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We review various theoretical methods that have been used in recent years to calculate
dynamical correlation functions of many-body systems. Time-dependent correlation
functions and their associated frequency spectral densities are the quantities of
interest, for they play a central role in both the theoretical and experimental
understanding of dynamic properties. In particular, dynamic correlation functions
appear in the fluctuation-dissipation theorem, where the response of a many-body
system to an external perturbation is given in terms of the relaxation function of the
unperturbed system, provided the disturbance is small. The calculation of the relaxation
function is rather difficult in most cases of interest, except for a few examples where exact
analytic expressions are allowed. For most of systems of interest approximation schemes
must be used. The method of recurrence relation has, at its foundation, the solution of
Heisenberg equation of motion of an operator in a many-body interacting system. Insights
have been gained from theorems that were discovered with that method. For instance, the
absence of pure exponential behavior for the relaxation functions of any Hamiltonian
system. The method of recurrence relations was used in quantum systems such as dense
electron gas, transverse Ising model, Heisenberg model, XY model, Heisenberg model
with Dzyaloshinskii-Moriya interactions, as well as classical harmonic oscillator chains.
Effects of disorder were considered in some of those systems. In the cases where
analytical solutions were not feasible, approximation schemes were used, but are
highly model-dependent. Another important approach is the numericallly exact
diagonalizaton method. It is used in finite-sized systems, which sometimes provides
very reliable information of the dynamics at the infinite-size limit. In this work, we discuss the
most relevant applications of the method of recurrence relations and numerical
calculations based on exact diagonalizations. The method of recurrence relations relies
on the solution to the coefficients of a continued fraction for the Laplace transformed
relaxation function. The calculation of those coefficients becomes very involved and, only a
few cases offer exact solution. We shall concentrate our efforts on the cases where
extrapolation schemes must be used to obtain solutions for long times (or low frequency)
regimes. We also cover numerical work based on the exact diagonalization of finite sized
systems. The numerical work provides some thermodynamically exact results and
identifies some difficulties intrinsic to the method of recurrence relations.
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1 INTRODUCTION

Dynamical correlation functions are central to the understanding
of time-dependent properties of many-body systems. They
appear ubiquitously in the formulation of the fluctuation-
dissipation theory, where the response of a system to a weak
external perturbation is cast in terms of a time-dependent
relaxation function of the unperturbed system [1, 2].

In this article, we are concerned with the recent calculations of
such correlation functions. We shall cover two lines of approach,
namely the method of recurrence relations and the method of
exact diagonalization.

The method of recurrence relations was developed in the early
1980s [3–7] following the ideas of the Mori-Zwanzig projection
operator formalism [8, 9]. Essentially one solves the Heisenberg
equation of motion for an operator of an interacting system, from
which one obtains dynamic correlation functions, a generalized
Langevin equation, memory functions, etc. Review articles found
in the literature cover the earlier developments [10–12].

On the other hand, exact diagonalization methods have also
been used in several areas of physics [13–17]. In this method one
numerically determines the eigenvalues and eigenfunctions of a
given Hamiltonian of a finite system to find the dynamical
correlations of interest. The main drawback is that one is
bound by computer limitations and must deal with finite
systems. In addition, being a numerical method, it does not
provide any new general insight in the form of theorems, etc.
Nevertheless, one can obtain surprisingly good results which can
be readily extended to the thermodynamic limit. In a way, exact
diagonalization complements the method of recurrence relations,
especially when solutions become hard to obtain by analytic
means. Othertheoretical approaches can be found in Refs.
[18–26]. One can also find interesting developments in
experiments with cold atoms in optical lattices that mimic the
dynamics of some spin systems [27–30].

2 DYNAMICAL CORRELATION FUNCTIONS

Consider a system of N elements such as particles, spins, etc.,
governed by a time-independent Hamiltonian H, in thermal
equilibrium with a heat bath at temperature T. For two
dynamical variables X and Y of the system, the time-
dependent correlation function is given by the average:

〈Y(0)X(t)〉≡(1/Z)Tr [Y(0)X(t)exp(−βH)], (1)

where Tr[. . . ] denotes a trace over a complete set of states. Here,
β � 1/kBT is the inverse temperature, Z ≡ Tr exp(−βH) is the
canonical partition function, and X(t) is a time-dependent
operator in Heisenberg representation
X(t) � exp(iHt/Z)X exp(−iHt/Z), which satisfies:

iZ
dX(t)
dt

� [X(t),H], X(0) � X, (2)

where [X(t),H] is the quantum commutator.

In a classical system, the operators are replaced by classical
dynamic variables, the trace by integral over the phase space, and
the commutators by Poisson brackets.

For a given variable, the time-dependent correlation function
C(t) reads:

C(t) � 〈X(0)X(t)〉
〈X(0)X(0)〉 (3)

Its Fourier transform S(ω) is called the spectral density, or
frequency spectrum:

S(ω) � ∫ ∞

−∞
C(t)exp(−iωt)dt (4)

If we use the integral representation of the Dirac δ-function:

δ(t) � 1
2π

∫  ∞

−∞
exp(−iωt)dω, (5)

then we obtain

C(t) � 1
2π

∫ ∞

−∞
S(ω)exp(iωt)dω (6)

Since the Hamiltonian is time-independent, it follows that C(t) in
Eq. 3, has the property <X(0)X(t)> � < X(τ)X(t + τ)> .
If we take τ � −t, then < X(0)X(t)> � <X(−t)X(0)> .
Also, it follows that S(ω) is real. Due to the invariance of the trace
under cyclic permutations, one finds that
S(−ω) � exp(−βZω)S(ω). In the classical limit (Z � 0) or at
infinite temperature β � 1/kBT � 0, it follows that S(ω) is even
in ω. In general, the asymmetry in S(ω) is a typical quantum
feature, and is referred to as the detailed balance.

Dynamical correlation functions appear in the relaxation
function R(t) from linear response theory [2, 31]:

R(t) � ∫β

0
dλ< exp(λH)Y exp( − λH)X(t)>

− β<X > <Y >
(7)

where < . . . > is a canonical average, and X and Y are operators.
Time-dependent correlation functions appear in the

dynamical structure factor, are related to the inelastic neutron-
scattering cross section, where the neutron energy changes upon
the scattering process. For a system of interacting spins on a
lattice, the dynamic structure factor reads:

Sα(q,ω) � ∑
n

∫∞

−∞
dt exp[i(qn − ωt)]< Sαj (0)Sαj+n(t)> (8)

where S are spin variables and the sum runs over all the
lattice sites.

In light scattering experiments, the scattered intensity is given
by the differential cross section, proportional to:

I(k,ω) � ∫ ∞

−∞
dt exp(−iωt)<A†

k(0)Ak(t)> (9)

where the form of operatorA is system dependent. It also depends
on the the particular frequency of the incoming light.
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2.1 The Method of Recurrence Relations
The time evolution of a Hermitian operator A(t) is governed by
the Heisenberg equation:

dA(t)
dt

� iLA(t), (10)

where:

LA(t) ≡ HA(t) − A(t)H � [H,A(t)] (11)

Consider a time-independent and Hermitian Hamiltonian H.
From now on we will be using a system of units in which Z � 1.
We seek a solution to Eq. 10 for t ≥ 0, thus we set A(t) � 0 for
t < 0.
In the method of recurrence relations, the formal solution:

A(t) � exp(iHt)Aexp(−iHt) (12)

is cast as an orthogonal expansion in a realized Hilbert space S of
d dimensions. That Hilbert space S is realized by the scalar
product:

(X,Y) � β−1 ∫β

0
dλ〈X(λ)Y〉 − 〈X〉〈Y〉 (13)

where X, Y ∈ S, β is the inverse temperature,
X(λ) � exp(λH)X exp(−λH), and < . . . > denotes a canonical
ensemble average.

Thus, the time evolution of A(t) is written as:

A(t) � ∑d−1
]�0

a](t)f] (14)

where {f]} is a complete set of states in, while the time-dependence
is carried out by the coefficients a](t). The dimensionality d of the
realized Hilbert space S is still unknown, but it will be determined
later. If d turns out to be finite, the solutions are oscillatory
functions. However, in most interesting cases d is infinite. The
method of recurrence relations imposes constraints on which
type of solutions are admissible.

By choosing the basal vector f0 � A(0) � A, the remaining
basis vectors are obtained following the Gram-Schmidt
orthogonalization procedure, which is equivalent to the
recurrence relation:

f]+1 � iLf] + Δ]f]−1, ]≥ 0 (15)

with f1 ≡ 0, Δ0 ≡ 0. The quantity Δ] is defined as the ratio between
the norms of consecutive basis vectors:

Δ] � (f], f])(f]−1, f]−1) ]≥ 1 (16)

The Δ’s are referred to as the recurrants whereas Eq. 15 is termed
the first recurrence relation, or RRI. The time-dependent
correlation function C(t) is given by:

C(t) � <A(0)A(t)>
<A(0)A(0)> � (f0,A(t)) � a0(t) (17)

The basal coefficient a0(t) is just the time-dependent correlation
function.

The time-dependent coefficients a](t) obey a second
recurrence relation (RRII):

Δ]+1a]+1(t) � − _a](t) + a]−1(t) ]≥ 0, (18)

where _a](t) � da](t)/dt, and a−1 ≡ 0. It follows from Eq. 14 that
the initial choice f0 � A(0) implies a0 � 1 and a](0) � 0 for ]≥ 1.
Thus the complete time evolution of A(t) is obtained by the two
recurrence relations RRI and RRII. One should note that only in
very few cases a closed analytic solution to a model can be found.
More often, as in many-body problems, approximations are
required. A generalized Langevin equation can be derived for
A(t) [3, 4, 32]:

dA(t)
dt

+ ∫ t
0
dt ϕ(t − t)A(t) � F(t) (19)

where ϕ is the memory function and F(t) the random force. The
random force is given as an expansion in the subspace of S:

F(t) � ∑d−1
]�1

b](t)f], (20)

where the coefficients b] satisfy the convolution equation:

a](t) � ∫ t
0
dt′b](t − t′)a0(t′), ]≥ 1 (21)

The memory function ϕ(t) is ϕ(t) � Δ1b1(t). The remaining b]’s,
b2, b3, are the second memory function, the third memory
function, . . ., etc.

Consider now the Lapace transform a](z) of a](t):

a](z) � ∫ ∞

0
dt exp(−zt)a](t), Re z > 0 (22)

Then RRII can be transformed in the following way:

1 � a0(z) + Δ1a1(z), (23)

a]−1(z) � a](z) + Δ]+1a]+1(z), ]≥ 1 (24)

These equations can be solved for a0(z):
a0(z) � 1/(z + Δ1/(z + Δ2/z + . . .Δd−1/z)), (25)

resulting in a continued fraction. As can be seen from Eq. 14 and
the recurrence relation RRII, that the time-dependence actually
depends on the recurrants Δ] only. Therefore, the knowledge of
all recurrants provides the necessary means to obtain the time
correlation function. Moreover, the structure of RRII must be
obeyed by time correlation functions. Thus, a pure exponential
decay as well as special polynomials can be ruled out as
solutions, since their recursion relations are not congruent to
RRII. Also, from RRII one obtains (da0(t)/dt)|0 � 0, which
precludes a pure time exponential as well as other functions
that do not have zero derivative at t � 0. The method of
recurrence relations have since been applied to a variety of
problems, such as the electron gas [33–36], harmonic oscillator
chains [37–46], many-particle systems [47–50], spin chains
[51–66], plasmonic Dirac systems [67, 68], dynamics of
simple liquids [69, 70], etc.
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2.2 The Method of Exact Diagonalization
Given a system governed by a Hamiltonian H, one wishes to
numerically determine the time correlation function C(t),
defined by:

C(t) � <A(0)A(t)>
<AA> , (26)

where A(t) � exp(iHt)Aexp(−iHt), Z � 1, and the brackets
denote canonical averages. We consider here self-adjoint
operators A and the Hamiltonian H. One numerically
diagonalizes H and then uses its eigenvalues En and
eigenvectors |n> , H|n> � En|n> , to calculate C(t) in Eq. 26,
where:

<AA> � 1
Z
∑
n

exp( − βH)< n∣∣∣∣A2
∣∣∣∣n> , (27)

<A(0)A(t)> � 1
Z
∑
n,m

e−βEne−i(En−Em)
∣∣∣∣< n∣∣∣∣A∣∣∣∣m> 2,

∣∣∣∣ (28)

with the partition function Z � ∑nexp(−βEn). Notice that the
time correlation function is normalized to unity at t � 0, that is,
C(0) � 1.

Another quantity of interest is the moment μk, also referred to
as the frequency moments which can be obtained from the Taylor
expansion of C(t) about t � 0:

C(t) � ∑∞
k�0

(−1)k
(2k)!μ2kt

2k (29)

Since C(0) � 1, it follows that μ0 � 1. The moments are given by:

μ2k �
1
Z
Tr[e−βHAL2kA], (30)

where L is the Liouville operator, Eq. 11.
From the moments, one can use conversion formulas to obtain

the recurrants Δ’s of the method of recurrence relations from the
frequency moments [11]. Suppose the moments μ0 � 1 and μ2k,
k � 1, . . . ,K are known. The first K recurrants Δ] are determined
by the equations:

Δ] � μ(])2] , μ(])2k � μ(]−1)2k

Δ]−1
− μ(]−2)2k−2

Δ]−2
, , (31)

for k � ], ] + 1, . . . ,K and ] � 1, 2, . . . ,K , with μ
(0)
2k � μ2k,

Δ−1 � Δ0 � 1, μ(−1)2k � 0.s.
For instance, if the first moments μ0 � 1, μ2, μ4, . . ., μ10 are

given, the recurrences are obtained from Eq. 31:

Δ1 � μ2,
Δ2 � −μ2 + μ4/μ2,

Δ3 � μ4(μ4/μ2 − μ6/μ4)/μ2(μ2 − μ4/μ2),
Δ4 � −μ4/μ2 + μ6/μ4

−μ4(μ4/μ2 − μ6/μ4)/μ2(μ2 − μ4/μ2)+μ6(μ6/μ4 − μ8/μ6)/μ4(μ4/μ2 − μ6/μ4)
(32)

Conversely, suppose one has the first K known recurrants, Δ],
] � 1, 2, . . . ,K , and Δ−1 � Δ0 � 1. Then, the moments μ

(0)
2] � μ2]

are obtained from the following conversion formula:

μ(]−1)2k � Δ]−1μ
(])
2k + Δ]−1

Δ]−2
μ(]−2)2k−2 , (33)

for ] � k, k − 1, . . . , 1 and k � 1, 2, . . . ,K , with μ
(−1)
2k � 0.

In case the first recurrants Δ1, Δ2, . . ., Δ4, are known, the
moments μ are found to be:

μ0 � 1,

μ2 � Δ1,

μ4 � Δ1(Δ1 + Δ2),
μ6 � Δ1((Δ1 + Δ2)2 + Δ1Δ3),
μ8 � Δ1((Δ1 + Δ2)2 + Δ2Δ3)

×(Δ1 + Δ2 + Δ2Δ3

Δ1 + Δ2
+ Δ2Δ3

Δ3 + Δ4 + Δ2Δ3

Δ1 + Δ2

(Δ1 + Δ2)2 + Δ2Δ3
)

(34)

Typically, the analytical determination of the recurrants becomes
increasingly time consuming. In practice, only a few of them can
be obtained to be used in an extrapolation scheme to obtain
higher-order recurrants. Several extrapolation schemes have been
used. One of the simplest is to set the unknown recurrants to zero,
thus truncating the continued fraction for a0(z), which leads to a
finite number of poles in the complex plane [19]. In other
problems, it is most appropriate to introduce a Gaussian
termination, that is, a sequence of recurrants Δ] that grow
linearly with its index ν, Δ] � ]Δ [11, 51]. Other extrapolation
schemes are tailored to the problem at hand, especially if the
recurrants are not expected to grow indefinitely.

3 APPLICATIONS TO INTERACTING
SYSTEMS

The dynamics of spin chains has attracted a great deal of attention
in recent decades. Exact results for the longitudinal dynamics of
the one dimensional XY model have been obtained with the
Jordan-Wigner transformation [71]. Later, exact results for the
transverse time correlation functions of the XY and the transverse
Ising chain were obtained at the high temperature limit by using
different methods [51, 72–75].

A great deal of progress was achieved in the calculations of the
dynamic correlation functions of spin models in one dimension.
It was soon recognized that exact solutions using the method of
recurrence relations were difficult to obtain, however a notable
exception is the classical harmonic oscillator chain where the time
correlation functions were obtained exactly [37].

The problem of a mass impurity in the harmonic chain was
solved later, and its dynamical correlation functions were found
to have the same form as in the quantum electron gas in two
dimensions, thus showing that unrelated quantities in these two
models displayed the same dynamical behavior, that is, the have
dynamic equivalence [76]. It should be mentioned that
harmonic oscillator chains have been the subject of a
considerable amount of work with the method of recurrence
relations [38–46].
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The method of recurrence relations provides important
insights on how to proceed to obtain reliable approximate
solutions. The cornerstone quantity in the dynamics is the
recurrant, which is the only quantity that ultimately
determines the dynamics of the model. Often it is only
possible to determine a few of the recurrants analytically. The
calculations become too lenghty so that one must stop at a given
order. Thus, an extrapolation method must be devised for the
higher order recurrants, which hopefully will have the essential
ingredients to produce reliable time-dependent correlation
functions for longer times as well as spectral densities with the
expected behavior near the origin ω � 0[49, 62, 77, 78].

The dynamics of the transverse Ising model in two dimensions
was studied with the method of recurrence relations [79–82]. The
dynamic structure factor of that model compares well to the
experimental data of the compound LiTbF4 [83].

The dynamics of spin ladders has also attracted interest from
researchers. The dynamical correlation functions were obtained
for a two-leg spin ladder with XY interaction along each leg and
interchain Ising couplings in a random magnetic field. More
recently, the dynamics of a ladder with Ising couplings in the legs
and steps as well as four-spin plaquette interactions in a magnetic
field [84] have been also investigated.

The dynamical correlations of the Heisenberg model in one
dimension have been have been a subject of great interest in the
recent decades [13–15, 22, 85]. The method of recurrence
relations has been employed in various works [86–92]. In spite
of the progress made thus far, the long-time dynamics of the
Heisenberg spin model is still an open problem. For instance,
there is the standing problem on the power law exponent
α> 0( ∼ t−α) of the time correlation function as t→∞. From
the work of Fabricius et al. [15], we find that the time correlation
functions of the Heisenberg model decay more slowly than that in
the XY model, for which the exact solution is known, C(t) ∼ t−1
for large t. Thus we infer that the numerical evidence suggests that
α≥ 1 for the Heisenberg model.

There has been a great deal of work that uses exact
diagonalization to study the dynamics of spin systems [13, 14].
Earlier works with the Heisenberg model used this technique.
Later on, other systems were scrutinized by using exact
diagonalization. One of those systems is the Ising model with
four-spin interactions in a transverse field. The time correlation
function was obtained for one dimensional and infinite
temperature [93], where the Gaussian behavior shown in the
usual transverse Ising model was ruled out. The effects of disorder
on the dynamics of that model were obtained for the cases where
the random variables are drawn from bimodal distributions of
random couplings and fields [16, 94, 95]. Dynamical correlation
functions were also obtained for the system at finite temperatures,
ranging from T � 0 to T � ∞ [96].

3.1 Heisenberg Model With
Dzyaloshinskii-Moriya Interactions
The dynamical structure factor for a quantum spin Heisenberg
chain with Dzyaloshinskii-Moriya (DM) interactions [97, 98] has
been investigated by different approaches, such as spin wave

theory [99], mean-field [100], and projection operator techniques
[101]. The dynamics of the related XY model with DM
interactions was also studied by employing Jordan-Wigner
fermions [102–104].

The dynamical correlation functions of the spin-1/2
Heisenberg model with DM interactions in a transverse
magnetic field was studied recently with the method of
recurrence relations. The model Hamiltonian for a one-
dimensional chain is given by:

H � −J∑
i

(σxi σx
i+1 + σy

i σ
y
i+1 + σzi σ

z
i+1)

−D∑
i

(σx
i σ

y
i+1 − σyi σ

x
i+1) −∑

i

Biσ
x
i ,

(35)

where J is the Heisenberg coupling, D is the Dzyaloshinskii-
Moriya interaction, and Bi is a magnetic field perpendicular to the
DM axis. The quantities σ

x,y,z
i are the usual Pauli operators.

The effects of a uniformmagnetic field Bj � B on the dynamics
are investigated in the infinite temperature limit [105]. The
purpose is to determine the time correlation function C(t) �
< σzj σ

z
j (t)> and its associated spectral density S(ω). The first four

recurrants are determined analytically and an extrapolation
scheme is devised to obtain higher order recurrants. Such
scheme must take into account what is already known from
the solutions of related problems.

One crucial point is to determine whether or not the
extrapolated recurrants grow indefinitely. The time correlation
function of the longitudinal spin component in the XY chain is
known exactly at T � ∞, C(t) � J20(t) ∼ t−1 asymptotically for
large times, where J0 is the Bessel function of first kind [71]. In
this case, the recurrants tend to a constant finite value as ]→∞.
There are numerical indications that the time correlation
function of the Heisenberg model decays as a power law [15],
which suggests that the extrapolated recurrants grow
asymptotically to a finite value. For the Hamiltonian Eq. 35
the extrapolation is the following power-law:

Δ] � Δ∞ − b
]β
, ]≥ nc (36)

where nc is the order of the last exactly calculated recurrant. The
limit value Δ∞ is obtained by extrapolating the last two recurrants
to the origin of 1/]. The constants b and β guarantee smooth
behavior of the recurrants above and below ] � nc.

Once the recurrants are obtained, the relaxation function and
its spectral density can be readily obtained. For the special case
without DM interaction, the result shows good agreement with
the known results for the XY and Heisenberg models. The full
calculation reveals that the effects of the external field are to
produce stronger and more rapid oscillations in the relaxation
functions, as well as a suppression of the central peak in the
spectral density. In addition a peak centered at a well defined
frequency appears, which is attributed to an enhancement of the
collective mode of spins precessing about the external field. It
should be noted that the method of recurrence relations was also
used to study the dynamics of the XY model with DM
interaction [65].
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The effects of disorder in a transverse magnetic field on the
dynamical correlation functions are investigated with the
bimodal distribution for Bi:

ρ({Bi}) � Πi[(1 − p)δ(Bi − BA) + pδ(Bi − BB)] (37)

The method of recurrence relations is then applied to obtain the
dynamical correlation functions for a given realization of disorder
[66]. Next, the average over the random fields is performed by
using the distribution Eq. 37. This is accomplished by defining
the scalar product in the Hilbert space S, so as to include an
average over the random variables in addition to the thermal
average. Four recurrants Δ] are obtained, and an extrapolation is
made for the remaining recurrants. In practice only the first
dozen are needed to attain convergence.

The time correlation function and its associated spectral
density were obtained for D � 1 and BA � 0 and BB � 4 in
units of the Heisenberg coupling J. When the probability p is
very small, a strong central mode appears, as well as a shoulder in
the spectral density. As p increases, there is supression of the
central mode as well as the shoulder. On the other hand, for large
values of the probability p, a nonzero frequency peak appears,
resulting from the precession of the spins around the magnetic
field adding further suppression of the central peak. This central
mode behavior versus collective dynamics, is a known feature of
the dynamics of spin systems and they are in some sense
universal. However, in the present case the appearence of a
shoulder for small p is an interesting novel feature.

3.2 Random Transverse Ising Model
Consider the s � 1/2 spin model in one dimension:

H � −1
2
∑
i

Jiσ
x
i σ

x
i+1 −

1
2
∑
i

Biσ
z
i , (38)

where Ji and Bi are exchange couplings and transverse fields,
respectively. These couplings and fields are random variables
drawn from distribution functions. The quantities σαi(α � x, y, z)
are Pauli matrices. The model is referred to as the random
transverse Ising model (RTIM), and its dynamical correlation
function in the infinite temperature limit has been investigated by
using the method of recurrence relations [106].

The time correlation C(t) is defined by:

C(t) � < σx
j σ

x
j (t)> , (39)

where the line indicates that an raverage ove the random variables
is performed after the statistical average 〈 . . . 〉. The time
evolution of σzj (t) in a system governed by the Hamiltonian
Eq. 38 is given as an expansion in a Hilbert space S of d
dimensions, where d is to be determined later:

σxj (t) � ∑d−1
]�0

a](t)f], (40)

where f] are orthogonal vectors spanning S. The time dependence
is contained in the coefficients a](t).

The inner product in S in the infinite temperature limit is
defined in such a way that it encompasses both the thermal

average in a realization of disorder and the average over the
random variables:

(A, B) � <AB†> − 〈A〉<B† > , (41)

where A and B are vectors in S. This definition of scalar product
ensures that the form of the recurrence relations in unchanged.

The zeroth basis vector f0 is chosen as the variable of interest,
f0 � σxj . Thus, the zeroth-order coefficient a0(t) can be identified
with the time-dependent correlation function of interest:

a0(t) � (f0, f0) � 〈σx
j σ

x
j (t)〉 � C(t). (42)

The remaining basis vectors f], ] � 1, 2, . . . , d − 1, are obtained
from the recurrence relation RRI, Eq. 15. The first vectors are
then:

f0 � σxj ,
f1 � Bjσ

y
j ,

f2 � (Δ1 − B2
j )σx

j + BjJj−1σx
j−1σ

z
j + BjJjσ

z
j σ

x
j+1,

f3 � −Bj(J2j−1 + J2j + B2
j − Δ1 − Δ2)σyj

−2BjJj−1Jjσx
j−1σ

y
j σ

x
j+1 + Bj−1Jj−1σ

y
j−1σ

z
j

+BjBj+1Jjσz
j σ

y
j+1,

(43)

etc. The vectors f4, f5, . . ., f9 were obtained analytically but not
reported because of their length [106]. However, they were used
in all of the subsequent calculations. The first three recurrants are
the following,

Δ1 � B2
j ,

Δ2 � 2J2j − B2
j + B4

j/B2
j ,

Δ3 �
B6
j + 2J2j

2
B2
j + 2J4j B

2
j + 2J2j B2

j

2 − B4
j

2/B2
j

2J2j B
2
j − B2

j

2 + B4
j

(44)

Notice that the couplings and fields are site-dependent.
There are two types of disorder considered in Ref. 106,

random fields and random spin couplings. Each case is
treated separately. In both cases a simple bimodal
distribution is used for the random variable. The field Bi (or
the coupling Ji) can assume two distinct values, with probalities
q (p) and 1 − q(1 − p), respectively. The time correlaton
function and the spectral density are then obtained
numerically. For the pure cases, (p � q � 1), two types of
behavior emerge, depending on the relative strength between
J and B. For J >B, the dynamics is dominated by a central-mode
behavior, whereas for J <B a collective-mode is the prevailing
dynamics. In the disordered cases, the dynamics is neither
central-mode nor collective-mode type, but something in
between those types of dynamics.

3.3 Transverse Ising Model With
Next-To-Nearest Neighbors Interactions
Consider the transverse Ising model with an additional axial next-
nearest-neighbor interaction (transverse ANNNI model) [17].
The Hamiltonian for a chain with L spins can be written as:
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H � J1 ∑
L

i�1
σzi σ

z
i+1 − J2 ∑

L

i�1
σz
i σ

z
i+2 − B∑L

i�1
σx
i , (45)

where σαi are the usual spin-1/2 operators, α � x, y, z. Periodic
boundary conditions are imposed on this model, namely
σαi+L � σαi . Consider antiferromagnetic (J1 > 0) Ising interactions.
A competing ferromagnetic interaction is assumed for the next-
nearest-interaction (J2 > 0). The transverse magnetic field (B)
induces the quantum fluctuations. In what follows we set J1 �
1 as the unity of energy.

In the absence of a transverse magnetic field and of thermal
fluctuations (T � 0) the ground-state properties of the model are
exactly soluble and several phases are present. For J2 < 0.5 the
ground state is ordered ferromagnetically. For J2 > 0.5, a phase
consisting of two up-spins followed by two down-spins is
periodically formed. The phase is known as < 2, 2> -phase or
an anti-phase. For J2 � 0.5, the model has a multiphase point. The
ground-state is highly degenerate with many phases of the type
< p, q> corresponding to a periodic phase with p-up spins followed
by q-down spins, among other spin configurations. The number of
degenerate states increases exponentially with the size of the system
L. In the case where J2 � 0 and the magnetic field is switched on, the
model becomes the Ising model in a transverse field which was
exactly solved by Pfeuty [107]. In this model, due to quantum
fluctuations induced by the transverse magnetic field, a second order
phase transition occurs at B � 1, which separates a ferromagnetic
phase at low magnetic fields from a paramagnetic phase at high
magnetic fields. For the full Hamiltonian, Eq. 45, the competing
interaction between the ferromagnetic and antiferromagnetic terms
induces frustration in the magnetic ordering. This will give rise to a
much richer variety of phases when either the transverse magnetic
field or the spin-spin interations are varied, such as ferromagnetic or
antiferromagnetic phases, disordered or paramagnetic phases, and
floating phases [17]. Such variety of phases in the ground-state could
carry over their effects into the dynamics at the high temperature
limit, like the known transverse Ising model. In this model, a signal
of the ground-state transition is manifested in the Gaussian behavior
at criticality of the dynamical correlation functions at T � ∞ [51].

The main quantity of interest is the time-dependent
correlation function:

C(t) � < σxj (0)σxj (t)> , (46)

where σxj (t) � eiHtσxj e
−iHt and <O> is a canonical average of the

operator O. The method of exact diagonalization will be
employed to study the dynamics, however, the recurrants of
the method of recurrence relations will also be obtained.

The numerical calculations will be performed at the high-
temperature limit, T � ∞, hence:

C(t) � 1
2L

Tr(σxj eiHtσxj e− iHt) (47)

One of the properties of C(t) is that it is real and an even function
of the time t. Therefore, the Taylor expansion about t � 0 has only
even powers of t:

C(t) � ∑∞
k�0

(−1)k
(2k)!μ2kt

2k, (48)

where the frequency moments are expressed in terms of the trace
over iterated commutators:

μ2k �
1
2L

Tr(σxjL2kσx
j ), (49)

with L defined such that:

LA � [H,A] � HA − AH, (50)

where H is the Hamiltonian and A an operator.
The correlation function is calculated in the Lehman

representation. First, we consider the energies En and
eigenstates |n> of the Hamiltonian, obtained from the
eigenvalue equation H|n> � En|n> . Then, the correlation
function takes the form:

C(t) � 1
2L

∑
m,n

cos(En − Em)t|< n|σxj |m>
∣∣∣∣2,� ∑

k�0

∞ (−1)k
(2k)!μ2kt

2k,

(51)

where the moments μ2k are given by:

μ2k �
1
2L

∑
m,n

(En − Em)2k
∣∣∣∣< n∣∣∣∣σx

j

∣∣∣∣m> 2
∣∣∣∣ (52)

The spectral density S(ω) is simply the Fourier transform of C(t):
S(ω) � ∫∞

−∞
C(t)e−iωtdt (53)

FIGURE 1 | Time correlation function of a tagged spin in the TI model
when B � J � 1.0 for some chain sizes L, as indicated. Here and in the next
figures J � 1 is the energy unit. The exact solution is a Gaussian, which lies
underneath the L � 13 curve. [Figure from Guimarães et al. [17]].
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After using Eq. 51, the spectral density can be cast in the form:

S(ω) � π

2L
∑
m,n

∣∣∣∣< n∣∣∣∣σx
j

∣∣∣∣m> 2[δ(ω − ϵnm) + δ(ω + ϵnm)],
∣∣∣∣ (54)

where ϵnm ≡ En − Em.
The Dirac δ-function is approximated by a rectangular

window of width a and unit area, centered at the zeros of
their arguments. The width a, can be adjusted to reduce
fluctuations. Another approach could be the use of histograms,
such as in Ref. 96. However, the general shape of the spectral
density S(ω) is the same, although the rectangle approximation
gives more accurate results. Therefore, both dynamical
correlation functions C(t) and S(ω) can be calculated directly
via exact diagonalization.

As a case test, Guimarães et al. [17] consider B � 1 and J2 � 0,
the usual transverse Ising model (TIM) with dynamical
correlation functions known exactly in the high temperature
limit [51, 74]. Figure 1 shows their numerical results for the
time correlation function for B � 1 and several lattice sizes. The
results for L � 12, 13, agree very well with the exact result of the
infinite system, C(t) � exp(−2t2) in the time interval of interest
0≤ t ≤ 10. Convergence toward the thermodynamic result
increases as the system size grows. However, already for L �
13 the numerical calculations reproduce the Gaussian behavior
found by the exact calculation. The corresponding spectral
density is shown in Figure 2 for different chain sizes. The
Dirac δ functions are approximated by a rectangle of unit area
and width a � 0.1. That is the best value for the width a to reduce
the fluctuations due to finite-size effects. Those fluctuations
decrease in amplitude as one considers larger system sizes.
The frequency-dependent Gaussian of the exact result is
already masked by the curve for L � 13. Therefore, the
method works just fine with the transverse Ising model, and
very likely will do so with the transverse ANNNI model.

FIGURE 2 | Spectral density for the TI model (B � 1 and J2 � 0) and
different chain sizes. The plots are the time Fourier transforms of the curves in
Figure 1. The curves for finite chains oscillate around the exact Gaussian
result of the infinite chain. [From Ref. [17]]

FIGURE 3 | Time-dependent correlation function for B � 0.5 and several
values of the NNN coupling J2 [17].
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In the following, consider the representative cases B � 0.5, 1.0,
and 2.0. These cases should cover the relevant possibilities for B in
the transverse ANNNI model. Consider first B � 0.5. The time
correlation function C(t) is shown in Figure 3 for different next-
to-nearest neighbor couplings J2. There are pairs of curves for a
given J2, dashed lines for L � 12 and solid lines for L � 13. Those
two lines agree very well with each other for the range of time t
displayed. The quantitative agreement between the L � 12 and
L � 13 curves is an indication that within the accuracy used, the
thermodynamic value has already been obtained. The features
shown in Figure 3 are real and will not change in the
thermodynamic limit. They possibly could be traced back to
the rich ground-state phase diagram, however, a careful
investigation is still necessary to clarify that point.

FIGURE 4 | Spectral density for B � 0.5 and several values of J2. All the
curves were obtained for chains with L � 12 spins [17].

FIGURE 5 | Time-dependent correlation function for B � 1 and several
values of J2. The curves were obtained with L � 12 and 13. See Ref. 17.

FIGURE 6 | Spectral density for B � 1 and several values of J2, obtained
for chains of length L � 13. [From Ref. 17.]

FIGURE 7 | Time-dependent correlation function for B � 2.0 and various
values of J2. The chain size is L � 13. [From Ref. [17.]
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In general, the decay of C(t) with time is slower for larger J2.
The corresponding spectral density is displayed in Figure 4,
calculated for L � 13. Other than the height near the origin
ω � 0, the remaining plots should not change essentially for
larger chain sizes, or at the thermodynamic limit. The distinctive
feature is the enhancement of the central mode as J2 increases.

The time correlation function for B � 1 is depicted in Figure 5
for several J2. The curves shown are from L � 12 and L � 13. Note
that for J2 � 0 the calculation reproduces the known Gaussian
solution of the TI model. When J2 � 0.5, oscillations are present
in C(t). For J2 ≥ 1 the curves decay at much slower rate. A careful
examination of the figures shows oscillations of relatively small
amplitudes. The spectral density S(ω) is shown in Figure 6, where
the calculations were done with L � 13. For J2 � 0 the Gaussian of
the TI model is reproduced. We observe an enhancement of the
central model behavior as the values of J2 are increased.

Finally, consider the case where the transverse field is larger
(B � 2) than the Ising coupling. The time correlation function is
shown in Figure 7 for several values of J2. The curves were
obtained from a chain of size L � 13. For small values of J2 the
correlation function, C(t), shows oscillations typical of collective
mode, such as that found in the TI model (J2 � 0). As J2 becomes
larger, the amplitude of the oscillations decreases. For large enough
J2, the system displays an enhancement of the central model.

Figure 8 depicts the corresponding spectral density S(ω) for
the values of J2 used in the previous figure. For J2 � 0, the
dynamics is dominated by the two-peak structure
characteristic of collective mode. As J2 increases, a reduction
of the intensity of the peaks of the collective mode is observed in
tandem with a growth of the central peak. For J2 ≥ 2 the dynamics
seems to be dominated entirely by the central mode.

The recurrants Δ] of the method of recurrence relations are
calculated numerically for J2 � 1 and several values of B. First the
moments μ are obtained by using Eq. 54. Next, use the conversion
formulas Eq. 31. Table 1 shows some numerical results for the
recurrants when B � 1.0, and J2 � 1.0, obtained for L � 11, 12,
and 13. The rightmost column shows the extrapolated value of Δ]

for L � ∞. As can be seen, with relatively small chain sizes
(L≤ 13), one can infer the thermodynamic value of the lower-
order recurrants. Higher order recurrants are still obtained, but
with lesser accuracy.

The results for the thermodynamic estimates of the
recurrants are shown in Figure 9 for B � 1.0 and various
values for J2. For J2 � 0 the linear behavior that leads to
Gaussian behavior is recovered [51]. As J2 increases, Δ]

increases at higher rates on the average and becomes rather
erratic, therefore, it is difficult to predict a trend based on their
behavior. Still the results shown are already the thermodynamic
values, and it is very difficult to devise extrapolation schemes for
the Δ. Notwithstanding, such an endeavor will not uncover any
new physics in regard to the dynamics of the transverse ANNNI
model considered here.

FIGURE 8 | Spectral density for the case B � 2 and several values of J2.
The plots were obtained for L � 12 [17].

TABLE 1 | Recurrants for the transverse ANNNI model, with B � 1.0, J2 � 1.0 and
several chain sizes. The rightmost column is the extrapolation for the
thermodynamic limit (L � ∞).

Δ] L= � 11 L= � 12 L = � 13 L= � ‘

Δ1 4.00000 4.00000 4.00000 4.00000
Δ2 16.0000 16.0000 16.0000 16.0000
Δ3 28.0000 28.0000 28.0000 28.0000
Δ4 41.1429 41.1429 41.1429 41.1429
Δ5 51.3016 51.3016 51.3016 51.3016
Δ6 73.0933 73.0933 73.0933 73.0933
Δ7 78.5228 78.5228 78.5228 78.5228
Δ8 92.4927 92.4927 92.4927 92.4927
Δ9 110.406 110.406 110.406 110.406
Δ10 127.334 127.334 127.334 127.334
Δ11 151.014 151.014 151.014 151.014
Δ12 168.388 168.385 168.385 168.385
Δ13 191.746 191.673 191.672 191.67
Δ14 216.807 216.023 215.961 216.0
Δ15 233.220 229.579 229.217 2.3 × 102

Δ16 269.065 259.252 258.141 2.6 × 102

Δ17 298.445 281.726 278.903 2.8 × 102

FIGURE 9 | Recurrants of the infinite transverse ANNNI model with B �
1.0 and several values of J2 [17].
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4 SUMMARY AND PERSPECTIVES

The dynamical correlation functions play a crucial role in the
fluctuation-dissipation theorem and in the linear response
theory. However, the calculation of those quantities is often a
very complicated problem in itself. The method of recurrence
relations is an exact procedure that allows one to obtain of
time correlation functions, spectral densities, and dynamical
structure factors. We have shown the main features of the
method and the inherent difficulties one might encounter in
an attempt to apply to a many-body problem. Another
method that is showing great potential is exact
diagonalization, a numerical method which relies mostly
on computer capabilities. Nevertheless, the two methods
can be used together, one complementing the other, to

achieve progress in the calculation of dynamical
correlation functions.
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