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We provide a survey of the Kolkata index of social inequality, focusing in particular on
income inequality. Based on the observation that inequality functions (such as the
Lorenz function), giving the measures of income or wealth against that of the population,
to be generally nonlinear, we show that the fixed point (like Kolkata index k) of such a
nonlinear function (or related, like the complementary Lorenz function) offer better
measure of inequality than the average quantities (like Gini index). Indeed the Kolkata
index can be viewed as a generalized Hirsch index for a normalized inequality function
and gives the fraction k of the total wealth possessed by the rich 1 − k fraction of the
population. We analyze the structures of the inequality indices for both continuous and
discrete income distributions. We also compare the Kolkata index to some other
measures like the Gini coefficient and the Pietra index. Lastly, we provide some
empirical studies which illustrate the differences between the Kolkata index and the
Gini coefficient.

Keywords: Lorenz function, complementary Lorenz function, k-index and the normalized k-index, Gini coefficient,
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1. INTRODUCTION

Inequality in a society can broadly be categorized as inequality of condition or inequality of
opportunity. The former refers to disparities in the current status of individuals, whether this be
income, wealth or their ownership of different goods and services. The latter refers to disparities in
the future potential of individuals. Typically, inequality of opportunity is inferred indirectly
through its effects like education level and quality, health status and treatment by the justice
system. Though the two types of inequality are interrelated, we are interested in the former type
only in this survey. Therefore, in what follows, the term “inequality” will refer exclusively to
inequality of condition.

We focus here on one aspect of inequality, viz., the measurement of inequality. Measuring
inequality is important for answering a wide range of questions. For instance: is the income
distribution more equal than what it was in the past? Are underdeveloped countries characterized by
greater inequality than developed countries? Do taxes or other kinds of policy interventions lead to
greater equality in the distribution of income or wealth? Since the way inequality is measured also
determines how the above questions (among others) are answered, a rigorous discussion of the
measurement of inequality is necessary (see, e.g., Refs. 1–5).
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A tool that is indispensable in measuring income and wealth
inequality is the Lorenz function and its graphical representation,
the Lorenz curve (see Ref. 6). The Lorenz curve plots the
percentage of total income earned by various portions of the
population when the population is ordered by the size of their
incomes. The Lorenz curve is typically depicted as a curve in the
unit square with end points at (0, 0) and (1, 1) (see Figure 1).1
The 45° line is the line of perfect equality representing a situation
where all individuals have the same income.

The Lorenz curve can be used, in a limited way, as a measure of
inequality. Since the 45° line is the line of perfect equality, we can
say that the “closer” a Lorenz curve is to the 45° line, the more
equal is the income distribution. Unfortunately, this does not get
us very far because Lorenz curves can intersect and hence, the
Lorenz curves cannot be ranked unambiguously using the above
criterion (see Ref. 7). We have more to say on this point in
Section 2.

The existing literature sees two approaches to deal with the
problem of intersecting Lorenz curves. The first is to consider
ranking criterion that are “weaker” than this dominance
criterion meaningful only for non-intersecting Lorenz
curves (see Refs. 7–11). The pioneering work in this
approach is Ref. 12 which suggested that there is an
underlying notion of social welfare associated with any
measure of income inequality. It is this concept with which
we should be concerned. Furthermore, we should approach the
question by considering directly the form of the social welfare
function to be employed (see Ref. 13). This is a normative
approach and is meaningful when we want to obtain a ranking
of income distributions in order to infer something from the
social welfare angle like whether “post-tax income is more
equally distributed than pre-tax income”.

The second approach is to develop summary measures of
inequality using the Lorenz functions (see Ref. 7 for details). Here,
each Lorenz function is associated with a real number and these
numbers are used to compare inequality across different income
distributions. This is a descriptive approach where we quantify
the difference in inequality between pairs of distributions (see
Ref. 13).

An index of income inequality is therefore a scalar measure of
interpersonal income differences within a given population. High
income inequality means concentration of high incomes in the
hands of few and is likely to compress the size of the middle class.
A large and rich middle class contributes significantly to the well-
being of a society in many ways. In particular, a large and rich
middle class contributes in terms of high economic growth, better
health status, higher education level, a sizable contribution to the
country’s tax revenue and a better infrastructure, and more social
cohesion resulting from fellow feeling. A society characterized
with a small middle class and more persons away from the middle
income group may lead to a strained relationship between the
subgroups on the two sides of the middle class which can generate
unrest (see Ref. 4). Hence, the need for identifying the magnitude

of income inequality through different indices is of prime
importance.

Except for the unique case of equality, where the Lorenz
curve is trivially linear, the Lorenz function is typically
nonlinear and it accommodates the essential features of the
inequalities involved. However, most of the common
inequality indices formulated and used so far studies some
of the “average” properties of the Lorenz function. On the
other hand, the established observations in statistical physics,
for example in developing the Renormalization Group theory
of phase transitions (see, e.g., Ref. 14) or the chaos theory (see,
e.g., Ref. 15), strongly indicated the richness of the
(nontrivial) fixed point structure (and also of the eigen
vectors and eigen values for the linearized function near
that fixed point) of such non-linear functions to
comprehend the physical and mathematical process
represented by such nonlinear functions. We noted earlier
(see Ref. 1) that, while the Lorenz function has got trivial fixed
points, a complementary Lorenz function has a non-trivial
point corresponding to an inequality index called the Kolkata
index, having several intriguing and useful properties.

Our primary focus in this survey will be on the Kolkata
index as a measure of inequality. The Kolkata index, first
introduced by Ref. 1 and later analyzed in Ref. 2 and in
Ref. 3, is that proportion k of the population such that the
proportion of income that we can associate with k is (1 − k).
Since no single summary statistic can reflect all aspects of
inequality exhibited by the Lorenz curve, the importance of
using alternative measures of inequality is universally
acknowledged (see Ref. 7). We would also discuss two
popular indices namely, the Gini coefficient or index (see
Ref. 16) and the Pietra index (see Ref. 17). The Gini index
is the ratio of the area between the 45° line and the Lorenz
curve to the total area under the 45° line. Equivalently, the Gini
index is twice the area between the Lorenz curve and the line of
perfect equality. The Pietra index is the maximum value of the
gap between the 45° line and the Lorenz curve (also see Ref. 18).

In Section 2, we discuss the fundamentals of Lorenz and
complementary Lorenz functions, along with some examples
extending from continuous to discrete wealth distributions. In

FIGURE 1 | The Lorenz and the complementary Lorenz curves. Q is the
k-index of the Lorenz curve. OP represents the maximum distance between
the perfect equality line and the Lorenz curve.

1The end points are clear since none of the population possesses none of the income
while the entire population possesses all the income.
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Section 3, we define the Kolkata index (k-index) and show some
example calculation of the k-index for continuous wealth
distributions. We also demonstrate an algorithm for
calculating the k-index for discrete wealth distribution. We
conclude the section by comparing the k-index with various
other indices. In Sections 4 and 5, we continue this
comparison based on rich-poor disparity. In Section 6, we
measure the k-index from real society data. Section 7
summarizes and concludes this work.

2. LORENZ FUNCTION AND THE
COMPLEMENTARY LORENZ FUNCTION

Let F be the distribution function of a non-negative random
variable X which represents the income distribution in a society.
The left-inverse of F is defined as F−1(q) � inf x{x ∈ X|F(x)≥ q}.
As long as the mean income μ � ∫∞

0
xdF(x) is finite, we obtain

an alternative representation of the mean: μ � ∫1

0
F−1(q)dq. The

function associated with the Lorenz curve is the Lorenz function,
defined as LF(p) � (1/μ)∫p

0
F−1(q)dq. The Lorenz function gives

the proportion of total income earned by the bottom 100p% of
the population for every given p ∈ [0, 1]. The advantage of this
definition of Lorenz function due to Ref. 19 is that it can be
applied to income distributions with both discrete and
continuous random variables. The Lorenz function thus
defined has the following properties: i) LF(p) is continuous,
non-decreasing and convex in p ∈ (0, 1) and, ii) LF(0) � 0,
LF(1) � 1 and LF(p)≤ p for all p ∈ (0, 1). Moreover, if there
exists p ∈ (0, 1) such that LF(p) � p, then for all p ∈ [0, 1],
LF(p) � p. If the Lorenz function LF(p) is differentiable in
the open interval (0, 1), then the slope of the Lorenz
function at any p ∈ (0, 1) is given by F−1(p)/μ. Let MF be the
median as a percentage of the mean. Then MF is given by the
slope of the Lorenz curve at p � 1/2, that is, MF � F−1(1/2)/μ.
Since many real life distributions of incomes are skewed to the
right, the mean often exceeds the median so that MF < 1. The
complementary Lorenz function is defined as L̂F(p) � 1 − LF(p).
It measures the proportion of the total income earned by the top
100(1 − p)% of the population. Therefore,

L̂F(p) :� 1 − LF(p) � 1 −
∫p
0

F−1(q)dq
μ

�
∫1
p

F−1(q)dq
μ

. (1)

It easily follows that L̂F(0) � 1, L̂F(1) � 0, and 0≤ L̂F(p)≤ 1 for
p ∈ (0, 1). Furthermore, L̂F(p) is continuous, non-increasing and
concave for p ∈ (0, 1).

Consider any egalitarian income distribution Fe where all
agents earn a common positive income so that the associated
Lorenz function is LFe(p) � p for all p ∈ (0, 1). Thus, we have a
case of perfect equality where every p% of the population enjoys
p% of the total income and the Lorenz curve coincides with the
diagonal line of perfect equality. In reality, we do not find any
society where all individuals have equal income. For all other
income distributions the Lorenz curve will lie below the
egalitarian line, that is below the Lorenz curve associated

with the Lorenz function LFe(.) for the egalitarian income
distribution Fe. Similarly, we also do not find a society
where one person has all the income, that is, an income
distribution FI such that LFI(p) � 0 for all p ∈ (0, 1).
Specifically, with complete inequality associated with the
income distribution FI , which is characterized by the
situation where only one agent has positive income and all
other persons have zero income, the Lorenz curve will run
through the horizontal axis until we reach the richest person
and then it rises perpendicularly (see Figure 1). Hence, for any
realistic income distribution of a society, Lorenz curve always
lie in between the perfect equality line and the perfect inequality
line. The Lorenz curve is quite useful because it shows
graphically how the actual distribution of incomes differs
not only from the perfect equality line associated with the
egalitarian income distribution Fe but also from the perfect
inequality line associated with the income distribution FI . The
Lorenz curve, complimentary Lorenz curve, perfect equality
and perfect inequality lines are shown in Figure 1 below, where
we plot the fraction of population from poorest to richest on the
horizontal axis and the fraction of associated income on the
vertical axis.

We provide some simple examples of Lorenz functions for
which the associated income distribution is a continuous random
variable.

• Uniform distribution: Consider a society where the income
distribution is uniform on some compact interval [a, b]with
0≤ a< b<∞ so that the probability density function is
fu(x) � 1/(b − a) and the distribution function is Fu(x) �
(x − a)/(b − a) for every x ∈ [a, b]. Since μu � (a + b)/2 and
F−1
u (q) � a + (b − a)q, we get

LFu(p) � 1
μu

∫p

0
{a + (b − a)q}dq � p[1 − (b − a)

(a + b) (1 − p)],
Observe that if a � 0, then we have LFu(p) � p2.

• Exponential distribution: Suppose the income distribution is
exponential so that the probability density function is given
by fE(x) � λe−λx with λ> 0 and the distribution function is
FE(x) � 1 − e−λx for any x ≥ 0. In this case μE � 1/λ and
F−1
E (q) � −(1/λ)ln(1 − q) implying

LFE(p) � ∫ p

0
− ln(1 − q)dq � −∫t�1

t�1−p
ln(t)dt

� p − (1 − p)ln( 1
1 − p

).
• Pareto distribution: Consider a society where the income

distribution is Pareto so that the density function is fP,α(x) �
α(m)α/(x)α+1 and the distribution function is FP,α(x) � 1 −
(m/x)α where m> 0 is the minimum income, α> 1 and the
density and distribution functions are defined for all x ≥m.
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In this case μP � αm/(α − 1) and F−1
P,α(q) � m(1 − q)− (1/α)

implying

LFP,α(p) � (α − 1)
α

∫p

0
(1 − q)− 1

αdq � [t(α−1)α ]t�1
t�1−p

� 1 − (1 − p)1− (1/α). (2)

Hence, if the income distribution is a continuous random variable
F, one can calculate the Lorenz function LF(p) and, using
L̂F(p) � 1 − LF(p), we can easily calculate the associated
complementary Lorenz function as well.

Example 1. Discrete random variable. To understand the
procedure for getting the Lorenz function for income
distribution given by discrete random variables, consider an
economy with G groups of people where each group
g ∈ {1, . . . ,G} has a total of ng ≥ 1 people with each person
within this group having the same income of xg and
also assume that 0≤ x1 </< xG. Define the total population
as N :� ∑g ∈ Gng and the total income of the economy as M :�∑g ∈ Gngxg so that the mean income for this society is
μG � M/N . This income distribution is a discrete random
variable X � {x1, . . . , xG} such that the probability mass
function is given by fG(xg) � ng /N for all g ∈ {1, . . . ,G} and
the distribution function is given by

FG(x) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if x ∈ [0, x1),{∑g
t�1nt}
N

, if x ∈ [xg , xg+1) for any given g ∈ {1, . . . ,G},
1, if x ≥ xG,

For each g ∈ {1, . . . ,G}, define N(g) :� ∑g
t�1nt/N , N(0) :� 0,

M(g) :� ∑g
t�1ntxt/M and M(0) :� 0. For any given

g ∈ {1, . . . ,G} and any qg ∈ (N(g − 1),N(g)], one can easily
verify that F−1

G (qg) � xg . Hence, using the Lorenz function
formula we have the following: For any given g ∈ {1, . . . ,G}
and any pg ∈ (N(g − 1),N(g)],

LFG(pg) � M(g − 1) + (pg − N(g − 1))(Nxg
M

). (3)

The following observations are helpful in this context.

(1) The Lorenz function LFG(p) is piecewise linear and, for each
g ∈ {1, . . . ,G − 1}, the point (N(g), LG(N(g)) � M(g)) on
the coordinate plane of the graph of the Lorenz curve is a
kink point.

(2) If G � 1 so that M � Nx1, N(1) � 1, then from Eq. 3 we get
LF1(p) � M(0) + (p − N(0))(Nx1/Nx1) � p for all
p ∈ (N(0),N(1)], that is, Lorenz curve is associated with
the egalitarian distribution and we have LF1(p) � LFe(p) � p
for all p ∈ (0, 1).

2.1. The Lorenz Function as a Measure of
Inequality
The Lorenz curve allows us to rank distributions according to
inequality and say that the country with Lorenz curve closer to the
perfect equality line has less inequality than the country with

Lorenz curve further away. Consider two societies with income
distributions given by the distribution functions Fa and Fb. If it so
happens that LFa(p)≤ LFb(p) for all p ∈ [0, 1], then clearly, the
society with income distribution Fa is more unequal compared to
the society having the income distribution Fb since for every
p ∈ (0, 1) the bottom 100 p% population has a weakly lower
percentage share of income under Fa than under Fb. Formally, for
any two income distributions Fa and Fb, we say that Fb Lorenz
dominates Fa if the Lorenz curve LFb(p) associated with the
income distribution Fb lies nowhere below that of Lorenz
curve LFa(p) associated with the income distribution Fa and at
some places (at least) lies above. Thus, we can think of
domination relation across pairs of Lorenz curves to infer
about inequality and, in particular, in a pairwise Lorenz curve
comparison, higher of the Lorenz curves are preferable. However,
if the Lorenz curves of the two distributions cross, then such an
unambiguous conclusion about inequality ordering cannot be
drawn. The next example provides such an instance of
intersecting Lorenz curves.

Example 2. Consider a society with four people and consider
the following income distribution. Person 1 and Person 2 has an
income of 20, Person 3 has an income of 30 and Person 4 has an
income of 50. We first try to think of a meaningful representation
of such an income distribution. Observe that if we draw a person
at random, then with 1/2 probability we will draw a person having
an income of 20, with 1/4 probability we will draw a person
having an income of 30 and with 1/4 probability we will draw a
person having an income of 50. Therefore, we have a probability
mass function of a random variable of three possible incomes
XA � {20, 30, 50} and the probability mass function is given by
fA(20) � 1/2, fA(30) � 1/4 and fA(50) � 1/4. Using Eq. 3, the
Lorenz function is given by

LFA(p) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2p
3
, if p ∈ (0, 1

2
],

6p − 1
6

, if p ∈ (1
2
,
3
4
],

5p − 2
3

, if p ∈ (3
4
, 1].

Similarly, consider a society with four people and consider the
following income distribution. Person 1 and Person 2 has an
income of 15, Person 3 has an income of 42 and Person 4 has an
income of 48. We have a probability mass function of a random
variable XB � {15, 42, 50} and the probability mass function is
given by fB(15) � 1/2, fB(42) � 1/4 and fB(48) � 1/4. Again,
using Eq. 3, the Lorenz function is given by

LFB(p) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
2
, if p ∈ (0, 1

2
],

28p − 9
20

, if p ∈ (1
2
,
3
4
],

8p − 3
5

, if p ∈ (3
4
, 1].

Now consider the income distribution FA and compare it with the
income distribution FB. Note that at p � 1/2, LFA(1/2) �
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1/3> LFB(1/2) � 1/4 and at p � 3/4, LFA(3/4) � 7/12< LFB
(3/4) � 3/5. Hence, given both LFA(p) and LFB(p) are
continuous in p ∈ [0, 1], the two Lorenz curves overlap and, in
particular, these two Lorenz curve intersects at p* � 17/24, that is,
at p* we have LFA(p*) � LFB(p*).

3. INEQUALITY INDICES IN DETAIL

3.1. The Kolkata Index
The k-index for any income distribution F is defined by the
solution to the equation kF + LF(kF) � 1. It has been proposed as
a measure of income inequality (see Refs. 2 and 3, and Ref. 1, for
more details). We can rewrite kF + LF(kF) � 1 as L̂F(kF) � kF
implying that the k-index is a fixed point of the complementary
Lorenz function. Since the complementary Lorenz function
maps [0, 1] to [0, 1] and is continuous, it has a fixed point.
Furthermore, since complementary Lorenz function L̂F(p)
is non-increasing, the fixed point is unique. Since for any F,
p*F :� L−1F (1/2)≥ 1/2 with the equality holding only if we have an
egalitarian income distribution, the unique fixed point of L̂F lies
in the interval [1/2, p*F] implying that for any distribution F,
kF ∈ [1/2, 1). Therefore, kF lies between 50% population
proportion and the population proportion p*F � L−1F (1/2) that
we associate with 50% income given the income distribution F.
Observe that if LF(p) � p, then kF � 1/2 and for any other
income distribution, 1/2< kF < 1. Also note that while the
Lorenz curve typically has only two trivial fixed points, that
is, LF(0) � 0 and LF(1) � 1, the complementary Lorenz function
L̂F(p) has a unique non-trivial fixed point kF .

The Pareto principle is based on Pareto’s observation (in the
year 1906) that approximately 80% of the land in Italy was owned
by 20% of the population. The evidence, though, suggests that the
income distribution of many countries fails to satisfy the 80/20 rule
(see Ref. 1). The k-index can be thought of as a generalization of the
Pareto principle. Note that LF(kF) � 1 − kF ; hence, the top
100(1 − kF)% of the population has 100(1 − (1 − kF)) �
100kF % of the income. Hence, the “Pareto ratio” for the
k-index is kF/(1 − kF). Observe, however, that this ratio is
obtained endogenously from the income distribution and in
general, there is no reason to expect that this ratio will coincide
with the Pareto principle. The fact that the k-index generalizes
Pareto’s 80/20 rule was first pointed out in Ref. 1 and later also in
Refs. 20 and 21.

• Uniform distribution. If we have the uniform distribution Fu
defined on [a, b] where 0≤ a< b<∞. Then

kFu �
−(3a + b) + �������������

5a2 + 6ab + 5b2
√

2(b − a) ,

KFu �
−2(a + b) + �������������

5a2 + 6ab + 5b2
√
(b − a) .

• Exponential distribution. For the exponential distribution
FE , the complementary Lorenz function is given by

L̂FE(p) � (1 − p)[1 + ln{1/(1 − p)}]. One can show that
kFEx0.6822 and hence KFEx0.3644.

• Pareto distribution. For the Pareto distribution FP,α, the
complementary Lorenz function is given
L̂FP,α(p) � (1 − p)1−(1/α). The k-index is therefore a
solution to (I) (1 − kFP)1−(1/α) � kFP . It is difficult to
provide a general solution to (I). However, we an
interesting observation in this context.

• If α̂ � ln5/ln4x1.16, then kF
P,̂α
� 0.8 and we get the Pareto

principle or the 80/20 rule. Also note that KF
P,̂α
� 0.6.

3.1.1. Discrete Random Variable
Consider any discrete random variable with distribution function FG
discussed in Example 1 for which the Lorenz function is given by Eq. 3.
To obtain the explicit form of the k-index one can first apply a simple
algorithm to identify the interval of the form [N(g − 1),N(g))
defined for g ∈ {1, . . . ,G} in which the k-index can lie.

Algorithm-A:
Step 1: Consider the smallest g1 ∈ {1, . . . ,G} such that

N(g1)≥ 1/2 and consider the sum N(g1) +M(g1).
If N(g1) +M(g1)≥ 1, then stop and
kFG ∈ (Ng1−1,N(g1)] and, in particular, kF � N(g1)
if and only if N(g1) +M(g1) � 1. Instead, if
N(g1) +M(g1)< 1, then go to Step 2 and consider
the group g1 + 1 and repeat the process.
«

Step t. We have reached Step t means that in Step (t − 1) we
had N(g1 + t − 1) +M(g1 + t − 1)< 1. Therefore,
consider the sum N(g1 + t) +M(g1 + t). If
N(g1 + t) +M(g1 + t)≥ 1, the stop and
kFG ∈ [N(g1 + t − 1),N(g1 + t)) and, in particular, kF �
N(g1 + t) if and only if N(g1 + t) +M(g1 + t) � 1. If
N(g1 + t) +M(g1 + t)< 1, then go to Step (t + 1).

Observe that since N(G) � M(G) � 1, if we have N(G − 1) +
M(G − 1)< 1 in some step, then, in the next step, this algorithm
has to end since N(G) +M(G) � 2> 1.

Suppose for any discrete random variable with distribution
function FG discussed in Example 1, Algorithm-A identifies
g* ∈ {1, . . . ,G} such that N(g*) +M(g*)≥ 1. If
N(g*) +M(g*) � 1, then kFG � N(g*) and if N(g*) +M(g*)> 1,
the kFG is the solution to the following equation:

kFG + {M(gp − 1) + (kFG − N(gp − 1))(Nxgp
M

)} � 1.

Thus, to derive the k-index of any discrete random variable with
distribution function FG discussed in Example 1, we first
identifying the group g* ∈ {1, . . . ,G} such that
kFG ∈ (N(g* − 1),N(g*)] (using Algorithm-A) and then, using
g*, we get the following value of kFG:

kFG �
⎧⎪⎪⎨⎪⎪⎩

N(g*), if N(g*) +M(g*) � 1,

μG + N(g*)xg* −M(g*)
μG + xg*

, if N(g*) +M(g*)> 1.
Remark 1. Consider the income distributions FA and FB

defined in Example 2. Recall that the Lorenz functions and
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LFB(p) are such that LFA(p)> LFB(p) for all p ∈ (0, 17/24) and
LFA(p)< LFB(p) for all p ∈ (17/24, 1). However, one can work
out that the k-indices for these distributions. Specifically, note
that for FA, N(1) � 1/2 and M(1) � 1/3 implying that N(1) +
M(1) � 1/6< 1 and N(2) � 3/4 and M(1) � 7/12 implying that
N(2) +M(2) � 4/3> . Hence, by Algorithm-A, kFA ∈ (1/3, 3/4)
and it is a solution to the equation kFA + (6kFA − 1)/6 � 1
implying that kFA � 7/12x0.58 _3 and hence the normalized
value is KFA � 1/6x0.1 _6. Similarly, for FB, N(1) � 1/2 and
M(1) � 1/4 implying that N(1) +M(1) � 3/4< 1 and N(2) �
3/4 and M(1) � 3/4 implying that N(2) +M(2) � 3/2> .
Hence, by Algorithm-A, kFB ∈ (1/2, 3/4) and it is a solution
to the equation kFB + (28kFB − 9)/20 � 1 implying that kFB �
29/48x0.6041 _6 and hence the normalized value is
KFB � 5/24x0.208 _3. Observe that kFA < kFB and hence
KFA <KFB implying that according to k-index as a measure
of income inequality, the income distribution FA is less
unequal than income distribution FB.

3.1.2. The Hirsch Index
The physicist Jorge E. Hirsch suggested this index to measure
the citation impact of the publications of a research scientist
(see Ref. 22). Let X � (x1, . . . , xm) be the set of research
papers of a scientist. Let f : X→N be the citation function
of the scientist. The citation function simply gives the
number of citations for each publication. Let X() �
(x(1), . . . , x(m)) be a reordering of the elements in the set X
such that f (x(1))≥ . . . ≥ f (x(m)). The Hirsch index, or the
h-index, is the largest number H* ∈ {0, 1, . . . ,m} such that
f (x(H*))≥H*. Note that if f (x(1)) � 0, then H* � 0, and, if
f (x(m))≥m, then H* � m and for all other cases
H* ∈ {1, . . . ,m − 1}.

If neither f (x(1)) � 0 nor f (x(m))≥m holds, then how do we
identify the h-index? To see this, suppose that we plot a graph
where on the x-axis we plot the ordered set of publications of a
research scientist in non-increasing order of citations and on the
y-axis we plot the number of citations for each publication.
Moreover, if we join the consecutive plotted points like f (x(t))
and f (x(t+1)) by a straight line for each t ∈ {1, . . . ,m − 1}, then we
get a curve representing a function ~f : [1,m]→ [f (x1), f (xm)],
defined on the domain [1,m] with co-domain [f (x1), f (xm)],
which we call the generated citation curve. The generated citation
curve is continuous, piecewise linear and has a non-positive slope
whenever the slope exists. The generated citation curve resembles
a lot like the complementary Lorenz curve that we can associate
with any income distribution. Consider the fixed point of the
generated citation curve ~f on the interval [1,m], that is, consider
~h ∈ [1,m] such that ~f (~h) � ~h. As long as there is at least one
citation and as long as all papers are not cited more than
(m − 1)-times, such a fixed point ~h exists and is unique with
the added property that ~h ∈ [1,m − 1]. Given this fixed point, we
can identify the relevant value of the h-index, that is,
Hp ∈ {1, . . . ,m} for f by the following procedure: If the fixed
point ~h is an integer, then it is the H* that we are looking for, that
is, ~h � H*. If, however, ~h is not an integer, then there exists an
integer ĥ such that ~f (x(̂h)) � f (x(ĥ))> ĥ and ~f (x(̂h+1)) �
f (x(̂h+1))< ĥ + 1 and then, the relevant value of the h-index

is ĥ � H*. Therefore, graphically, the procedure of obtaining
the h-index of any research scientist using the generated
citation curve is the same as identifying the fixed point of the
complementary Lorenz function of any income distribution that
yields the k index.

3.2. The Gini Index
The Gini index is the ratio of the area that lies between the line
of perfect equality and the Lorenz curve over the total area
under the line of perfect equality. If we plot cumulative share of
population from lowest income to highest income on the
horizontal axis and cumulative share of income on the
Vertical axis (as shown in Figure 1 above), then the Gini
index GF(p) of any income distribution F is given by
GF :� areaofAOCPA/areaofAOCBA. If all people have non-
negative income (or wealth, as the case may be), the Gini index
can theoretically range from 0 (complete equality) to 1 (complete
inequality); it is sometimes expressed as a percentage ranging
between 0 and 100. In practice, both extreme values are not quite
reached. The Gini index is given by the following formula:

GF �
∫1
0

(q − LF(q))dq
(1/2) � 2∫1

0

(q − LF(q))dq � 1 − 2∫1
0

LF(q)dq.
(4)

It is obvious that if LFe(p) � p for all p ∈ (0, 1), then GF � 0. If the
income distribution for a society with n people follows a Power
Law distribution, then LFn(p) � pn. The Gini index is then given
by GFn � {1 − 2/(n + 1)}. Hence, as n→∞, we have GF∞ � 1. Gini
index of some standard continuous random variable are provided
below.

• Uniform distribution: Consider uniform distribution on
some compact interval [a, b] with 0≤ a< b<∞. The Gini
index is given by

GFu � 2∫1
0

[q − q{1 − (b − a)
(a + b) (1 − q)}]dq � (b − a)

3(a + b)>KFu.

• Exponential distribution: Consider the exponential
distribution with distribution function given by FE(x) � 1 −
e−λx for any x ≥ 0 with λ> 0. The Gini index is given by

GFE � 2∫1
0

[q − LFE(q)]dq � 2∫1
0

(1 − q)ln( 1
1 − q

)dq � 1
2
>KFE.

• Pareto distribution: For Pareto distribution given by the
distribution function is FP,α(x) � 1 − (m/x)α with m> 0 as
the minimum income and α> 1, the Gini index is given by

GFP,α � 2∫1
0

[q − {1 − (1 − q)1− 1
α}]dq � 1

2α − 1
.
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If we plot the Gini index for different values of α> 1, then
note that as α increases the Gini index decreases, and, as α→ 1
we have GFP,α → 1. Also note that if α̂ � ln5/ln4, then
GF

P,̂α
x0.7565>KF

P,̂α
� 0.6.

3.2.1. Discrete Random Variable
Consider the discrete random variable FG discussed in Example 1
for which the Lorenz function is given by Eq. 3. As show in
Appendix A, we have the following explicit form of the
Gini index.

GFG �
∑G
g�1

∑G
t�1

ntng

∣∣∣∣xt − xg
∣∣∣∣

2NM
, (5)

Note that if ng � 1 for all g ∈ {1, . . . ,G} so that G � N and
M � ∑N

g�1xg , then from Eq. 5 it follows that

GFN �
∑N
g�1

∑N
t�1

∣∣∣∣xt − xg
∣∣∣∣

2N ∑N
g�1

xg

. (6)

Remark 2. Consider the income distributions FA and FB defined
in Example 2. One can work out that the Gini indices are GFA �
KFB � 5/24x0.208 _3>KFA and GFB � 21/80 � 0.2625> KFB.
Hence, like the normalized k-index, according Gini index
the income distribution FA is less unequal than income
distribution FB.

3.3. The Pietra Index
An interesting index of inequality is the Pietra index (see Pietra
[17]) that tries to identify that proportion of total income that
needs to be reallocated across the population in order to achieve
perfect equality. Given any income distribution F, this proportion
is given by the maximum value of p − LF(p). Therefore, the Pietra
index is PF � maxp ∈ [0,1](p − LF(p)). It is immediate that if
LF(p) � p for all p ∈ [0, 1], then KF � PF � GF � 0. For any
other income distribution F, the maximum distance between
the perfect equality line and the Lorenz curve is the distance OP in
Figure 1 above. Note that for any random variable X with
distribution function F, p − LF(p) � p − (∫p

0
F− 1(q)dq)/μ �∫p

0
{μ − F−1(q)dq}/μ. Therefore, maximizing (p − LF(p)) by

selecting p ∈ [0, 1] is equivalent to maximizing the area ∫p

0
{μ −

F−1(q)}dq by selecting p ∈ [0, 1]. Since the Lorenz curve plots the
percentage of total income earned by various portions of the
population when the population is ordered by the size of their
incomes, it is obvious that {μ − F−1(q)}> 0 for all q ∈ [0, F(μ)), {μ −
F−1(q)}< 0 for all q ∈ (F(μ), 1] and {μ − F−1(q)} � 0 at q � F(μ).
Thus, it follows that the maximum value of the integral ∫p

0
{μ −

F−1(q)}dq is attained at p � F(μ). Hence, the Pietra index for any
random variable with distribution function F is

PF � max
p ∈ [0,1]

(p − LF(p)) � F(μ) − LF(F(μ)). (7)

• Uniform distribution: For the uniform distribution on some
compact interval [a, b] with 0≤ a< b<∞, we have p −

LFu(p) � (b − a)p(1 − p)/(a + b) for all p ∈ [0, p].
Moreover, μu � (a + b)/2 and as a result Fu(μu) � 1/2.
Hence, the Pietra index is given by

PFu � (b − a)
(a + b)Fu(μu)(1 − Fu(μu)) � (b − a)

4(a + b),

Given GFu � (b − a)/3(a + b), we have PFu � (3/4)GFu <GFu.
Moreover, one can easily check that PFu >KFu.

• Exponential distribution: For the exponential distribution
FE(x) � 1 − e−λx defined for any x ≥ 0 with λ> 0, we have
p − LE(p) � (1 − p)ln(1/(1 − p)) for all p ∈ [0, 1]. We also
have μE � 1/λ and hence FE(μE) � 1 − e−1. The Pietra index
is given by

PFE � (1 − FE(μE))ln( 1
1 − FE(μE)) � 1

e
,

Observe that KFEx0.3644<PFE � 1/ex0.3679<GFE � 1/2.

• Pareto distribution: For Pareto distribution given by the
distribution function is FP,α(x) � 1 − (m/x)α with m> 0 as
the minimum income and α> 1, we have p − LP(p) �
(1 − p)1− (1/α) − (1 − p) for all p ∈ [0, p], μP � αm/(α − 1)
and FP,α(μP) � 1 − {(α − 1)/α}α. The Pietra index is given by

PFP,α � (1 − FP(μP))1− (1/α)−(1−FP(μP))�(α−1)α− 1αα
,

One can verify that PFP,α <GFP � 1/(2α − 1) for all α> 1. Also note
that if α̂ � ln5/ln4, then GF

P,̂α
x0.7565>PF

P,̂α
x0.626655>KF

P,̂α
�

0.6.
As shown in Appendix B(i), there is an alternative

representation of the Pietra index as the ratio of the mean
absolute deviation of the income distribution and twice its
mean, that is, PF � E(|x − μ|)/2μ.

3.3.1 Discrete Random Variable
Consider the discrete random variable FG discussed in Example 1
for which the Lorenz function is given by Eq. 3. It is shown in
Appendix B(ii) that the Pietra index has the following
representations:

PFG �
∑~g
g�1

ng(μG − xg)
M

� E(∣∣∣∣x − μG
∣∣∣∣)

2μG
, (8)

where ~g ∈ {1, . . . ,G − 1} is such that μG ∈ [x~g , x~g+1) implying that
FG(μG) � N(~g).

Remark 3. Consider the income distributions FA and FB
defined in Example 2. Observe that for both FA and FB the
mean is the same and, in particular μA � μB � 30. Therefore,
FA(μA) � 3/4 and LFA(μA) � 7/12 implying
PFA � KFA � 1/6x0.1 _6<GFA, and, we also have FB(μB) � 1/2
and LFB(μA) � 1/4 implying PFB � 1/4 � 0.25 ∈ (KFB,GFB).
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Thus, PFA <PFB and hence, like the ordering with the k-index as
well as the Gini index, according to the Pietra index, the income
distribution FA is less unequal than income distribution.

4. COMPARING THE MEASURES

4.1. Rich-Poor Disparity
The Gini index, as is well-known, measures inequality by the area
between the Lorenz curve and the line of perfect equality. For any
p ∈ [0, 1], one can decompose the Gini index into three parts: two
representing the within-group inequality and one representing
the across-group inequality. In Figure 2 below, the unshaded area
bounded by the Lorenz curve and the line from (0, 0) to
(p, LF(p)) is the within-group inequality of the poor. It
represents the extent to which inequality can be reduced by
redistributing incomes among the poor. Similarly, the area
bounded by the Lorenz curve and the line segment from
(p, LF(p)) to (1, 1) represents the within-group inequality of
the rich. The shaded area represents the across-group inequality.
Easy computation shows that the extent of across-group
inequality between the bottom p × 100% and top is the
(across-group) disparity function DF(p) � (1/2)[p − LF(p)].
One can ask for what value of p is the across-group inequality
maximized? The answer is that this is maximized at the
proportion associated with the Pietra index given by
PF � F(μ) − LF(F(μ)). Hence, F(μ) is the proportion where
the disparity is maximized. Therefore, the Pietra index is that
fraction which splits the society into two groups in a way such
that inter-group inequality is maximized.

The discussion to follow shows that interpretation of the
k-index is different from that of the Pietra index. Let us divide

society into two groups, the “poorest”who constitute a fraction p of
the population and the “richest” who constitute a fraction 1 − p of
the population. Given the Lorenz curve LF(p), we look at the
distance of the “boundary person” from the poorest person on the
one hand and the distance of this person from the richest person on

the other hand. These distances are given by
����������
p2 + LF(p)2

√
and�������������������

(1 − p)2 + (1 − LF(p))2
√

, respectively. Then, the k-index divides

society into two groups in a manner such that the Euclidean
distance of the boundary person from the poorest person is equal to
the distance from the richest person.

The value of the disparity function at the k-index is
DF(kF) � kF − 1/2. It measures the gap between the proportion
kF of the poor from the 50 − 50 population split. As long as we do
not have a completely egalitarian society, kF > 1/2 and hence it is
one way of highlighting the rich-poor disparity with kF defining the
income proportion of the top (1 − kF) proportion of the rich
population. In terms of disparity, the Gini index and Pietra index
do not have as nice an interpretation.

4.2. Comparison of Magnitudes
To compare the k-index with other measures of inequality we
will use the normalized k-index which is given by KF :� 2kF − 1.
The normalized k-index was first introduced in Ref. 20 and was
called the “perpendicular-diameter index” (see Refs. 20, 21, 23).
For all income distributions used till the previous section we
found that given any F, the value of the normalized k index is no
more than the value of the Pietra index and the value of the
Pietra index is no more than the value of the Gini index. This is

FIGURE 2 | Rich-poor disparity assuming that the poor are p% of the
population. The blue-shaded area is the disparity among the poor, the green-
shaded area is the disparity among the rich, and the grey-shaded area is the
disparity between the rich and the poor.

FIGURE 3 | The Lorenz curve as an arc of a unit circle. Here, the
normalized k-index and Pietra index are equal but different from the Gini index:
KFR � PFR � ��

2
√ − 1<G � π/2 − 1 .
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not just a coincidence. It was established in Ref. 3 that for any
income distribution F, we have KF ≤PF ≤GF . It is obvious that
since the Pietra index maximizes p − LF(p), it is obvious that
KF � 2kF − 1 � kF − LF(kF)≤PF . Moreover, in Ref. 3, it was also
established that for any given distribution F and any p ∈ [0, 1],
p − LF(p)≤GF and hence, using this result, it follows that
maxp ∈ [0,1]{p − LF(p)}≤GF and hence we get PF ≤GF .

We first provide an example where the normalized k-index
coincides with the Pietra index. This example is taken from Ref. 3.
Let us consider an arc of a unit circle ODB as a Lorenz curve where
OB is one of the diagonal (egalitarian line) of the unit square ABCO
(as shown in Figure 3) where CD represents the unit radius of the
circle, CA is the other diagonal of the unit square ABCO � �

2
√

.
In this case the Lorenz curve is, LFkg(p) � 1 − �����

1 − p2
√

where Fkg
is the relevant income distribution. One can verify that
KFkg � PFkg �

�
2

√ − 1x0.4142<GFkg � (π/2) − 1x0.571. Hence,
the Gini index is larger than the Pietra index and the
normalized k-index. Also in this case the maximum distance
between perfect equality line and the Lorenz curve is at
kFkg � F(μkg) � 1/

�
2

√
, hence Pietra index coincides with the

normalized k-index.
The Lorenz function LF(p) is symmetric if for all p ∈ [0, 1],

LF(L̂F(p)) � 1 − p or equivalently LF(p) + rF(p) � 1, where
rF(p) � L−1F (1 − p). The idea of symmetry is explained in
Figure 4. One can verify that the Lorenz function LFkg(p) � 1 −�����
1 − p2

√
is symmetric. It was proved in Banerjee, Chakrabarti,

Mitra, and Mutuswami [3] that, in general, if the Lorenz function
is symmetric and differentiable, then the proportion F(μ)
associated with the Pietra index coincides with the proportion
kF of the k-index. Hence, we also have KF � PF .

The next example is one where the Pietra index coincides with
the Gini index. This example is taken from Eliazar and Sokolov
[18]. Fix any fraction x0 ∈ (0, 1) and consider the following
Lorenz function:

LFpg(p) �
⎧⎪⎪⎨⎪⎪⎩

0 if p ∈ [0, x0],(p − x0)
(1 − x0), if p ∈ (x0, 1].

(9)

Figure 5 depicts this Lorenz function LFpg(.) and in particular
the curve OBA represents this Lorenz curve. One can show that
x0/2 − x0 � KFpg <PFpg � GFpg � x0. Hence, the Gini index
coincides with Pietra and the normalized k-index has a lower
value. Therefore, from this example we can say that k-index has
different features relative to both the Gini index and the
Pietra index.

Finally, when does all the three indices coincide? It was
established in Ref. 3 that all three measures will coincide if
and only if the Lorenz function has the following form defined
for any given C ∈ [1/2, 1):

LC(p) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − C
C

)p if p ∈ [0,C],
(1 − C) + C

(1 − C) (p − C) if p ∈ (C, 1 .] (10)

In Figure 6, the straight lines OQ and QB taken together
represents the Lorenz curve for LC(.). One can verify that

FIGURE 4 | Lorenz curve for which Pietra index and normalized k-index
are equal. The similarity holds only when for all p ∈ [0, 1], AB � CD, where
A ≡ (p, LF(p)),B ≡ (p,0),C ≡ (L−1F (1 − p), (1 − p)) and D ≡ (1, 1 − p) . FIGURE 5 | A Lorenz curve depicting two groups, one with no income

and the other where all agents have the same income. The Gini index and the
Pietra index are equal but different from the normalized k-index: G � P �
x0 >K .
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KFC � PFC � GFC � 2C − 1, (11)

Observe that, if C � 1/2, then we have LF0.5(p) � LFe(p) � p for all
p ∈ (0, 1) and in that case the three indices also coincide since
GFe � PFe � KFe � 0.

It is clear that the Lorenz functions of the form LFC(.) with
C ∈ (1/2, 1) is valid for any society having two income groups.
Therefore, a natural question in this context is the following:
What does the coincidence of the three measures mean in
terms of discrete random variables? For any discrete random
variable FG such that G � 2, we have N � n1 + n2, M � n1x1 +
n2x2 with x1 < x2 and the associated Lorenz function has the
following form:

LF2(p) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(n1 + n2)x1p
n1x1 + n2x2

, if p ∈ (0, n1
n1 + n2

],
n1x1

n1x1 + n2x2
+ ((n1 + n2)x2

n1x1 + n2x2
)(p − n1

n1 + n2
), if p ∈ ( n1

n1 + n2
, 1).
(12)

For the coincidence of all the three indices we first require that
C ∈ (1/2, 0) and C � n1/(n1 + n2) implying that n1 > n2.
Moreover, for the coincidence we also require C � kF2, that is,
C + LF2(C) � 1 which yields n21x1 � n22x2. Thus, from the above
discussion we have the following result.

• Consider any discrete random variable FG discussed in
Example 1 for which the Lorenz function is given by Eq.
3. The normalized k-index coincides with the Gini index
and the Pietra index if and only if any one of the following
conditions holds:

(C1) The society has all agents having the same income x1 > 0
so that LF1(p) � LFe(p) � p for all p ∈ (0, 1). For this case
we have, KF1 � PF1 � GF1 � 0.

(C2) The society has two groups of agents with one group of n1
agents having an income of x1 and another group of n2
agents having an income of x2 such that x1 < x2.
Moreover, the Lorenz function is LF2(p) given in Eq.
12 with the added restrictions that n1 > n2, n21x1 � n22x2
and hence n1x1 < n2x2. For this case we have, KF2 �
PF2 � GF2 � 2kF2 − 1 � (n1 − n2)/(n1 + n2).

5. RANKING LORENZ FUNCTIONS

Consider the uniform income distribution Fu defined on any
compact interval [0, b] with b> 0. The Lorenz function is given
by LFu(p) � p2 for all p ∈ [0, 1] (see Figure 7). Here kFu is the
reciprocal of the Golden ratio, that is, kFu � ( �

5
√ − 1)/2 � 1/ϕ

where ϕ � ( �
5

√ + 1)/2x0.61803 is the Golden ratio. Moreover,
KFu �

�
5

√ − 2x0.23607. Similarly, one can derive that the Gini
index is GFu � 1/3 and the Pietra index is PFu � 1/4 with
μu � 1/2. Hence, we have GFu � 1/3>PFu � 1/4>
KFu �

�
5

√ − 2. Similarly, consider the Pareto distribution FP,α
with parameter value α � 2. The Lorenz function is given by
LFP,2(p) � 1 − ����

1 − p
√

so that L̂FP,2(p) �
����
1 − p

√
and the k-index is

again the reciprocal of the Golden ratio, that is, kFP,2 � 1/ϕ and
KFP,2 �

�
5

√ − 2 (see Figure 7). Thus, according to the
normalized k-index, a society with an income distribution Fu
is equivalent to a society with an income distribution of FP,2 in
terms of inequality. One can verify that this equivalence
between Fu and FP,2 is also preserved under the Gini index

FIGURE 7 | Two Lorenz curves with identical Gini, Pietra and normalized
k-indices. The blue curve is LFu(p) � p2 and the red curve is LFP,2(p) � 1 −�����
1 − p

√
.

FIGURE 6 | A Lorenz curve depicting two groups with equally distributed
incomes but differing average incomes. The Gini, Pietra and normalized k
indices are all equal here: KFC � PFC � GFC � 2kF − 1 .
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and the Pietra index. Specifically, we have GFP,α � GFu � 1/3
and PFP,2 � PFu � 1/4 though μP,2 � 3/4> μu � 1/2. Hence,
we have

GFP,α � GFu � 1/3>PFP,2 � PFu � 1/4>KFP,α � KFu �
�
5

√ − 2.

Consider the income distributions FA and FB defined in
Example 2. From Remark 1 it follows that KFA <KFB, from
Remark 2 it follows that GFA <GFB and from Remark 3 it also
follows that PFA <PFB. Therefore, all the three measures
unambiguously assures that the society with income
distribution FA is less unequal that the society with income
distribution FB.

Given the above examples of this section, one may be tempted
to think that ranking Lorenz functions using these three measures
always gives the same order, that is, if one measure shows that the
income distribution F is equivalent to another income
distribution F′ in terms of inequality, then the other two
measures will also give the same result, and, if one measure
shows that the income distribution F is less unequal than the
income distribution F′, then also the other two measures will
establish the same order. However, as argued in Ref. 3, this is not
the case. To establish this point [3] provided the following two
examples.

In the first example the following Lorenz functions were
considered to establish that the normalized k-index yields a
different ranking from the Pietra index.

LFa(p) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3p
4
, if p ∈ [0, 1/3],

9p − 1
8

, if p ∈ (1/3, 1].

LFb(p) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

8p
9
, if p ∈ [0, 7/8],

16p − 7
9

, if p ∈ (7/8, 1].

One can show that KFa � KFb � 1/7<PFa � 1/12<PFb � 7/72,
that is, according to the normalized k-index, the society with
income distribution Fb is equivalent to the society with
income distribution Fb in terms of inequality. However,
according to the Pietra index, the society with income
distribution Fa is less unequal than the society with
income distribution Fb.

In the second example, two Lorenz functions were considered
of which the first one is the standard uniform distribution defined
on any compact interval of the form [0, b] with b> 0, that is,
LFu(p) � p2 for all p ∈ [0, 1]. The other Lorenz function has the
following form:

LFS(p) �
⎧⎪⎪⎨⎪⎪⎩

p2 if p ∈ [0, 3/4],

1 − (7(1 − p)
4

) if p ∈ (3/4, 1].

KFu � KFS � 2/ϕ − 1<GFS � 21/64<GFu � 1/3. This example
demonstrates an important difference between KF and GF .
The Gini index is affected by transfers within a group. In
particular, the poor are unaffected but the rich (lying in the

interval [3/4, 1)) have become more egalitarian while moving
from LFu to LFS. The normalized k-index on the other hand is
unaffected with such intra-group transfers. Therefore, if we
are interested in reducing inequality between groups, then
the normalized k-index is a better indicator than the
Gini index.

6. NUMERICAL OBSERVATIONS

For the purpose of comparison between different inequality
indices, we present in Table 1, the estimated values of the
Gini and k-indices for the income distributions in some
countries for the period 1963–1983. Tables 2 and 3 give the
estimated values of these indices along with the Pietra index for
citations, for different institutions and universities across the
world observed in different years. Table 4 also shows the
comparison between Gini, Pietra and k for inequalities in
paper citations for various science journals. All the tables are
taken from Ref. 1.

In Ref. 1 it was observed that Eq. 11 is an approximate result
and can differ for large values of G and k. Furthermore, the value
of k corresponds to an upper limit beyond which the distribution
follows a power law pattern, similar to the celebrated Pareto law

TABLE 1 | The Gini and k-indices for the income distributions of various countries,
1963–1983.

Country Gini index k-index

Brazil 0.62 0.73
Denmark 0.36 0.63
India 0.45 0.66
Japan 0.31 0.61
Malaysia 0.50 0.68
New Zealand 0.37 0.63
Panama 0.44 0.66
Sweden 0.38 0.64
Tunisia 0.50 0.69
Uruguay 0.49 0.68
Columbia 0.55 0.70
Finland 0.47 0.67
Indonesia 0.44 0.65
Kenya 0.61 0.73
Netherlands 0.44 0.66
Norway 0.36 0.63
Sri Lanka 0.40 0.65
Tanzania 0.53 0.70
United Kingdom 0.36 0.63
Australia 0.34 0.62
Canada 0.34 0.62
Netherlands 0.31 0.61
Norway 0.31 0.61
Sweden 0.29 0.60
Switzerland 0.38 0.63
Germany 0.31 0.61
United Kingdom 0.34 0.62
United States 0.36 0.63

The maximum error bar in estimated Gini and k values is x0.01 [Adapted from Ref. 1].
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[24]. For the inequality in citation data, if n is the fraction of
papers andw is the cumulative fraction of citations, then for n≥ k,
1 − w ∼ (1 − n)α with α � 0.50 ± 0.10 which implies n � 1 −
cp(1 − w)] for ] � 2.0 ± 0.5 and c is a proportionality constant.
This is illustrated in Figures 8 and 9.

7. SUMMARY AND DISCUSSION

For the nonlinear Lorenz function (LF(p)), the traditional
measures like Gini index measures some “average property”,
while the Kolkata index (k) identifies the non-trivial fixed
point of the complementary Lorenz function (L̂F(p) �
1 − L(p); note that LF(p) has trivial fixed points at p � 0 and
1, while L̂F(p) has a nontrivial fixed point at p � k). This k-index

TABLE 2 | The Gini coefficient, Pietra and k-indices for citations (up to December
2013) of the papers published from different universities as obtained from ISI
web of science.

Inst./Univ Year Total
papers

Citations Gini
index

Pietra
index

k-index

Melbourne 1980 866 16,107 0.67 0.51 0.75
1990 1,131 30,349 0.68 0.50 0.75
2000 2,116 57,871 0.65 0.49 0.74
2010 5,255 63,151 0.68 0.50 0.75

Tokyo 1980 2,871 60,682 0.69 0.52 0.76
1990 4,196 108,127 0.68 0.51 0.76
2000 7,955 221,323 0.70 0.53 0.76
2010 9,154 91,349 0.70 0.52 0.76

Harvard 1980 4,897 225,626 0.73 0.55 0.78
1990 6,036 387,244 0.73 0.55 0.78
2000 9,566 571,666 0.71 0.54 0.77
2010 15,079 263,600 0.69 0.52 0.76

MIT 1980 2,414 101,929 0.76 0.59 0.79
1990 2,873 156,707 0.73 0.56 0.78
2000 3,532 206,165 0.74 0.56 0.78
2010 5,470 109,995 0.69 0.51 0.76

Cambridge 1980 1,678 62,981 0.74 0.56 0.78
1990 2,616 111,818 0.74 0.56 0.78
2000 4,899 196,250 0.71 0.54 0.77
2010 6,443 108,864 0.70 0.52 0.76

Oxford 1980 1,241 39,392 0.70 0.53 0.77
1990 2,147 83,937 0.73 0.56 0.78
2000 4,073 191,096 0.72 0.54 0.77
2010 6,863 114,657 0.71 0.53 0.76

The number of papers and citations give an idea of the data size involved in the analysis
[Adapted from Refs. 1 and 2].

TABLE 3 | The Gini, Pietra and k-indices for citations (up to December 2013) of the
papers published from different Indian universities, as obtained from ISI web of
science [Adapted from Ref. 1].

Inst./
Univ

Year Total
papers

Citations Gini
index

Pietra
index

k-index

SINP 1980 32 170 0.72 0.49 0.74
1990 91 666 0.66 0.47 0.73
2000 148 2,225 0.77 0.57 0.79
2010 238 1896 0.71 0.52 0.76

IISC 1980 450 4,728 0.73 0.56 0.78
1990 573 8,410 0.70 0.53 0.76
2000 874 19,167 0.67 0.50 0.75
2010 1,624 11,497 0.62 0.45 0.73

TIFR 1980 167 2024 0.70 0.52 0.76
1990 303 4,961 0.73 0.54 0.77
2000 439 11,275 0.74 0.55 0.77
2010 573 9,988 0.78 0.59 0.79

Calcutta 1980 162 749 0.74 0.56 0.78
1990 217 1,511 0.64 0.48 0.74
2000 173 2073 0.68 0.50 0.74
2010 432 2,470 0.61 0.45 0.73

Delhi 1980 426 2,614 0.67 0.49 0.75
1990 247 2,252 0.68 0.52 0.76
2000 301 3,791 0.68 0.51 0.76
2010 914 6,896 0.66 0.49 0.74

Madras 1980 193 1,317 0.69 0.53 0.76
1990 158 1,044 0.68 0.52 0.76
2000 188 2,177 0.64 0.47 0.73
2010 348 2,268 0.78 0.58 0.79

TABLE 4 | The Gini, Pietra and k-indices for citations (up to December 2013) of the
papers published from different journals, as obtained from ISI web of science
[Adapted from Ref. 1].

Journals Year Total
papers

Citations Gini
index

Pietra
index

k-index

Nature 1980 2,904 178,927 0.80 0.63 0.81
1990 3,676 307,545 0.86 0.72 0.85
2000 3,021 393,521 0.81 0.65 0.82
2010 2,577 100,808 0.79 0.63 0.81

Science 1980 1,722 111,737 0.77 0.60 0.80
1990 2,449 228,121 0.84 0.70 0.84
2000 2,590 301,093 0.81 0.66 0.82
2010 2,439 85,879 0.76 0.60 0.79

PNAS(USA) 1980 - - - - —

1990 2,133 282,930 0.54 0.39 0.70
2000 2,698 315,684 0.49 0.35 0.68
2010 4,218 116,037 0.46 0.33 0.66

Cell 1980 394 72,676 0.54 0.39 0.70
1990 516 169,868 0.50 0.36 0.68
2000 351 110,602 0.56 0.41 0.70
2010 573 32,485 0.68 0.51 0.75

PRL 1980 1,196 87,773 0.66 0.48 0.74
1990 1904 156,722 0.63 0.47 0.74
2000 3,124 225,591 0.59 0.43 0.72
2010 3,350 73,917 0.51 0.37 0.68

PRA 1980 639 24,802 0.61 0.45 0.73
1990 1922 54,511 0.61 0.45 0.72
2000 1,410 38,948 0.60 0.44 0.72
2010 2,934 26,314 0.53 0.38 0.69

PRB 1980 1,413 62,741 0.65 0.49 0.74
1990 3,488 153,521 0.65 0.48 0.74
2000 4,814 155,172 0.59 0.44 0.72
2010 6,207 70,612 0.53 0.38 0.69

PRC 1980 630 19,373 0.66 0.49 0.75
1990 728 15,312 0.63 0.46 0.73
2000 856 19,143 0.57 0.42 0.71
2010 1,061 11,764 0.56 0.40 0.70

PRD 1980 800 36,263 0.76 0.59 0.80
1990 1,049 33,257 0.68 0.52 0.76
2000 2061 66,408 0.61 0.45 0.73
2010 3,012 40,167 0.54 0.39 0.69

PRE 1980 — — — — —

1990 — — — — —

2000 2,078 51,860 0.58 0.42 0.71
2010 2,381 16,605 0.50 0.36 0.68
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apart from capturing the essential character of the nonlinear
Lorenz function (as inspired by the major developments of
renormalization group theory in statistical physics [14] or in
identifying the universal characters corresponding to the onset of
chaos in nonlinear systems [15]), also gives us a very tangible one,
giving that (1 − k) fraction of the population possess k fraction of
the total wealth in the society. In Ref. 25 the k-index is used to
define a generalized Gini index. In a recent study, the k-index has
been used to quantify the inequality for spreading of the Covid-19
infection in urban neighbourhoods and slums in a society (see
Ref. 26).

After a general introduction in Section 1, we discuss in
Section 2, some structural features of the Lorenz function and
introduce the Complementary Lorenz function, which has a
nontrivial fixed point (namely the Kolkata index) as
mentioned above. In Sections 3 and 4, we try to demonstrate
the uniqueness of the k-index, compared to Gini and Pietra
indices in ranking the rich-poor disparity, assuming some typical
income distributions. we have argued (in Section 3) that the
procedure of obtaining the h-index of any research scientist using

the generated citation curve is the same as identifying the fixed
point of the complementary Lorenz function of any income
distribution that yields the k index. While comparing the
normalized k-index with the Pietra index and with the Gini
index, one can show that for any given distribution the
normalized k-index is no more than the Pietra index and the
Pietra index is no more than the Gini index. We have also argued
(in Section 4.2) that for any given distribution the normalized
k-index, the Pietra index and the Gini index coincide only if either
the society is such that all agents have equal income or there are
only two income groups in a society with some added restrictions
(see condition C2 in this subsection). We have also argued (in
Section 5) that if we are interested in reducing inequality between
the rich and poor groups of the society, then the normalized
k-index is a better indicator than the Gini index. In Section 6, we
can see that while the Gini index value typically ranges from 0.30
to 0.62, the Kolkata index value ranges from 0.60 to 0.73 at any
particular time or year for income or wealth data across the
countries of the world. It may be mentioned here that income
inequality data are not easily available from reliable sources. On

FIGURE 8 | Illustration of the power law in the citation distributions for
Cambridge and MIT. Here, 1 − w ∼ (1 − n)α for n≥ k, with α � 0.50 ± 0.10
[Adapted from Ref. 1].

FIGURE 9 | Illustration of the power law in the citation distributions for
Nature and Science. Here, 1 − w ∼ (1 − n)α for n≥ k, with α � 0.50 ± 0.10
[Adapted from Ref. 1].
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the other hand, the (paper) citations may be considered as a
measure of the wealth created by the respective University or
Institution and the resulting inequality data are abundantly
available in accurate digital formats (say from the ISI Web of
Science). We estimated the Gini, Pietra, and Kolkata index values
for the citations earned by the yearly publications of various
academic institutions from such data sources. We find that while
Gini and Pietra index values range from 0.65 to 0.75 and 0.50 to
0.60, respectively, the Kolkata index remains around 0.75 ± 0.05
value for Institutions or Universities across the world. As
mentioned already, k-index is the social equivalent to the

h-index for an individual researcher or academician. Also we
find that the value for k-index gives an estimate of the crossover
point beyond which the growth of income (or citations) with the
fraction of population (or publications) enters a power law
(Pareto) region (see Figures 8 and 9).
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8. APPENDICES

8.1. Appendix A
We formally show that for the discrete random variable FG with
the Lorenz function is given by Eq. 3, the Gini index has the
following explicit form:

GFG �
∑G
g�1

∑G
t�1

ntng
∣∣∣∣xt − xg

∣∣∣∣
2NM

.

Observe first that

∫1
0

LFG(q)dq�∑G
g�1

⎧⎪⎪⎨⎪⎪⎩ ∫
N(g)

N(g−1)
LFG(pk)dpk

⎫⎪⎪⎬⎪⎪⎭

�∑G
g�1

⎧⎪⎪⎨⎪⎪⎩ ∫
N(g−1)

N g( ) {M(g −1)+(pg −N(g −1))(Nxg
M

)}dpg⎫⎪⎪⎬⎪⎪⎭

�−
∑G
g�1

∑g�1
t�1

ngnt(xg −xt)
NM

+
∑G
g�1

(2 ∑g−1
t�1

nt +ng)ntxg

2NM
.

(A1)

Thus, using 2∑G
g�1(∑g−1

t�1nt−∑G
t�g+1nt)ngxg �∑G

g�1∑G
t�1ngnt

∣∣∣∣xg −xt ∣∣∣∣
and using Eq. A1 we get

GFG � 1 − 2∫1
0

LFG(q)dq

� 1 −
∑G
g�1

(2 ∑g−1
t�1

nt + ng)ngxg
NM

+
2{ ∑G

g�1
∑g−1
t�1

ngnt(xg − xt)}
NM

�
∑G
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( ∑G
t�g+1
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+
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� −
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g�1
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g�1

ngnt
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+
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(A2)

Hence, from the last inequality in Eq. A2 the result follows.

8.2. Appendix B
8.2.1. Appendix B (i)
The following derivation shows whyPF � E(∣∣∣∣x − μ

∣∣∣∣)/2μ this is true.
PF � F(μ) − LF(μ)

� F(μ) − ∫F(μ)
0

F−1(q)dq
μ

�
∫F(μ)
0

{μ − F−1(q)}dq
μ

�
2 ∫F(μ)

0

{μ − F−1(q)}dq
2μ

�
∫F(μ)
0

{μ − F−1(q)}dq + ∫1
F(μ)

{F−1(q) − μ}dq
2μ

�
∫1
0

∣∣∣∣F−1(q) − μ
∣∣∣∣dq

2μ

� E(∣∣∣∣x − μ
∣∣∣∣)

2μ
.

(B1)

8.2.2. Appendix B (ii)
We formally show that for the discrete random variable FG with
the Lorenz function is given by Eq. 3, the Pietra index has the
following explicit form:

PFG �
∑~g
g�1

ng(μG − xg)
M

� E(∣∣∣∣x − μG
∣∣∣∣)

2μG
,

where ~g ∈ {1, . . . ,G − 1} is such that μG ∈ [x~g , x~g+1) implying that
FG(μG) � N(~g).

For the first equality, observe that there exists
~g ∈ {1, . . . ,G − 1} such that μG ∈ [x~g , x~g+1) implying that

FG(μG) � N(~g). Thus, using ∑G
g�1ng(xg − μG) � 0 and using

FG(μG) − N(~g) � 0 we get

PFG � FG(μG) − LFG(μG)
� FG(μG) −M(~g − 1) − {(FG(μG) − N(~g − 1))}(Nx~g

M
)

� FG(μG)(M − Nx~g
M

) − {M(~g − 1) − N(~g − 1)(Nx~g
M

)}

�
FG(μG)( ∑G

g�1
ng(xg − x~g))
M

+
∑~g
g�1

ng(x~g − xg)
M

�
∑G
g�1

ng(xg − μG)
M

+
∑~g
g�1

ng(μG − xg)
M

+ (FG(μG) − N(~g))N(μG − x~g)
M

�
∑~g
g�1

ng(μG − xg)
M

.

(B2)

Given Eq. B2 it follows that the Pietra index of the distribution FG
with μG ∈ [x~g , x~g+1) is

PFG �
∑~g
g�1

ng(μG − xg)
M

. (B3)

Given Eq. B3, we can also derive second equality by using
μG ∈ [x~g , x~g+1) and by using ∑~g

g�1ng(μG − xg) �∑n
g�~g+1ng(xg − μG). Specifically,

PFG �
∑~g
g�1

ng(μG − xg)
M

�
∑~g
g�1

ng(μG − xg) + ∑G
g�~g+1

ng(xg − μG)
2M

�
∑G
g�1

(ng /N)∣∣∣∣xg − μG
∣∣∣∣

2(M/N)

� E(∣∣∣∣x − μG
∣∣∣∣)

2μG
.

(B4)
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