(reflected by the flux correlation) affects both the response of the
system to perturbations (e.g., by changing the target the system
relaxes back to) and fluctuations of the system at the steady state
(e.g., due to the presence of fluctuations associated with non-
equilibrium steady-state processes). The particular example in
section 4 also demonstrates this point. Thus it is a matter of
perspective whether to interpret the flux correlation as part of
the response function or part of the field correlation. After all,
it is the ternary relation quantified by the generalized FDT that
has the final word on how the response function and the field
correlation should be related to each other by the additional
flux correlation when the steady state of the system is non-
equilibrium in nature.

The qualitative structural change of the FDT from a binary
relation to a ternary relation and its physical significance
discussed above also have experimental implications. For
equilibrium systems obeying detailed balance, once we
experimentally measure the response of the system to designed
disturbances that kick the system out of equilibrium, we also
have information on the fluctuations of the system around
equilibrium, vice versa, as implied by the binary relation of the
equilibrium FDT. In contrast, for systems with non-equilibrium
steady states, experimentally obtaining information on the
response of the system relaxing back to the steady state after
being perturbed is not sufficient to derive information on the field
correlation that characterizes fluctuations of the system at the
steady state, as dictated by the ternary relation of the generalized
FDT. Two elements are needed to derive information on the
third in the ternary relation. Experimentally, the field correlation

and the response function are relatively easier to access. The
difference between the two, according to the generalized FDT,
can be used to infer the flux correlation that contains quantitative
information on the non-equilibrium nature of the steady state
with detailed balance breaking. In addition, the asymmetry of
correlation functions in the form of Equation (31) is also useful
for obtaining such information in experiments.

3. ORNSTEIN-UHLENBECK PROCESS OF

SPATIALLY EXTENDED SYSTEMS

We study the general OU process for stochastic spatially extended
systems to demonstrate the generalized FDT developed in the
previous section. Due to some special features in the OU process,
the steady state of the FFPE can be solved in principle and thus
we can verify the generalized FDT for this type of process.

3.1. Stochastic Field Dynamics
The essential feature of the OU process is that the deterministic
force is linear in the state variables and the stochastic force is
independent of the state variables [28]. For stochastic spatially
extended systems with the field φ(x) as the state variables, the
OU process is governed by the following form of stochastic field
equation [23, 36]:

∂tφ(x, t) = −
∫

γ (x, x′) · φ(x′, t)dx′ + ζ (x, t), (42)

where ζ (x, t) is Gaussian white noise in time with zero mean and
has the correlation

〈ζ (x, t)ζ (x′, t′)〉 = 2D(x, x′)δ(t − t′). (43)

In the most general form γ (x, x′) and D(x, x′) may also be
time-dependent, which is not considered here.

The deterministic driving force in Equation (42) has the form
of an integral operator acting on the field. This form is actually
general for linear forces, if the integral kernel γ (x, x′) is allowed
to be generalized functions involving the Dirac delta function and
its derivatives of various orders. For instance, for the diffusion
equation ∂tφ(x, t) = D∇2φ(x, t), its driving force has the form
−γ̂φ where γ̂ = −D∇2 is a differential operator. But γ̂ can be
equivalently interpreted as an integral operator with the integral
kernel γ (x, x′) = −D∇2δ(x− x′). We shall interpret the integral
kernel γ (x, x′) in Equation (42) and in the rest of the paper in
this general sense. We also use the notation γ̂ to represent the
corresponding integral operator so that the deterministic driving
force can also be written as −γ̂ φ. By interpreting D(x, x′) as an
integral kernel (allowed to be generalized functions), we can also
associate with it an operator D̂.

3.2. Functional Fokker-Planck Equation
The FFPE associated with the stochastic field dynamics in
Equation (42) has the form

∂tPt[φ] =
∫∫

dxdx′δφ(x) ·
(
γ (x, x′) · φ(x′)Pt[φ]

)

+
∫∫

dxdx′δφ(x) ·D(x, x′) · δφ(x′)Pt[φ].
(44)
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In the symbolic form of the FFPE ∂tP = LP, the operator L has
the expression

L =
∫∫

dxdx′ δφ(x) · γ (x, x′) · φ(x′)

+
∫∫

dxdx′ δφ(x) ·D(x, x′) · δφ(x′).
(45)

Its adjoint reads

L† =−
∫∫

dxdx′ φ(x′) · γ T(x, x′) · δφ(x)

+
∫∫

dxdx′ δφ(x) ·D(x, x′) · δφ(x′),
(46)

where γ T represents the transpose of the matrix γ . The operators
L and L† are very different from the operators γ̂ and D̂ as these
two types of operators are defined on different spaces. γ̂ and D̂

act on fields φ(x), while L and L† act on functionals of the field
A[φ].

Due to the particular features of the OU process, it allows
for Gaussian solutions [28]. We are particularly interested in
the steady state. When γ̂ and D̂ satisfy certain conditions [23],
the steady-state solution exists and is unique. The steady-state
probability distribution is a Gaussian distribution of the form

Ps[φ] = N exp

{
−1

2

∫∫
φ(x) · 6−1

s (x, x′) · φ(x′)dxdx′
}
, (47)

where N is the normalization constant and 6s(x, x
′) is the

covariance matrix in the state space. 6−1
s (x, x′) is the state-

space matrix inverse of 6s(x, x
′) defined similarly as D−1(x, x′)

in Equation (34).
The covariance matrix 6s(x, x

′) is determined by the
functional equation [28, 36]

∫
γ (x, x′′)6s(x

′′, x′)dx′′

+
∫

6s(x, x
′′)γ T(x′, x′′)dx′′ = 2D(x, x′), (48)

which can be reformulated as the operator equation

γ̂ 6̂s + 6̂sγ̂
† = 2D̂. (49)

Here 6̂s is the operator associated with 6s(x, x
′) (interpreted

as an integral kernel) and γ̂
† is the adjoint of γ̂ . Equation

(49) is an algebraic Lyapunov equation for operators, which has
the solution

6̂s = 2

∫ ∞

0
e−γ̂ τ D̂e−γ̂

†
τdτ , (50)

if the integral converges. A sufficient condition is that the
operator γ̂ has a complete biorthogonal set of eigenfunctions [28]
and that its eigenvalues all have positive real parts.

3.3. Potential Landscape and Flux Field
With the steady-state probability distribution given in
Equation (47), the potential landscape has the quadratic
form

U[φ] = − ln Ps[φ] =
1

2

∫∫
φ(x) ·6−1

s (x, x′) ·φ(x′)dxdx′, (51)

up to an additive constant. Then the probability flux velocity field
at the steady state can be obtained using the non-equilibrium
force decomposition in Equation (12), which yields

Vs(x)[φ] =F(x)[φ]+
∫

D(x, x′) · δφ(x′)U[φ]dx′

=−
∫

γ (x, x′) · φ(x′)dx′

+
∫ [∫

D(x, x′′)6−1
s (x′′, x′)dx′′

]
· φ(x′)dx′

(52)

In operator notations, this reads Vs = −(γ̂ − D̂6̂−1
s )φ.

Novanishing Vs is an indicator that the steady state is a non-
equilibrium state with time irreversibility. The steady state is an
equilibrium state if Vs vanishes. According to the expression of
Vs, this requires γ̂ = D̂6̂−1

s . Combined with Equation (49) and

eliminating 6̂s (assuming the relevant operators are invertible),
we obtain

γ̂ D̂ = D̂γ̂
†, (53)

or, more explicitly,

∫
γ (x, x′′)D(x′′, x′)dx′′ =

∫
D(x, x′′)γ T(x′, x′′)dx′′. (54)

This is the detailed balance condition for spatially extended
OU processes (assuming even state variables). For the system
to sustain non-equilibrium steady states, this detailed balance
condition must be violated.

3.4. Response Function
The response function has the general expression in
Equation (22), which is reproduced below for the
reader’s convenience

R(x, x′, t) = θ(t)

∫
φ(x)eLt

(
−δφ(x′)

)
Ps[φ]Dφ. (55)

We obtain the response function for the OU process in the
following way. For t ≥ 0, we have

∂tR(x, x
′, t) =

∫
φ(x)LeLt

(
−δφ(x′)

)
Ps[φ]Dφ

=
∫ (

L†φ(x)
)
eLt

(
−δφ(x′)

)
Ps[φ]Dφ

= −
∫

dx′′ γ (x, x′′)R(x′′, x′, t),

(56)

where we have used

L†φ(x) = −
∫

dx′′ γ (x, x′′) · φ(x′′) (57)
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for the OU process, according to the expression of L† in
Equation (46). Equation (56) needs to be supplemented with an
initial condition. Setting t = 0 in Equation (55) and performing
integration by parts in the state space, we find

R(x, x′, 0) =
∫

φ(x)
(
−δφ(x′)

)
Ps[φ]Dφ

=
∫ (

δφ(x′)φ(x)
)
Ps[φ]Dφ

= Iδ(x− x′).

(58)

The response function can be obtained by solving Equation (56)
under the initial condition in Equation (58). In operator
notations, the response function has the formal solution (t ≥ 0)

R(x, x′, t) = e−γ̂ tIδ(x− x′). (59)

This is actually the Green’s function of the deterministic
dynamics of the OU process.

In fact, we can obtain the above result in a more direct way.
Noticing that Equation (57) means L†φ(x) = −γ̂ φ(x), we have

R(x, x′, t) = θ(t)

∫ (
eL

†tφ(x)
) (

−δφ(x′)
)
Ps[φ]Dφ

= θ(t)

∫ (
e−γ̂ tφ(x)

) (
−δφ(x′)

)
Ps[φ]Dφ

= θ(t)e−γ̂ tIδ(x− x′).

(60)

3.5. Field-Field Correlation Function
The field-field correlation function, with its general expression in
Equation (25), can be calculated for the OU process as follows:

〈φ(x, t)φ(x′, 0)〉s =
∫ (

eL
†tφ(x)

)
φ(x′)Ps[φ]Dφ

= e−γ̂ t

∫
φ(x)φ(x′)Ps[φ]Dφ

= e−γ̂ t〈φ(x)φ(x′)〉s
= e−γ̂ t6s(x, x

′),

(61)

where we have used the fact that the steady-state probability
distribution of the OU process, given in Equation (47), is a
Gaussian distribution with zero mean and has the covariance
matrix 〈φ(x)φ(x′)〉s = 6s(x, x

′).
The time derivative of the field-field correlation function is

then found to be

∂

∂t
〈φ(x, t)φ(x′, 0)〉s = −e−γ̂ t γ̂ 6s(x, x

′)

= −e−γ̂ t

∫
dx′′γ (x, x′′)6s(x

′′, x′),
(62)

where we have spelled out the action of γ̂ on 6s(x, x
′).

3.6. Field-Flux Correlation Function
With the expression of Vs(x)[φ] in Equation (52), the field-flux
correlation function is calculated as follows:

〈φ(x, t)Vs(x
′, 0)〉s =

∫ (
eL

†tφ(x)
)
Vs(x

′)[φ]Ps[φ]Dφ

= e−γ̂ t〈φ(x)Vs(x
′)〉s

= e−γ̂ t
∫
dx′′〈φ(x)φ(x′′)〉s

[
−γ T(x′, x′′)

+
∫
dx′′′6−1

s (x′′, x′′′)D(x′′′, x′)
]

= e−γ̂ t
∫
dx′′6s(x, x

′′)
[
−γ T(x′, x′′)

+
∫
dx′′′6−1

s (x′′, x′′′)D(x′′′, x′)
]

= e−γ̂ t
[
−

∫
dx′′6s(x, x

′′)γ T(x′, x′′)+D(x, x′)
]
. (63)

3.7. Generalized FDT
Recall that the generalized FDT in Equation (37) has the form

R(x, x′′, t) = −θ(t)
∫ [

∂

∂t
〈φ(x, t)φ(x′, 0)〉s

+〈φ(x, t)Vs(x
′, 0)〉s

]
D−1(x′, x′′)dx′, (64)

where we have switched the symbols x′ and x′′ for convenience.
We verify this relation for the OU process.

The quantities in the square brackets read

∂

∂t
〈φ(x, t)φ(x′, 0)〉s + 〈φ(x, t)Vs(x

′, 0)〉s

=e−γ̂ t

[
−

∫
dx′′γ (x, x′′)6s(x

′′, x′)

−
∫

dx′′6s(x, x
′′)γ T(x′, x′′)+D(x, x′)

]

=e−γ̂ t
[
−2D(x, x′)+D(x, x′)

]

=− e−γ̂ tD(x, x′),

(65)

where we have used the expressions in Equations (62) and (63)
as well as Equation (48) that determines 6s(x − x′). Therefore,
the RHS of the generalized FDT for the OU process has the
expression

RHS = θ(t)e−γ̂ t

∫
D(x, x′)D−1(x′, x′′)dx′

= θ(t)e−γ̂ tIδ(x− x′′)

= R(x, x′′, t)

= LHS,

(66)

where we have used the expression of the response function for
the OU process in Equation (60). We have thus demonstrated
that the generalized FDT holds true for a general OU process.

4. A PARTICULAR EXAMPLE: THE

MODIFIED STOCHASTIC CABLE

EQUATION

We further study a particular example of the OU process with
explicitly solvable non-equilibrium steady states to demonstrate
the generalized FDT. In this example we use a modified version
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of the SCE. The SCE is a stochastic differential equation that
has been extensively used in theoretical neurobiology [23, 41]. It
describes the evolution of the membrane potential of a spatially
extended neuron under the influence of stochastic inputs. We
studied this model in a previous work in the context of non-
equilibrium thermodynamics, but the steady state of the system
was found to be an equilibrium state with detailed balance and
time reversal symmetry [36]. Thus the original form of this model
is not suitable for illustrating the generalized FDT. However,
we discovered in this work that with some modifications the
SCE can also sustain non-equilibrium steady states. It is this
modified stochastic cable equation (MSCE) that will be studied
in this section.

4.1. Stochastic Field Dynamics
In its typical form, the original SCE is considered on a one-
dimensional interval modeling the spatial extension of the
neuron and has the form

∂tφ(x, t) = ∂2xφ(x, t)− φ(x, t)+ ζ (x, t), (67)

where ζ (x, t) is space-time Gaussian white noise with zero mean
and has the correlation

〈ζ (x, t)ζ (x′, t′)〉 = δ(x− x′)δ(t − t′). (68)

We modify the above equation and consider the following MSCE
defined on the interval [0,π]:

∂tφ(x, t) = ∂2xφ(x, t)− φ(x, t)− 2µ∂xφ(x, t)+ ζ (x, t), (69)

where the Gaussian white noise ζ (x, t) has the correlation

〈ζ (x, t)ζ (x′, t′)〉 = 2(1− ∂2x )δ(x− x′)δ(t − t′). (70)

The equation is supplemented with the Dirichlet
boundary condition

φ(0, t) = φ(π , t) = 0. (71)

There are two major differences between the MSCE and the
SCE. One difference is the presence of an additional term,
−2µ∂xφ(x, t), in the deterministic dynamics. The other is
the form of the correlation of the stochastic force. These
differences allow the MSCE to sustain non-equilibrium steady
states with detailed balance breaking and time irreversibility,
in contrast with the original SCE that has equilibrium steady
states preserving detailed balance. This crucial distinction will be
demonstrated and discussed later.

4.2. Operator Analysis
The MSCE can be rewritten in the form

∂tφ(x, t) = −γ̂ φ(x, t)+ ζ (x, t) (72)

with 〈ζ (x, t)ζ (x′, t′)〉 = 2D(x, x′)δ(t − t′). In this form γ̂ is an
operator with the expression

γ̂ = 1− ∂2x + 2µ∂x. (73)

Note that γ̂ is not a Hermitian operator, since its adjoint is
given by

γ̂ † = 1− ∂2x − 2µ∂x. (74)

Thus γ̂ can be decomposed into a Hermitian part

γ̂h = 1− ∂2x (75)

and an anti-Hermitian part1

γ̂a = 2µ∂x. (76)

These two parts commute with each other, namely

[γ̂h, γ̂a] = 0, (77)

as can be verified. We shall show later that the anti-Hermitian
operator γ̂a is directly related to the irreversible probability flux
that signifies detailed balance breaking and time irreversibility in
the steady state. For the special case µ = 0, the anti-Hermitian
part γ̂a vanishes and γ̂ reduces to the Hermitian operator in the
SCE that has equilibrium steady states. The magnitude of the
parameter µ can be interpreted as a measure of the distance from
equilibrium or the degree of detailed balance breaking.

The non-Hermitian operator γ̂ in general does not have
a set of orthonormal eigenfunctions. However, a complete
biorthogonal set of eigenfunctions can be found for this operator.
This amounts to finding the eigenfunctions of both γ̂ and γ̂ †. By
solving the eigen-equation γ̂ ϕn(x) = λnϕn(x) under the specified
boundary condition, we obtain the eigenvalues of γ̂

λn = n2 + µ2 + 1 (n ≥ 1), (78)

and the corresponding eigenfunctions

ϕn(x) =
√

2

π
eµx sin nx (n ≥ 1). (79)

Notice that γ̂ † can be obtained from γ̂ simply by replacing µ
with−µ. Therefore, the eigen-equation γ̂ †ψn(x) = λnψn(x) can
be solved with the same set of eigenvalues in Equation (78), and
the corresponding eigenfunctions are given by

ψn(x) =
√

2

π
e−µx sin nx (n ≥ 1). (80)

These two sets of eigenfunctions are orthonormal with respect to
each other in the sense that

∫ π

0
ϕn(x)ψm(x)dx = δnm. (81)

1The definition of an operator and whether it is Hermitian or anti-Hermitian

depend on the boundary condition. The operator ∂x is anti-Hermitian under the

Dirichlet boundary condition in Equation (71), but it is not anti-Hermitian under

the Neumann boundary condition due to the presence of non-vanishing boundary

terms when performing integration by parts.
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They are also complete in the sense that

∞∑

n=1

ϕn(x)ψn(x
′) = δ(x− x′). (82)

This completeness relation (or resolution of the identity) can
be derived from the completeness of the set of orthonormal
functions {en(x) =

√
2/π sin nx} by a similarity transformation.

By considering the Fourier analysis of the function e−µxf (x)
in terms of {en(x)}, where f (x) satisfies the given boundary
condition, one can show the completeness relation in
Equation (82) for the function f (x).

The differential operator γ̂ can also be represented as an
integral operator, with the integral kernel

γ (x, x′) = γ̂ δ(x− x′) = (1− ∂2x + 2µ∂x)δ(x− x′). (83)

Using the completeness relation in Equation (82) and the fact that
ϕn is the eigenfunction of γ̂ , it is easy to see that

γ (x, x′) =
∞∑

n=1

λnϕn(x)ψn(x
′). (84)

The form of correlation of the stochastic force in Equation (70)
means the diffusion matrix in the FFPE has the form

D(x, x′) = (1− ∂2x )δ(x− x′) = γ̂hδ(x− x′), (85)

where γ̂h is the Hermitian part of γ̂ . By interpretingD(x, x′) as an
integral kernel, we see that the associated operator D̂ has the form

D̂ = γ̂h = 1− ∂2x . (86)

This particular choice of D(x, x′) or D̂ allows the steady state
of the system to be explicitly solved without interfering with its
non-equilibrium nature as we shall see later.

4.3. Functional Fokker-Planck Equation
The FFPE in this case reduces to the following form

∂tPt[φ] =
∫

dx δφ(x)
(
γ̂ φ(x)Pt[φ]

)

+
∫

dx δφ(x)D̂δφ(x)Pt[φ],

(87)

where γ̂ and D̂ are given by Equations (73) and (86), respectively.
The steady-state probability distribution functional Ps[φ] is a

Gaussian distribution functional

Ps[φ] = N exp

{
−1

2

∫∫
φ(x)6−1

s (x, x′)φ(x′)dxdx′
}
, (88)

where the covariance matrix 6s(x, x
′) with the associated

operator 6̂s is determined by the equation (see Equation 49)

γ̂ 6̂s + 6̂sγ̂
† = 2D̂. (89)

As a result of the particular choice D̂ = γ̂h = (γ̂ + γ̂ †)/2, it is
easy to see that the solution is given by

6̂s = Î, (90)

namely the identity operator, which corresponds to 6s(x, x
′) =

δ(x − x′). (This result can also be obtained using the solution
formula for 6̂s in Equation (50) and the biorthogonal expansion
of γ̂ .) Therefore, the steady-state distribution is explicitly
solved as

Ps[φ] = N exp

{
−1

2

∫
φ2(x)dx

}
. (91)

4.4. Potential Landscape and Flux Field
The potential landscape is given by

U[φ] = − ln Ps[φ] =
1

2

∫
φ2(x)dx, (92)

up to an additive constant. The steady-state probability
flux velocity field indicating detailed balance breaking
can be calculated with the help of the non-equilibrium
force decomposition:

Vs(x)[φ] = F(x)[φ]+ D̂δφ(x)U[φ]

= −γ̂ φ(x)+ D̂φ(x)

= −γ̂aφ(x) = −2µ∂xφ(x),

(93)

where we have used D̂ = γ̂h and γ̂ = γ̂h + γ̂a.
In this particular case the steady-state probability flux that

signifies detailed balance breaking and time irreversibility in the
non-equilibrium steady state is directly determined by the anti-
Hermitian part of the operator γ̂ in the deterministic force.
Notice that Vs is proportional to the parameter µ. The steady
state of the system is a non-equilibrium state as long as µ 6= 0,
and the special case µ = 0 reduces to the equilibrium case
of the SCE. Hence, the magnitude of the parameter µ may
be considered as a measure of the degree of detailed balance
breaking or the distance from equilibrium.

4.5. Response Function
Specializing the response function for general OU process in
Equation (60) to this one-dimensional example, we see that
R(x, x′, t) = e−γ̂ tδ(x − x′). The response function in this case
can be calculated more explicitly using the completeness relation
in Equation (82) as follows:

R(x, x′, t) = e−γ̂ tδ(x− x′) =
∞∑

n=1

e−γ̂ tϕn(x)ψn(x
′)

=
∞∑

n=1

e−λntϕn(x)ψn(x
′)

= 2

π

∞∑

n=1

e−(n2+µ2+1)t+µ(x−x′) sin nx sin nx′

= B(x− x′, t|µ)R0(x, x′, t),

(94)
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where

B(x− x′, t|µ) = e−µ
2t+µ(x−x′) (95)

and

R0(x, x
′, t) = 1

π

∞∑

n=1

e−(n2+1)t
[
cos n(x− x′)− cos n(x+ x′)

]
.

(96)
In the above we have written the response function in the

product form

R(x, x′, t) = B(x− x′, t|µ)R0(x, x′, t). (97)

The function R0(x, x
′, t) is the equilibrium response function.

This can be seen by setting µ = 0 (the equilibrium case) and
noticing that B(x − x′, t|0) = 1. However, it does not seem
to have a closed expression. For fixed x and x′, the response
generally decays with time. This can be seen from the expression
in Equation (96) or the physical intuition that the deterministic
dynamics is a damping dynamics that relaxes to equilibrium (the
eigenvalues of γ̂ are all positive). For fixed t and x′, numerical
investigation suggests that the response as a function of x is
typically unimodal and vanishes at the boundary (the latter due
to the Dirichlet boundary condition).

On the other hand, the function B(x − x′, t|µ) fully captures
the effect of detailed balance breaking on the response function.
In the spatial dimension, this function has the exponential form
eµ(x−x′), which increases or decreases the response exponentially,
depending on the relative position between the response point x
and the stimulus point x′ and the sign of the parameter µ. On
the other hand, in the temporal dimension the function has the

form e−µ
2t , which shows that the response decays faster due to

the presence of detailed balance breaking.

4.6. Field-Field Correlation Function
The field-field correlation function can be obtained as follows
(Equation 61):

〈φ(x, t)φ(x′, 0)〉s = 〈eL†tφ(x)φ(x′)〉s
= e−γ̂ t〈φ(x)φ(x′)〉s
= e−γ̂ t6s(x− x′).

(98)

For this particular example we actually have, more specifically,
6s(x− x′) = δ(x− x′). Therefore,

〈φ(x, t)φ(x′, 0)〉s = e−γ̂ tδ(x− x′) = R(x, x′, t). (99)

That is, the correlation function is equal to the response function
in this special example. The effect of detailed balance breaking on
the correlation function is thus the same as that analyzed for the
response function.

Notice that this special scenario that the correlation function
coincides with the response function does not mean the field-
flux correlation in the generalized FDT vanishes, because what
appears in the generalized FDT is not the field-field correlation

function itself, but its time derivative. The time derivative of the
field-field correlation function is given by

∂

∂t
〈φ(x, t)φ(x′, 0)〉s = −γ̂ e−γ̂ tδ(x− x′) = −γ̂R(x, x′, t), (100)

which has the more specific expression

∂

∂t
〈φ(x, t)φ(x′, 0)〉s = −

∞∑

n=1

λne
−λntϕn(x)ψn(x

′). (101)

4.7. Field-Flux Correlation Function
The field-flux correlation function associated with detailed
balance breaking is obtained as follows:

〈φ(x, t)Vs(x
′, 0)〉s

=e−γ̂ t〈φ(x)Vs(x
′)〉s = e−γ̂ t〈φ(x)(−γ̂ ′

a)φ(x
′)〉s

=− e−γ̂ t γ̂ ′
a6s(x− x′) = −e−γ̂ t γ̂ ′

aδ(x− x′)

=e−γ̂ t γ̂aδ(x− x′) = γ̂ae
−γ̂ tδ(x− x′)

=γ̂aR(x, x′, t),

(102)

where γ̂ ′
a = 2µ∂x′ . In the above we have used Vs = −γ̂aφ,

∂x′δ(x − x′) = −∂xδ(x − x′), and [γ̂a, γ̂ ] = 0 implied by
[γ̂h, γ̂a] = 0 and γ̂ = γ̂h + γ̂a.

The field-flux correlation function has the following more
specific expression

〈φ(x, t)Vs(x
′, 0)〉s

=2µ∂xR(x, x
′, t)

=2µ∂x[B(x− x′, t|µ)R0(x, x′, t)]
=2µB(x− x′, t|µ)(µ+ ∂x)R0(x, x′, t)

=2µe−µ
2t+µ(x−x′)(µ+ ∂x)R0(x, x′, t).

(103)

It vanishes in the special equilibrium case µ = 0.

4.8. Generalized FDT
The generalized FDT for this particular system has the form

R(x, x′, t) = −θ(t)D̂−1

[
∂

∂t
〈φ(x, t)φ(x′, 0)〉s + 〈φ(x, t)Vs(x

′, 0)〉s
]
,

(104)
which is shown as follows. For t ≥ 0, the RHS of the equation has
the expression

RHS = −D̂−1

[
∂

∂t
〈φ(x, t)φ(x′, 0)〉s + 〈φ(x, t)Vs(x

′, 0)〉s
]

= −D̂−1
[
−γ̂R(x, x′, t)+ γ̂aR(x, x′, t)

]

= D̂−1(γ̂ − γ̂a)R(x, x′, t) = D̂−1γ̂hR(x, x
′, t)

= D̂−1D̂R(x, x′, t) = R(x, x′, t),

(105)

which is equal to the LHS of Equation (104). In the above we
have used the expression of the time derivative of the correlation
function in Equation (100), the expression of the field-flux
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correlation function in Equation (102), and the fact that D̂ = γ̂h
by construction.

We have thus demonstrated that the MSCEmodel satisfies the
generalized FDT in the form of Equation (104). It is worthwhile
noting that this particular form of the generalized FDT, with an
operator D̂−1 acting on functions of x on the right, is specific to
this example due to some special features in the model. Although
in this special example it is also equivalent to the general form of
the FDT given in Equation (37), this is not generally true when a
different system is considered. In a more general setting the form
of the generalized FDT in Equation (37) or its alternative form in
Equation (41) still applies. In addition, we have also shown in this
particular example that detailed balance breaking indicated by
the parameterµ, which characterizes the non-equilibrium nature
of the steady state, affects both the response function and the field
correlation as they are both dependent on µ. It is the ternary
relation quantified by the generalized FDT that determines how
the response function and field correlation are related to each
other by the flux correlation in non-equilibrium steady states.

In addition, we note that in this particular example of the
MSCE, the deterministic dynamics, ∂tφ = −γ̂ φ, is a purely
damping dynamics, since the eigenvalues of γ̂ are all positive.
As a result, the steady state of the deterministic system (the
fixed “point” in the state space) is the zero field configuration,
φ(x) = 0. Therefore, there is no pattern formation in this
system, which also has to do with the linear nature of the
system. In this respect, nonlinear spatially extended systems
with the spatial-temporal dynamics of pattern formation and
self-organization represent more interesting systems [17–21].
However, these systems are also more difficult to handle. In the
context of the potential landscape and flux field theory, the non-
equilibrium force decomposition, F(x)[φ] = −

∫
dx′D(x, x′)·

δφ(x′)U[φ] + Vs(x)[φ], plays a central role in the study of the
global dynamics of spatially extended systems in the state space
[27]. In particular, the fluxVs(x)[φ] that signifies detailed balance
breaking is the part of the driving force that is essential for the
non-equilibrium dynamics of the system, which is closely related
to the manifestation of pattern formation and self-organization
in nonlinear spatially extended systems. In this work, we have
also demonstrated how the flux Vs(x)[φ] is manifested in the
generalized FDT for non-equilibrium spatially extended systems,
altering the structure of equilibrium FDT and transforming it
into a ternary relation. Therefore, the flux Vs(x)[φ] can serve as
a bridge that connects the spatial-temporal dynamics of pattern
formation and self-organization to the generalized FDT of non-
equilibrium spatially extended systems. This line of research will
be pursued in the future.

5. CONCLUSION

In this work, we have established a generalized form of the
FDT for spatially extended non-equilibrium stochastic systems.
In formulating the generalized FDT, we invoked a key element
in the potential landscape and flux field framework, namely the
non-equilibrium force decomposition, which played an essential
role in reaching the final form of the generalized FDT. We have

also demonstrated the generalized FDT with spatially extended
systems described by general OU processes and further studied
in detail a particular example based on a modified version of the
SCE to illustrate the general results. These more concrete studies
have substantiated the validity of the generalized FDT.

The distinguishing feature of the generalized FDT formulated
in this work is that it represents a ternary relation instead of
a binary relation as in the equilibrium FDT. In addition to
(the time derivative of) the field correlation and the response
function, which also exist in the equilibrium FDT, there is an
additional term, namely the flux correlation, which enters the
generalized FDT and qualitatively alters the structure of the
FDT by transforming it into a ternary relation. This additional
contribution of the flux correlation originates from detailed
balance breaking and inherent time irreversibility in non-
equilibrium steady states, which is signified by the presence
of steady-state irreversible probability flux that reflects the
constant flows of matter, energy or information in and out
of the system. The non-equilibrium nature of the steady
state alters how the system responds to perturbations, for
instance, by changing the target state that the system relaxes
back to. It also affects the fluctuations of the system at the
steady state due to the presence of fluctuations associated
with non-equilibrium steady-state processes. Depending on the
perspective taken, the flux correlation associated with the non-
equilibrium nature of the steady state may either be interpreted
as part of the system response to perturbations or part of
the fluctuations at the non-equilibrium steady state. In the
end, it is the ternary relation quantified by the generalized
FDT that determines how the response function and the
field correlation should be related to each other by the flux
correlation when the steady state of the system has a non-
equilibrium nature. In the special case when the steady state
of the system is an equilibrium state with detailed balance, the
contribution of flux correlation vanishes and the ternary relation
in the generalized FDT reduces to the binary relation in the
equilibrium FDT.

We have also discussed experimental implications of the
generalized FDT in this work. For equilibrium spatially extended
systems with detailed balance, information obtained from
experiments on either the response function or the field
correlation implies the other due to the binary relation of the
equilibrium FDT. For spatially extended systems sustaining non-
equilibrium steady states, however, the response function and the
field correlation are no longer tightly connected to each other
due to the ternary relation of the generalized FDT. Since they are
relatively easier to access experimentally than the flux correlation,
experimental information acquired on the response function and
the field correlation can be used to infer the flux correlation that
contains quantitative information on the non-equilibrium nature
of the steady state of the system. The same type of information
may be inferred from experimental data using the asymmetry
relation of the correlation function derived in Equation (31) in
this work.

Considering the generality of the setting in which the
generalized FDT is derived, results obtained in the general
setting in this work have a much wider range of applications

Frontiers in Physics | www.frontiersin.org 15 October 2020 | Volume 8 | Article 567523

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Wu and Wang Generalized FDT for Extended Systems

beyond the more restricted setting of the OU process and the
particular example used to substantiate the general results. A
variety of physical, chemical and biological spatially extended
systems capable of sustaining non-equilibrium steady states
may be amenable to the generalized FDT derived in this
work. When some of the restrictions in the general setting are
further lifted, an even wider range of applications including
more general types of systems may become accessible, which
will be pursued in future work. Furthermore, we will also
explore in the future the connection of the spatial-temporal
dynamics of pattern formation and self-organization to the
generalized FDT via the bridge established by the irreversible
probability flux that signifies detailed balance breaking and
time irreversibility in non-equilibrium spatially extended
systems. The stochastic trajectory perspective of the FDT near
equilibrium steady states and its extension to non-equilibrium
steady states far from thermodynamic equilibrium will also
be investigated.
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APPENDIX

A. EXPRESSION OF THE OPERATOR L̃

We introduced the operator L̃ = P−1
s LPs in the main text. Here

we prove the following result used in the main text:

L̃ = L† − 2

∫
dxVs(x)[φ] · δφ(x), (A1)

where the expressions of L and L† were given in Equations (6)
and (7), respectively.

Consider an arbitrary functional Q[φ] in the state space. We
first calculate L(PsQ). Given the expression of L in Equation (6),
direct calculation yields

L(PsQ)

=− Ps[φ]

∫
dx F(x)[φ] · δφ(x)Q[φ]

+ 2

∫∫
dxdx′

(
δφ(x)Ps[φ]

)
·D(x, x′) ·

(
δφ(x′)Q[φ]

)

+ Ps[φ]

∫∫
dxdx′δφ(x) ·D(x, x′) · δφ(x′)Q[φ].

(A2)

In obtaining the above result we have used the steady-state FFPE:

LPs = 0. Multiplying both sides of the above equation with P−1
s

and taking into account the definition L̃ = P−1
s LPs, we obtain

L̃Q =−
∫

dx F(x)[φ] · δφ(x)Q[φ]

− 2

∫∫
dxdx′

(
δφ(x)U[φ]

)
·D(x, x′) ·

(
δφ(x′)Q[φ]

)

+
∫∫

dxdx′δφ(x) ·D(x, x′) · δφ(x′)Q[φ],

(A3)

where U[φ] = − ln Ps[φ] is the potential landscape introduced
in the main text.

Given the expression of L† in Equation (7) and comparing L̃Q
with L†Q, it is readily seen that

L̃Q− L†Q

=− 2

∫
dx F(x)[φ] · δφ(x)Q[φ]

− 2

∫∫
dxdx′

(
δφ(x)U[φ]

)
·D(x, x′) ·

(
δφ(x′)Q[φ]

)
(A4)

Then we invoke the non-equilibrium force decomposition in
Equation (12), which relates the driving force F(x) to the potential
landscape U[φ] and the probability flux velocity Vs(x). We thus
obtain

L̃Q− L†Q = −2

∫
dxVs(x)[φ] · δφ(x)Q[φ], (A5)

which is essentially the desired result in Equation (A1) sinceQ[φ]
is an arbitrary functional in the state space.
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