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In this study, the trend of the epidemic situation of COVID-19 is analyzed based on the
analysis method for network topology. Combining with the sliding window method, the
dynamic networks with different topologies for each window are built to reflect the
relationship of the data on different days. Then, the static statistical features on
network topologies at different times are extracted during the dynamic evolution of
complex networks. A new trend function defined on the average degree and clustering
coefficient of the network is tailored to measure the characteristics of the trend. Through
the value of the trend function, we can analyze the trend of the epidemic situation in real
time. It is found that if the value of the trend function tends to decrease, it means that the
epidemic will have to be effectively controlled. Finally, we put forward some suggestions for
early control of the epidemic.
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1. INTRODUCTION

Since December 2019, patients with pneumonia of unknown cause have appeared in some medical
institutions. By now, the number of cases caused by coronavirus (COVID-19) has increased. The
World Health Organization (WHO) declared the COVID-19 disease a pandemic onMarch 11, 2020.
The cumulative confirmed cases have reached almost 3,220,000 as of May 1, 2020 worldwide. For
new outbreaks, it is significant to understand the transmission dynamics of infection, which can help
governments take effective measures to contain them and reduce the number of spread. In the survey
of other two pandemics caused by coronavirus severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), scientists have put
forward many effective measures to build the transmission models, such as the transmission analysis
based on genome research (Qin et al., 2003) and the mathematical model of infection kinetics (Liang,
2020).

Since the outbreak of COVID-19, scholars have conducted relevant research through different
models. Zhu and Chen give a statistical analysis of COVID-19 with early transmission model (Zhu
and Chen, 2020). A data-based iterative prediction method is proposed to find growth rates under
which the situation will be in control (Perc et al., 2020). Robust time series are used to complete
statistical forecasts for the confirmed cases of COVID-19 by Fotios and Spyros (Petropoulos and
Makridakis, 2020). In (Chen and Zhou, 2020), a Monte Carlo method is proposed to quantify the
control efficacy, which is completed by calculating the mean number of secondary cases infected by a
case with symptom onset every day. Moreover, a segmented Poisson model is adopted in Zhang et al.
(2020) to analyze the new cases, which takes the governments’ regulations into consideration. An
extended SIR model is employed by Jia and Han to compare the epidemics trend in Italy and Hunan,
China (Jia et al., 2020).
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With the development of complex networks, the spread
analysis of epidemics on complex networks has attracted wide
attention in the literature. Based on the SIR model in complex
networks, Xia et al. have investigated the effects of delaying the
time to recovery and of nonuniform transmission on the
propagation of diseases on structured populations (Xia et al.,
2012; Xia et al., 2013). In (Small and Tse, 2005), Small and Tse
propose a new four state model based on the transmission of
SARS, where community is modeled as a small-world network of
interconnected nodes. Wang et al. point out the spread of
epidemics in small-world networks (Wang and Li, 2016). The
prevalence of infectious diseases in the population, the spread of
viruses on computer networks, and the spread of rumors in
human society can all be regarded as the problem of
information dissemination on the network, which belongs to
the dynamic process of the network and can be dealt with
machine learning (Silva and Zhao, 2016).

In the study of complex network diseases (Wang et al., 2019;
Wu and Hadzibeganovic, 2020), individuals in the population are
regarded as nodes in the network, and the connections between
individuals are regarded as edges in the network, which
establishes the topology of the network. Since the real network
is usually small scale and scale-free, it is generally that the
network under study is a Watts–Strogatz (WS) or Barabási-
Albert (BA) scale-free network (Wu et al., 2019). After the
establishment of network topology, a mathematical model that
can reflect the dynamic characteristics of infectious diseases is
able to be built according to the transmission characteristics and
infectious diseases between individuals (Huang, 2008; Liu and Li,
2019; Lu and Liu, 2019; Zhou andWu, 2019; Aadil et al., 2020). In
this paper, we attempt to make use of empirical data and combine
the characteristics of COVID-19 transmission to analyze the
trend of COVID-19. We mainly use the knowledge of network
topology to give the trend analysis of COVID-19, which networks
are established based on the data from COVID-19 Data
Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (https://github.com/
CSSEGISandData/COVID-19).

The article is organized as follows. Section 1 introduces the
process of relevant research. In Section 2, which is also the most
significant part of the article, we present the construction of the
networks and the topological features extracted from the
networks. Section 3 displays the networks we built and
analyzes the epidemic situation in the four regions through
the topological characteristics of the networks. We summarize
the method we used and give some suggestions in Section 4.

2. METHODOLOGY

This section introduces the construction of the networks and the
topological features extracted from the networks.

2.1. Networks Constructing
Here, we select four regions for the analysis, including Wuhan,
South Korea, Russia, and Germany. The total number of
confirmed cases is extracted for every day in each region. We

get a time series R1 � {x1, x2, . . . , xn}, where xi is the number of
diagnoses in the ith day, and n is the total days from the virus
outbreak. Then, the growth rate of the number of diagnoses yi in
the ith day is described as follows:

yi �
⎧⎪⎨⎪⎩

xi+1 − xi
xi

, xi ≠ 0

0, xi � 0
(1)

From this treatment, the change in the daily diagnostic number
can be seen more clearly. At the same time, the impact of the total
local population on the growth rate of the number of confirmed
cases can also be ignored. Then, we get a new time series on the
growth rate of daily diagnoses R2 � {y1, y2, . . . , yn−1}.

The dynamic evolution analysis method is an important way
for data analysis based on the features of network topology. In
dynamic evolution, the feature measurement of networks is a
function of time. In the same evolution mode, two subnetworks
obtained at different times have different features. Therefore, it is
a very important and effective way to analyze and classify the
network by using static statistical features at different times
during the dynamic evolution of networks (Backes et al.,
2009). Here, the sliding window method is used to extract the
features of network topology for further observation. The key to
selecting sliding windows is how to effectively maintain the
quality and quantity of the original time series information,
while minimizing the calculation complexity to the most
extent (Li and Zhang, 2004; Li and Xiao, 2009). In this study,
we apply the sliding window with the length of 9 days and the step
size of 1 day. Figure 1 shows the process of sliding windows for
the time series data. Next, we will use the daily growth rate to
build the networks.

For one of the sliding window Ri � {yi, yi+1, . . . , yi+8}, using the
nine-day growth rates as nodes, we calculate the Euclidean
distance between any two nodes to get the 9 × 9 distance
matrix D with

dij �
∣∣∣∣∣yi − yj

∣∣∣∣∣, (2)

where dij is the element ofD in row i and column j. The growth rate
defined in (1) formulates the difference between the different nodes,
so the connections in the network give a relevance description for

FIGURE 1 | Sliding windows are used to form the time series. The length
of sliding windows is chosen as 9 days, and the step size is 1 day. The figure
shows the process of constructing time series.
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the data in the 9 days. Set the average value of the distance as the
threshold denoted by δ. When dij < δ, there is a connection between
nodes i and j, that is, aij � 1 in the connection matrix A of the
network. Otherwise, we stipulate a) if one of yi and yj is 0, aij � 0; b)
if dij < 0.0002, aij � 0. Here, a) is to exclude the relationship between
the current day and the remaining days if a certain growth rate is 0,
and b) is an adjustment for the following consideration: at the time
of the definition of the growth rate, the number of diagnoses per day
on the previous day is increasing, and the growth rate is changing
even if the number of growth is invariant. The construction of
connection matrix is described as follows:

aij � { 1, if 0.0002< dij < δ and min{yi, yj}≠ 0
0, otherwise

(3)

2.2. Topological Features of Networks
The degree ki of the node i is defined as the number of sides
connected to the node. In an undirected and unauthorized
network, the mathematical formula for degree can be
expressed as follows:

ki � ∑N
j�1

aij, (4)

where aij is the element of connection matrix A and N is the total
number of nodes. Then, we can get the average degree k of the
whole network as follows:

k � 1
N

∑N
i�1

ki (5)

The clustering coefficient is a coefficient that measures the degree
of network aggregation, which can be formulated as follows:

C � 1
N

∑N
i�1

2|ei|
ki(ki − 1), (6)

where |ei| represents the number of connected edges between
nodes in the neighborhood of node i (i.e., the number of triangles
formed by node i and other two nodes in its neighborhoods) and
ki is the degree of node i. In general, the clustering coefficient of
the network quantifies the connection between nodes in the
network with C ∈ [0, 1]. If C � 1, all points in the network are
connected. If the value of C is relatively small, the network
connection is loose.

3. EXPERIMENTAL RESULTS

In this section, we combine the daily number of confirmed cases
in Wuhan, South Korea, Russia, and Germany to build the
networks and analyze the epidemic situation in the four
regions through the topological characteristics of the networks.

3.1. Data Processing
We use the daily number of diagnoses from January 22, 2020 to
May 16, 2020 as the data set. So, for each region, we can get the

total number of diagnoses per day for 116 days. First, from (1),
the data are processed to calculate the 115-day daily diagnosis
growth rate for each region. Then, using a sliding window of
9 days and a step size of 1 day, the time series data are divided into
107 periods, and 107 networks are constructed with nine nodes in
each period. Figure 2 shows the networks at the 43rd day of the
four regions. The more connections the network has, the greater
the change is of the 9-day growth rate. It should be emphasized
that few connections cannot only indicate the control period of
the disease but also the period of early outbreak.

3.2. Analysis of Network Topological
Characteristics
We use the equations in Eqs (5) and (6) to calculate the average
degree and clustering coefficient of each network, and the trend
function is defined as I � 0.5C + 0.5k combining the average
degree and clustering coefficient. Taking Germany for
example, Figure 3A shows the growth rate change chart of
Germany in the first 80 days, and Figure 3B depicts the
evolution of trend function. It can be seen from Figure 3A
that the daily growth rate in the first 80 days has changed
greatly, and it is difficult to find the regular pattern of
epidemic development. However, it can be seen from
Figure 3B that when the value of trend function is relatively
large and stable, the epidemic situation has not been completely
controlled. This situation can be seen from the data in the next
few days. It shows that the network topology method proposed in
this article is efficient for the analysis of epidemic situation.

The evolution of the trend function in the four regions is
shown in Figure 4. In the figure, the value of the abscissa is the
number of days passed from January 22, 2020, and the ordinate is
the value of the trend function I. The larger the I value, the larger
is the clustering coefficient and mean sum. The larger the
clustering coefficient, the difference of growth rate of any
3 days is less than the threshold in 9 days, and the larger the
average degree, the difference of the growth rate in 9 days is less
than the threshold number of days. Therefore, when the daily
diagnostic growth rate of 9 days becomes relatively small, the
clustering coefficient and average degree will be relatively small. If
the growth rate changes greatly in 1 day in the 9 days, the average
threshold will become larger, and the number of connections will
increase in the remaining 8 days, then the value of trend function
will also increase.

From Figure 4A in Wuhan, there is a clear downward trend in
the values of the trend function around March 2. The growth rate
of the number of confirmed patients in the next 9 days has also
dropped to 0.1% for the first time, and the growth rate is also
declining in the next few days, gradually turning to 0. This
indicates that the change trend is related to the change of the
daily growth rate. Furthermore, if the values of trend function
show a downward trend, it can be inferred that the growth rate of
the region has dropped to a smaller value, and it can be
considered that the epidemic situation in the region has been
effectively controlled.

In Figure 4D, the values of trend function change in Germany
can be seen that it has a small wave peak at first, and then
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suddenly increases until it stabilizes around 0.6. So, it can be
speculated that there was a small outbreak in Germany between
January 22 and February 2, and then it was effectively controlled,
resulting in a growth rate of almost zero. But since February 22,
there has been a second outbreak in Germany. The values of trend
function have been fluctuating around 0.6, indicating that
Germany’s growth rate still remains high and the epidemic

has not been effectively controlled. The above results are
consistent with the local epidemic data in Germany, which
proves that the method is effective.

From above analysis, we can analyze and predict the epidemic
situation in South Korea and Russia. From Figure 4, it can be seen
that the figure of South Korea has shown a clear downward trend
since April 2, indicating that the epidemic situation in South

FIGURE 2 | Networks at the 43rd day of the four regions. The number of connections in the network reflects the change degree of nine-day growth rate.

FIGURE 3 | Growth rate and the evolution of trend function of Germany.
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Korea has been effectively controlled. However, there was a small
upward trend at the 100th day. This indicates that the daily
growth rate in South Korea has increased by a small margin
recently. But, it can be controlled quickly. For Russia, where the
values of trend function is still fluctuating around 0.6, which
indicates a certain fluctuation in the growth rate of the daily
confirmed population in Russia during April. We can also see that
the growth rate is still relatively high, which shows that the
Russian epidemic has not been effectively controlled, and the
growth rate will not be significantly reduced in the near future,
and more stringent measures are needed to control the
development of the epidemic.

Note that the effective control of the epidemic in this article
refers to the fact that the daily growth rate is almost zero, that is,
there is almost no new infection, rather than the change in the daily
growth rate of 0, or in other words, the next day is approximately
equal to the daily growth rate of the previous day, as mentioned in
some articles. For example, for the platform period mentioned in
Perc et al. (2020), we understand it as the epidemic situation has
been preliminarily controlled, and only when there is no new
infection can it be considered to be effectively controlled.

4. DISCUSSIONS AND CONCLUSIONS

In this article, we proposed a trend analysis method based on
network construction with sliding windows to extract the

characteristics of network dynamic evolution over time and
analyzed the epidemic trend in four typical regions. In the
analysis, we found that some regions had better control of the
epidemic, while others were still in the process of outbreak. So, we
put forward some suggestions and hope that the epidemic
situation in various countries can be effectively controlled as
soon as possible.

The proposed method in this article is easy but efficient for
the trend analysis of COVID-19. In general, since COVID-19
patients’mid-term course of disease develops rapidly, it is hard
to accurately judge the cycle from mild to severe. Moreover,
the issue of infectivity in the incubation period and the
infectious power of those infected patients during the
recovery period remains to be studied, which may be the
cause of second outbreak in Germany. The intensity of
different infection generation and the difference of infection
are still unknown. The question of whether the virus
will disappear or persist in the population remains to be
resolved.

Many countries have taken effective measures to the epidemic,
such as closing churches, bars, and gymnasiums. In severe cases,
some countries such as China seal off the city from all outside
contact to stop the spread of the plague. We can learn from the
above analysis that Wuhan has got the epidemic under control in
a relatively short time. In order to block the transmission chain of
the virus, it is a very effective method to trace the confirmed
patient’s activity route and contacts. For countries like Russia

FIGURE 4 | Evolution of trend function for the four regions: Wuhan, South Korea, Russia, and Germany. The value of the abscissa is the number of days passed
from January 22, 2020, and the ordinate is the value of the trend function I. The larger the I value, the larger is the clustering coefficient and mean sum.
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where the epidemic is still serious, which can be observed from
the trend in Figure 4, they should consider to strengthen the
isolation measures.
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