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In this paper wewill review a recent emerging paradigm shift in the construction and analysis of
high order Discontinuous Galerkin methods applied to approximate solutions of hyperbolic or
mixed hyperbolic-parabolic partial differential equations (PDEs) in computational physics.
There is a long history using DG methods to approximate the solution of partial differential
equations in computational physics with successful applications in linear wave propagation,
like those governed by Maxwell’s equations, incompressible and compressible fluid and
plasma dynamics governed by the Navier-Stokes and theMagnetohydrodynamics equations,
or as a solver for ordinary differential equations (ODEs), e.g., in structural mechanics. The DG
method amalgamates ideas from several existingmethods such as the Finite Element Galerkin
method (FEM) and the Finite Volumemethod (FVM) and is specifically applied to problemswith
advection dominated properties, such as fast moving fluids or wave propagation. In the
numerics community, DGmethods are infamous for being computationally complex and, due
to their high order nature, as having issueswith robustness, i.e., thesemethods are sometimes
prone to crashing easily. In this article we will focus on efficient nodal versions of the DG
scheme and present recent ideas to restore its robustness, its connections to and influence by
other sectors of the numerical community, such as the finite difference community, and further
discuss this young, but rapidly developing research topic by highlighting themain contributions
and a closing discussion about possible next lines of research.

Keywords: discontinuous Galerkin method, robustness, split form, dealiasing, summation-by-parts, second law of
thermodynamics, entropy stability

1 A BRIEF INTRODUCTION TO DG

The first discontinuous Galerkin (DG) type discretisation is either attributed to Reed and Hill in 1973
[1] for an application to steady state scalar hyperbolic linear advection tomodel neutron transport, or
to Nitsche in 1971 [2] who introduced a discontinuous finite element method (FEM) to solve elliptic
problems with non-conforming approximation spaces. It was however a series of papers by
Cockburn and Shu et al. starting 20 years later [3–6] that introduced the modern form of the
so-called Runge-Kutta DG scheme. They applied the method especially to nonlinear hyperbolic
problems such as the compressible Euler equations on unstructured simplex grids with slope limiting
to capture shocks. Bassi and Rebay were the first that extended the DG method to the compressible
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Navier-Stokes equations [7]. They used a fully discontinuous
ansatz based on a mixed variational formulation, where they
rewrote the second order partial differential equation (PDE) into
a first order system. The resulting DG formulation requires
numerical fluxes for the advective as well as for the diffusive
part. Although the methods gave reasonable results for the
compressible Navier-Stokes equations, an analysis of the
method in Arnold and Brezzi et al. [8, 9] applied to pure
elliptic problems revealed how to improve the method in terms
of convergence rate, adjoint consistency, and stability. Since the
introduction of its modern form, the DGmethod has been applied
and advanced by many researchers across different scientific
disciplines around the world. The DG method is used in a wide
range of applications such as compressible flows [10–12],
electromagnetics and optics [13–16], acoustics [17–21],
meteorology [22–25], and geophysics [26, 27]. The first book
available on DG was basically a collection of papers [28]. Since
then, many different text books on DG are available focusing on
theoretical developments as well as specific implementation details,
e.g., [29–31].

One of the main applications of DG methods is the
discretisation of nonlinear advection-diffusion problems of the
form

ut + ∇
→

x · f
←→(u) � ∇

→
x · f

←→

v(u, ∇→ xu) , (1)

where u is the vector of conserved quantities, e.g., the mass,
momentum, or energy. The vector f(u) defines the flux functions
that in general depend nonlinearly on the solution u, and can be
compactly written with the double arrow notation as block
vectors

f
←→ � ⎡⎢⎢⎢⎢⎢⎣ f1f2

f3

⎤⎥⎥⎥⎥⎥⎦ , (2)

with the fluxes fi in each spatial direction xi, i � 1,2,3. The viscous
fluxes are denoted by fv and not only depend on the solution, but
also on its spatial gradient

∇
→

xu � ⎡⎢⎢⎢⎢⎢⎣ ux

uy

uz

⎤⎥⎥⎥⎥⎥⎦ , (3)

thus modeling parabolic effects, e.g., heat conduction. The
problem is typically defined on a given spatial domain
Ω ⊂ R3, with a final time T, and suitable initial and boundary
conditions.

The DG scheme is based on a Galerkin type weak formulation.
For the sake of simplicity, we drop the viscous second order terms
in what follows and refer to, e.g. [32], for a complete description
of the advection-diffusion case. To construct the approximation
space of the DGmethod, the domain is split into non-overlapping
elements E ⊂ Ω. Each component of the solution u is represented
as a polynomial function inside each element

u( x→, t) E ≈ U( x→, t) � ∑P(N)

j�0
Uj(t) ϕj( x→),

∣∣∣∣∣∣∣∣∣∣ (4)

where P(N) is the number of polynomial basis functions depending
on the polynomial degree N. The time dependent polynomial
coefficients are Uj(t), and ϕj( x→) spans the polynomial basis.
The DG approximation space is polynomial inside an element,
but discontinuous across element interfaces. For a given element E,
we define first the inner product for state vectors

〈u, v〉E � ∫
E

uTv d x→. (5)

Similarly, for block vectors,

〈 f
←→

, g
←→〉E � ∫

E

∑3
i�1

fTi gi d x
→ . (6)

We obtain the weak formulation by multiplying each equation by
a polynomial test function ϕ( x→). Next, we integrate over the
element E and use integration-by-parts to move the spatial
derivatives off of the physical fluxes onto the test function

〈Ut , ϕ〉E +∮
zE

ϕT f
←→ · n→dS − 〈 f

←→
, ∇
→

xϕ〉E � 0. (7)

If we choose the test function ϕ to be all the polynomial basis
functions from the solution ansatz space {ϕj}Pj�0 it generates P

equations in each element for each state variable. This matches
exactly the number of unknown polynomial coefficients Uj(t).
Due to the discontinuous ansatz, the flux normal f · n→ at the
surface integral is not uniquely defined. Borrowing ideas from the
Finite Volume (FV) community, this non-unique normal flux
function is replaced and approximated with a so-called numerical
surface flux function

f
←→ · n→ ≈ f *(U+,U), (8)

that depends on the two values at the element interface, i.e. on the
value inside the elementU and outside from the neighbor element
U+. Typically, the numerical surface fluxes are constructed from
(approximate) Riemann solvers, e.g., [33]. With the surface
numerical flux, we arrive at the semi-discrete DG formulation
of the advection problem in weak form

〈Ut , ϕ〉E +∮
zE

ϕT f *(U+,U) dS − 〈 f
←→

, ∇
→

xϕ〉E � 0, (9)

or if we apply integration-by-parts once more to the volume
terms it becomes the so-called strong DG formulation

〈Ut , ϕ〉E +∮
zE

ϕT(f *(U+,U) − f · n→) dS + 〈∇→x · f
←→

, ϕ〉E � 0,

(10)

where the surface contribution is a penalty between the numerical
surface flux and the normal flux evaluated from the interior of an
element. Note, the weak and strong form DG formulations are
equivalent [34].

There are still many critical decisions necessary before the DG
formulation produces an algorithm that can be implemented. The
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type of element shape needs to be decided as well as which
polynomial basis. For example, modal polynomial basis
functions for tetrahedral elements or nodal tensor product
polynomials for hexahedral elements. In addition, the surface
integral and the volume integral needs to be discretized. In most
cases, the integrals are approximated with numerical quadrature
rules, e.g., high order Gauss-Legendre quadrature and cubature.
Many variants and detailed descriptions can be found in text books
on DG methods and their implementation, e.g., [28–31]. It is
important to note that these choices involving the element type,
basis functions, and approximation of inner products all have a
major impact on the performance of the resulting DG scheme in
terms of computational complexity and robustness due, e.g., to the
presence of spurious oscillations near discontinuities that result in
unphysical solution states (like negative density or pressure) or
aliasing instabilities. Manymechanisms exist in the DG community
to combat spurious oscillations (i.e., shock capturing) such as slope
[3, 5, 35] or WENO [36, 37] limiters, filtering [29, 38, 39], finite
volume sub-cells [40–42], MOOD-type limiting [43–47], or
artificial viscosity [48, 49]. The issue of shock capturing will not
be discussed further. However, aliasing errors, how they arise within
the DG method and strategies to remove said errors and increase
robustness will be discussed at length in this article.

With the above decisions, we arrive at the generic semi-
discrete ordinary differential equation (ODE) form of the DG
scheme, which can be integrated in time with an appropriate high
order explicit or implicit ODE solver, e.g., [50–54].

The resulting DG method is high order accurate and has
excellent dispersion and dissipation behavior, e.g., [55, 56].
Furthermore, due to its compact stencil (only interface
neighbor data is needed) the DG scheme is well known for its
excellent parallel scaling, e.g., [57, 58], and its ability to handle
unstructured and non-conforming grids, e.g., [16, 54, 59–63].
These nice properties of the DGmethodology are one reason why
more and more researchers apply and extend the DG
methodology to many different problem setups in
computational physics. However, DG is not the perfect
discretisation and there are unfortunately some issues that
necessitate detailed analysis and discussion.

The remainder of this review article gives the answers to why
we need novel developments, Section 2, when the novel
developments started, Section 3, what the key ideas of these
novel strategies are, Section 4, and where there are still open
questions toward future research directions, Section 5.

2 WHY DO WE NEED A NOVEL ROBUST
STRATEGY?

Throughout the analysis and discussions in this manuscript we
describe different types of stability for a numerical
approximation. Principally, we concentrate on the stability and
boundedness of the spatial DG discretization.

2.1 On the L2-Stability of the DG Method
It is easy to show that the DG scheme is L2-stable for linear
advection problems with constant coefficients due to its Galerkin

nature, e.g., as a special case in Ref. 64. As a brief illustrative
example let’s consider the one-dimensional scalar linear
advection model

ut + f (u)x � 0, (11)

where f(u) � au with constant velocity a. The respective strong
form DG scheme reads

〈Ut , ϕ〉E + [(f *(U+,U) − f )ϕ]zE + 〈fx, ϕ〉E � 0. (12)

We get the discrete evolution of the L2-norm ∫  U2 dx by inserting
ϕ � U for the polynomial test function

〈Ut ,U〉E + [(f *(U+,U) − f )U]zE + 〈fx,U〉E � 0. (13)

Assuming time continuity, the first term reduces to zt ∫ U2/2 dx.
We observe that in the volume integral fx � aUx is a polynomial of
degree N−1 and ϕ a polynomial of degree N. Thus, we need the
quadrature rule to be exact for polynomials with at least degree
2N−1. This is guaranteed by all Gauss-Legendre type quadrature
rules with at least N+1 nodes, such as the Legendre-Gauss-
Lobatto (LGL) quadrature.

The volume term contribution is

〈aUx,U〉E � a 〈(U2

2
)

x

, 1〉
E
� a
2
[U2]zE, (14)

which shows that the volume contribution can be lifted to the
boundary. In total we have

1
2
zt ∫

E

U2 dx + [U f *(U+,U) − a
2
U2]

zE
� 0. (15)

The discrete evolution of the L2-norm only depends on the choice
of the numerical flux function f*. A simple choice would be the
central flux f * � a

2 (U+ + U). Inserting the central flux into Eq. 15
gives

1
2
zt ∫

E

U2 dx + 1
2
[aU U+]zE � 0. (16)

Summing over all elements E in the domain to get the total L2-
norm and assuming periodic boundary conditions, we get

1
2
zt‖U‖2L2 � 0, (17)

as a
2U U+ is a unique discrete energy flux at every interface and

cancels when summing over all elements. Thus, for linear
advection, the DG scheme with at least 2N−1 accurate
quadrature is L2-stable, i.e. the discrete L2-norm is bounded
for all times t. Note, that for quadrature rules with less than
2N integration precision, the estimate is not for the exact L2-
norm, but for a discrete L2-norm corresponding to the quadrature
rule chosen.

For linear problems basically all DG variants are stable, but
what about nonlinear problems? To address nonlinear problems,
there was a crucial contribution by Jiang and Shu in 1994 [65],
who demonstrated that for scalar nonlinear hyperbolic problems,
the DG method is L2-stable provided: 1) Exact evaluation of all
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integrals are used; 2) Entropy stable numerical surfaces fluxes are
used at the element interfaces. The L2-stability result with
conditions 1) and 2) also extends to symmetric variable
coefficient hyperbolic systems [66]. Again, as a brief example
to illustrate the important steps of the analysis, we consider a
scalar one-dimensional problem Eq. 11 with a simple quadratic
flux function f (u) � 1

2 u
2, the so-called Burgers’ equation. The

DG scheme is, again, given by Eq. 13 and we get the evolution of
the discrete L2-norm by replacing the test function with the DG
solution ϕ � U . Note, that for this nonlinear problem, the volume
integral requires a quadrature rule with higher integration
precision to be exact. For the quadratic flux function f ∼ u2,
the quadrature rule needs 3N−1 integration precision. With the
exact evaluation of the volume integral, its contribution is, once
again, lifted onto the boundary of the element to give

〈12 (U2)x,U〉
E

� 〈(U3

3
)

x

, 1〉
E

� 1
3
[U3]zE. (18)

The resulting discrete evolution of the L2-norm is

1
2
zt ∫

E

U2 dx + [U f *(U+,U) − 1
6
U3]

zE
� 0, (19)

which agin only depends on the choice of the numerical surface
flux function f*. Note, that for the central flux choice f *(U+,U) �
1
2 (f (U+) + f (U)) no stability estimate can be derived, as
potentially the L2-norm could grow without bounds. However,
for the particular choice

f *(U+,U) � (U+)2 + U+ U + U2

6
, (20)

we get

1
2
zt ∫

E

U2 dx + 1
2
[U (U+)2 + U2 U+

3
]
zE

� 0. (21)

Following the same arguments as above for the linear advection
problem, we sum over all of the elements in the domain and
obtain L2-stability for the nonlinear scalar hyperbolic problem for
quadrature rules with at least 3N−1 integration precision.

Unfortunately, even ignoring the practical issues with the
assumption of exact integration for a moment, the results of
Jiang and Shu cannot be directly extended to general nonlinear
hyperbolic systems, e.g., the compressible Euler equations. A key
step in the analysis of Jiang and Shu is that the test functions ϕ in
the DG formulation Eq. 10 are replaced with the discrete DG
solution

U( x→, t) � ∑P(N)

j�0
Uj(t) ϕj( x→), (22)

which itself is a linear combination of the test functions {ϕj}P(N)
j�0

and, hence, an element of the test function space. While this gives
an L2-norm estimate for symmetric systems, this approach does
not lead to a proper norm estimate (in the continuous as well as in
the discrete case) for general nonlinear systems. This lack of a
stability estimate, even when using “exact integration,” is the

explanation why the DG method can still crash for complex
PDEs, e.g., [67].

2.2 On the Entropy Stability of the DG
Method
In the previous section it was shown for a scalar nonlinear
conservation law that the DG solution U is bounded in the
L2-norm if a special choice of the numerical surface flux is
chosen, such as the one in Eq. 20. We conjecture that an
analogous statement of nonlinear stability should be true for
systems of nonlinear conservation laws. However, in general,
stability in the L2-norm is insufficient to exclude unphysical
phenomena such as expansion shocks [68]. To remove the
possibility of such phenomena we generalize the notion of a
stability estimate for nonlinear problems.

Before we discuss the mathematics of a general nonlinear
hyperbolic system, a detour is taken to examine an important
underlying physical principle. In particular, we introduce
concepts from thermodynamics, which is a branch of physics
relating the heat, temperature, or entropy of a given physical
system to energy and work. The laws of thermodynamics are
some of the most fundamental laws in all of physics. This is
because they play an important role in describing how, and
predicting why, physical systems behave and evolve the way
that we observe them. Moreover, thermodynamics provides
fundamental rules to decide how a physical system cannot
behave. That is, what type of solution behavior is physically
meaningful and what is not. From a mathematical point of view,
we note that satisfying the second law of thermodynamics is not
enough to guarantee uniqueness of the PDE solution and that
conditions for uniqueness are an active topic of research in the
analysis of said PDEs, see for example [69–72].

The first law of thermodynamics concerns the conservation of
the total energy in a closed system. The second law of
thermodynamics states that the entropy of a closed physical
system tends to increase overtime and, importantly, that it
cannot shrink. The laws of thermodynamics must be satisfied
simultaneously at all times, otherwise a mathematical solution
can exhibit strange and obviously incorrect behavior. For
example, a fluid that only conserves its total energy but does
not take care on the entropy, i.e. satisfying the first law of
thermodynamics but not the second law, could transfer all of
its internal energy into kinetic energy. The result would be a very
fast, but very cold jet of air. Such a flow configuration has never
been observed in nature. This discrepancy is removed when
incorporating the second law of thermodynamics where the
transfer of energies are regulated. For reversible processes the
entropy remains constant over time (isentropic) and the time
derivative of the total system entropy is zero. For irreversible
processes the entropy increases and the time derivative is positive.
Solution dynamics where the total system entropy shrinks in time
are never observed and deemed unphysical.

To discuss these ideas in a mathematical context consider a
system of nonlinear hyperbolic conservations laws

ut + ∇
→

x · f
←→(u) � 0, (23)
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where we take the viscous flux components in Eq. 1 to be zero.
Typically, the diffusion terms are dissipative in nature and are
mostly uncritical. A prototypical example of a purely hyperbolic
system of nonlinear conservation laws is the compressible Euler
equations modeling inviscid gas dynamics. A smooth solution
that satisfies the system of PDEs Eq. 23 corresponds to a
reversible process. One of the difficulties, either analytically or
numerically, of nonlinear hyperbolic PDEs is that the solution
may develop discontinuities (e.g., shocks) regardless of the
continuity of the initial conditions [73]. A discontinuous
solution of Eq. 23 corresponds to an irreversible process and
dissipates entropy.

To mathematically account for possible discontinuous
solutions, system Eq. 23 is considered in its weak form. Just as
in the Galerkin discretisation in Section 1, the weak form of the
PDE is found by multiplying the governing equations by a
smooth test function ϕ(t, x→) with compact support and
integrating over R+ ×R3. Integration-by-parts is again applied
to move the derivatives onto the test function and weaken the
smoothness requirements on possible solutions. Hence, weak
solutions of system Eq. 23 satisfy

∫
R+×R3

uTϕt dt d x
→+ ∫

R+×R3

f
←→

T ∇
→

xϕ dt d x
→ � ∫

R3

uT
0 ( x→)ϕ d x→. (24)

Another form of the conservation law is its integral form that,
under the assumption of differentiable fluxes, arises from Gauss’
theorem

∫
Ω

ut d x
→+∮

zΩ

f
←→(u) · n→dS � 0, (25)

and holds for arbitrary control volumes Ω, e.g., [74].
Unfortunately, weak solutions of a PDE are, in general,
not unique and must be supplemented with extra
admissibility criteria in order to single out the physically
relevant solution [75–77]. This is precisely where the laws of
thermodynamics play a pivotal role because, as already
discussed, due to their intrinsic ability to select physically
relevant solutions. In most applications, e.g., compressible
fluid dynamics or astrophysics, the total entropy is not part of
the state vector of conservative variables u. However, we
know from the discussion above that for reversible
(isentropic) processes the total entropy is a conserved
quantity. Where is this conservation law “hiding”?

It turns out that there are additional conserved quantities, e.g.,
the entropy, which are not explicitly built into the nonlinear
hyperbolic system Eq. 23 but are still a consequence of the PDE.
In order to reveal this auxiliary conservation law we define a
convex (mathematical) entropy function s � s(u) that is a scalar
function and depends nonlinearly on the conserved variables u.
This allows the definition of a new set of entropy variables

w � zs
zu

, (26)

that provides a one-to-one mapping between the conservative
variable space and entropy space [78]. If we contract the

nonlinear hyperbolic system Eq. 23 from the left with the
entropy variables w we have

wT(ut + ∇
→

x · f
←→(u)) � 0. (27)

From the definition of the entropy variables and assuming
continuity in time, we know that

wTut � st . (28)

Further, each of the flux vectors in the coordinate directions xi
must satisfy a compatibility condition

wT(f i)
xi
� (f si )xi, (29)

where fi
s, i � 1,2,3 is a corresponding entropy flux [78]. We point

out that a chain rule is the linchpin of the manipulations Eqs. 28
and 29 to move from the space of conservative state variables into
the space of entropy variables. In the continuous setting this is not
an issue under certain continuity assumptions. However, in a
numerical setting it is extraordinarily difficult (or even
impossible) to recover the chain rule with discrete
differentiation, e.g., [79]. We postpone the discussion on this
issue and what it means for a high order DG numerical
approximation to Section 4.

By definition of a mathematical entropy, contracting the
nonlinear hyperbolic system into entropy space, as in Eq. 27,
and assuming the solution is smooth (i.e. a reversible process)
results in the auxiliary conservation law for the entropy

st + ∇
→

x · f→s � 0. (30)

The corresponding integral form of the entropy conservation is
given by

∫
Ω

st d x
→+∮

zΩ

f
→

s · n→dS � 0, (31)

for an arbitrary volume Ω. For irreversible processes, physical
entropy is increasing. In the mathematical community however,
entropy is defined as a decaying function and hence the entropy
conservation law Eq. 31 becomes the entropy inequality [78]

∫
Ω

st d x
→+∮

zΩ

f
→s · n→dS≤ 0, (32)

for discontinuous solutions.
As an illustrative example for the contraction of a nonlinear

hyperbolic system of PDEs into entropy space, we consider the
compressible Euler equations of gas dynamics in one spatial
dimension

⎡⎢⎢⎢⎢⎢⎣ ρ
ρv
E

⎤⎥⎥⎥⎥⎥⎦
t

+ ⎡⎢⎢⎢⎢⎢⎣ ρv
ρv2 + p(E + p)v

⎤⎥⎥⎥⎥⎥⎦
x

� 0, (33)

with the ideal gas assumption

p � (c − 1)(E − ρv2

2
), (34)
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where γ is the adiabatic constant. The convex entropy function
s(u) for the compressible Euler equations is not unique [80].
However, a common choice for the mathematical entropy
function is the scaled negative thermodynamic entropy [80–84]

s(u) � − ρς

c − 1
, ς � ln(p) − cln(ρ), (35)

with the corresponding entropy flux f s � v s(u). From this
definition of the mathematical entropy function we get the
entropy variables

w � zs
zu

� [c − ς

c − 1
− ρv2

2p
,
ρv
p

, − ρ

p
]T , (36)

and see that each component of the entropy variables is a highly
nonlinear function of the state vector components. Regardless,
the variables Eq. 36 contract the one dimensional compressible
Euler equations into entropy space and, when integrated over the
domain Ω, become the entropy conservation law Eq. 31 for
smooth solutions or the entropy inequality Eq. 32 for
discontinuous solutions. It is worth noting that the entropy
variables w are further useful in the analysis of the system, as
they allow to derive a symmetric form of the PDE [85].

The discrete equivalent of the entropy inequality Eq. 32 is
referred to as entropy stability. It is a generalization of the L2-
stability statement to systems of nonlinear hyperbolic PDEs,
e.g., [79, 86]. An additional requirement built into the entropy
stability condition is that the fluxes f remain bounded [68],
which restricts the flow to physically realisable states, e.g.,
positive density and pressure in gas dynamics. Overall,
entropy stability ensures that a numerical approximation
obeys the fundamental laws of thermodynamics and is
viewed as an important quality to capture [86–88]. But it is
an active area of research to investigate the role of entropy
stability and how it fits into the question of provable nonlinear
stability [82, 89, 90].

At present, we restrict ourselves to one of the key ingredients
in the analysis to derive a nonlinear entropy stability estimate for
general nonlinear hyperbolic systems, see e.g., [78, 86]. It is
natural to develop an entropy stable DG approximation
because the continuous and discrete analysis both rely on a
weak form of the governing equations. However, for entropy
stability the nonlinear system is not multiplied by the solution u
as was the case for the L2-stability analysis. Instead the equation is
multiplied with the entropy variables w Eq. 26, which are
nonlinear functions of the state u, see e.g., the compressible
Euler equations in (36). Thus, a direct combination of this
approach with the analysis of Jiang and Shu from Section 2.1
is not possible. For a polynomial DG ansatz U, the discrete
entropy variables W � W(U) are no longer polynomials of
degree N and do not belong to the space of test functions ϕ.
Hence, it is not allowed to replace the test functions ϕ in the DG
formulation Eq. 10 with W. Technically, only a projection of W
onto the space of polynomials with degree N can be inserted;
however, in this case the analysis does not lead to an entropy
stability estimate as the chain rule holds for the full entropy
variables and not their projections.

To overcome the issue with the test function space and to
enable an entropy stability estimate for the DG method, Hughes
et al. [91] as well as Hildebrand and Mishra et al. [92–94] used a
space-time DG approach with an ansatz directly written in terms
of the entropy variables. The idea is to make the DG ansatz in
entropy space, i.e. to approximate the entropy variables

w(u( x→, t))|
E

≈ W( x→, t) � ∑P(N)

j�0
Wj(t) ϕj( x→), (37)

with a polynomial of degree N. Ignoring the time discretisation
for brevity, the DG formulation changes to

〈u(W)t , ϕ〉E + ∫
zE

ϕT(f *(u(W)+, u(W)) − f(u(W)) · n→) dS
+ 〈∇→x · f

←→(u(W)), ϕ〉E � 0,

(38)

which shows that the scheme is still formulated in conservative
form, however all the conserved variables u now depend
implicitly on the polynomial approximation of the entropy
variables W. As this approach is naturally implicit, a
straightforward and elegant extension of the scheme in time is
to use a temporal DG scheme on top of the spatial DG scheme,
resulting in a fully implicit space-time DG formulation.
Hildebrand and Mishra proved that the resulting discretisation
is entropy stable provided: i) Exact evaluation of all integrals; ii)
Entropy stable numerical fluxes at the spatial surface integrals and
upwind fluxes (due to causality) in the temporal surface integrals
are used. These conditions on the space-time DG approximation
are very similar to those imposed by Jiang and Shu for the scalar
nonlinear hyperbolic case discussed for the nonlinear Burgers’
equation.

Unfortunately, the assumption 1) on exact integration is
extremely difficult to guarantee and implement in practical
simulations, which we describe in more detail in the next
subsection. Without proper exact quadratures of the integral
terms, the chain rule does not hold discretely. Such inexact
approximations of functions are referred to as aliasing errors.
These can occur in realistic simulations and might cause
instabilities. Thus, robustness is still an issue and ad hoc
dealiasing or stabilization mechanisms, e.g., artificial diffusion
[92] are necessary.

2.3 The Unpleasant Role of Numerical
Integration, Nonlinearities, Variational
Crimes, and Aliasing
As described above it is necessary to discretize the variational
formulation and make certain choices in the DG approximation
such as the polynomial basis functions and, especially, the
discrete integration to approximate the surface and volume
integrals. Unfortunately, only in the rarest and simplest cases
is it possible to avoid these discretisation steps and use an exact
evaluation of the integrals. Hence, the notion of “variational
crimes” is introduced to express the steps necessary to turn
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the formulation into an actual algorithm that can be
implemented.

One of the biggest problems when discrediting nonlinear
advection-diffusion problems is that in many interesting cases,
the nonlinearity is non-polynomial. Our exemplary problem, the
compressible Euler equations depend on the mass density u1, the
momentum density in the x direction u2, and energy density u3.
Often, these are also denoted as u1 � ρ and u2 � ρ v, where v is the
velocity. We compute the velocity from the conserved variables as

v � u2
u1
. (39)

This is important in the context of the DG discretisation because if
the variables u1 and u2 are polynomials of degree N, the velocity v is
not a polynomial, but a rational function. This occurs not only for the
velocity but also for other quantities that are needed to evaluate the
advective fluxes f , such as e.g., the pressure p. Hence, the fluxes f are
no longer polynomials of degreeN, and possibly rational functions, as
in case of the compressible Euler equations.When approximating the
integrals with high order quadrature formulae, such as the Legendre-
Gauss rules, it is important to realize that these numerical integration
rules are constructed for polynomial integrands. Hence, in theory,
they cannot integrate non-polynomial functions exactly no matter
how many quadrature nodes are considered.

If we focus for instance on the strong formDG volume integral
from Eq. 38, we see that the core part to evolve the DG solution in
time is an L2 projection of the flux divergence onto the

polynomial basis 〈∇→ x · f
←→

, ϕ〉E. If this projection is not
evaluated exactly, due to either the aforementioned
variational crimes, the nonlinearities of the flux function, or
a combination of the two, the exact L2 projection turns into a
discrete projection, most often taking the form of an
interpolation at the quadrature nodes. This is a subtle but
important observation. In contrast to an exact L2 projection,
which cleanly “cuts out” high order content of the flux
divergence with polynomial degrees larger than N, a discrete
L2 projection interprets (i.e. aliases) some of the high order
content as part of the projection polynomial. This artificially
and unpredictably decreases or increases the polynomial
coefficients of the projection. This “incorrect interpretation”
of high order content is also well known in Fourier analysis and
signal processing. If the sampling rate (in this case the number
of Legendre-Gauss quadrature nodes) is not high enough
according to the Nyquist theorem, high frequency data (high
order content) gets interpreted as low frequency data (onto the
polynomial of degree N) and pollutes the result. This analogy to
Fourier analysis illustrates the possibility that high frequency
information can masquerade as low frequency information
when represented on a discrete and unresolved grid. This is
the fundamental issue often termed aliasing. As the issue of the
discrete projection onto a space of polynomials is similar in
spirit, the term aliasing is also often used in the DG community,
as well as the spectral and finite difference communities, to give
potential consequences of the variational crimes a name. In
summary, basically all of the DG algorithms for nonlinear
advection dominated problems have the issue of inexact

evaluation of the integrals and hence all DG algorithms have
aliasing errors.

Unfortunately, these aliasing issues are not simply an abstract
and “ugly” theoretical oddity without practical consequences. On
the contrary, aliasing plays an important role when using DG
methods for realistic complex applications to model nonlinear
phenomena. It is worth pointing out that one of the advantages of
DG, it’s very low dissipation errors, are in this particular point of
view also it’s biggest problem. Due to the inherent low numerical
dissipation in a high order DG method, there is no in-built self-
defence against the aliasing issues and any instability that they
may create. A repercussion of this fact is that it has become
naturalized in the numerics community that especially the high
order variants of the DGmethod, with very low dissipation errors,
have robustness issues in practical applications. For instance DG
approximations of the compressible Euler and Navier-Stokes
equations are known to sometimes fail due to aliasing
instabilities, e.g., [39]. This instability can manifest itself
through the observation that the kinetic energy artificially
grows in the simulation, while the inner energy decreases.
Note, that the total energy is conserved by construction with
the DG method; however, this exchange of kinetic and internal
energy is unphysical and violates the second law of
thermodynamics and is purely a result of the variational
crimes (inexact integration).

An obvious solution to these problematic variational crimes,
nonlinearities, and aliasing is to decrease their deleterious effects
as much as possible. While technically unavoidable in the strictest
mathematical sense, it is possible to increase the amount of
Legendre-Gauss quadrature nodes to evaluate all integrals
“consistently” such that the inexactness errors are on the order
of machine precision, see e.g., Kirby et al. [95]. This approach is
quite effective and immediately has a positive stabilizing effect on
many applications with nonlinear PDEs, see e.g., [39, 96].
However, it is clear that the computational complexity
drastically increases when arbitrarily increasing the number of
quadrature nodes. Hence, one often tunes the increased number
of Legendre-Gauss quadrature nodes and takes as many as
needed to make a simulation stable—which is, of course,
unsatisfying and ad hoc, as it highly depends on the particular
problem setup. In comparison, another approach is to not directly
fight the variational crimes themselves, but the consequences they
induce. This is achieved by applying well designed filters to the
solution, with the purpose to clip out higher order aliasing
content in an effort to decrease its effect, e.g., [39]. It is
needless to say that this filtering approach is also very ad hoc
and depends on many parameters that need tuning depending on
the particular problem one wishes to solve with the high order
DG scheme.

While these ad hoc stabilization techniques are reinforced by
little to no mathematical analysis or rigor, the prevailing
consensus in the DG community has been that, in practice,
they work reasonably well. In that, consistent integration
(sometimes referred to as over-integration) and filtering
increase the robustness of high order DG methods to a level
such that they could be applied to model challenging physical
problems allowing them to shine with their high order accuracy
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and low dispersion and dissipation errors. Especially in the
turbulence community, many research groups started to apply
high order DG methods with stabilization in the context of
implicit large eddy simulation with excellent results
competitive with others from the broader numerics
community, e.g., [97, 98]. However, in Moura et al. [67] it was
reported that certain configurations of the DG method for the
inviscid Taylor Green vortex problem kept crashing, even when
drastically increasing the number of quadrature nodes in the
surface and volume integrals. In fact, the amount of quadrature
points was increased up to the point where the DG scheme was no
longer computationally feasible, but the simulations still crashed.
The inviscid Taylor Green vortex setup in this case was used to
investigate the case of a very high Reynolds number flow with
severe under resolution common in realistic turbulence setups.
These findings were also verified by the authors of this review
article and have a strong consequence for the DG community.
While the ad hoc stabilization techniques were “good enough” in
the sense that they helped to make the DG scheme run for a broad
range of interesting problems, this approach is apparently not
bullet proof. Further, it is impossible to tell a priori for which
cases the stabilization will work and for which cases it will not.

This one example, where the high order DG scheme was not
stable and could not finish the simulation illustrates,
fundamentally, that the removal of aliasing and variational
crimes cannot be reliably done in an ad hoc fashion. Instead
we need a better understanding of these aliasing errors and how
they can be removed from inexact and/or under resolved
discretisations. Furthermore, we require a mathematically
sound approach to address these aliasing errors in the DG
approximation. That is, we need a novel strategy to design
robust high order DG methods to approximate the solution of
nonlinear advection-diffusion systems.

3 WHEN DID THE NOVEL DEVELOPMENT
START?

In 2013, two landmark results completely reshaped the
development of the DG method moving forward. First, in his
PhD thesis, Fisher extended the work on entropy stable schemes
LeFloch and Rhode [99] as well as the high order entropy stable
schemes of LeFloch et al. [100] to the summation-by-parts (SBP)
finite difference framework with high order boundary closures in
Refs. 88 and 101 respectively. LeFloch et al. and Fisher et al. found
that the entropy stability estimates for low-order FV methods,
developed by Tadmor [78], can be extended to high order
accuracy. Whereas the high order reconstruction of LeFloch
et al. was for periodic domains (i.e. without considering finite
domain boundaries), the SBP finite difference framework
includes special boundary closures and are applicable for finite
domains. Kreiss et al. [102–105] introduced the SBP finite
difference framework to specifically mimic integration-by-
parts. Integration-by-parts is a valuable tool for the
construction of stability estimates. Further discussion on SBP
is given by, e.g., Olsson [106, 107], Strand [108], Nordström [109]
and Svärd and Nordström [110].

To briefly introduce the main ideas of the classic SBP finite
difference framework, we consider a discretisation in one
spatial dimension on a finite interval E � [−1,1]. Within this
interval, we consider a set of N+1 regular grid nodes xj that
include the boundaries x0 � 1 and xN � 1. On this grid, a
continuous function u(x,t) is represented as the grid node
values Uj(t) � u(xj, t). In short notation, we collect the nodal
values into the vector quantity U. For the approximation of the
PDE, we need two discrete operators: One that approximates
integration, M ∈ R(N+1)×(N+1); and one that approximates
differentiation, D ∈ R(N+1)×(N+1). In this article, we only
consider diagonal matrices M, sometimes referred to as
diagonal norm SBP finite difference operators. With these
operators we have

∫
E

u(x) v(x) dx ≈ UT MV and
d
dx

u(x)|xj ≈ (DU)j. (40)

The discrete integration and differentiation need to be compatible
for a SBP operator to satisfy the property

(MD) + (MD)T � B, (41)

where B is the boundary integral evaluation operator with
B � diag(−1, 0, . . . , 0, 1). Multiplying Eq. 41 by grid values UT

of an arbitrary function u(x) from the left and the approximation
V of an arbitrary function v(x) from the right gives

UT(MD)V + UT(MD)T V � UTBV � VN UN − V0 U0. (42)

Grouping terms and using that M is diagonal such that M �
MT we have

UTM (DV) + (DU)TMV � VN UN − V0 U0, (43)

which is a discrete approximation of the integration-by-parts
formula for the corresponding functions u and v

∫
E

u
dv
dx

dx + ∫
E

du
dx

v dx � [u v]1−1, (44)

hence the name summation-by-parts.
With the SBP property, it is directly possible to show L2-

stability of the finite difference scheme for constant coefficient
linear advection problems. Starting again as an example with the
scalar problem Eq. 11 and the linear flux f � au, we get the
following SBP finite difference semi-discretisation

ztU + aDU � 0. (45)

As stated above, one motivation of the SBP framework is to
mimic the energy analysis of finite element discretisations like
that found in the DG analysis presented above for linear
advection. We proceed and first get a corresponding Galerkin
type variational form by multiplying with the discrete integration
matrix M

M ztU + aMDU � 0. (46)

This form is valid for all grid functions VTmultiplied from the left
and hence is a direct approximation of the variational Galerkin
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form, e.g., Eq. 12. We point out that this finite difference
approximation ignores the surface terms that are specific to
the discontinuous Galerkin scheme. Here, the arbitrary grid
function VT takes the role of the test function ϕ. Hence, we
can mimic the next step in the analysis, i.e. replacing the test
function with the DG solution ϕ � U , by multiplying Eq. 46 with
UT from the left

UTM ztU + aUTMDU � 0. (47)

The volume term can be reformulated with the SBP property to
move the discrete derivative onto the test function and generate
boundary data

UTMDU � UT(B − (MD)T)U � UTBU − UT(MD)TU
� UTBU − UT(MD)U .

(48)

From this step we see that the contribution of the volume terms in
the SBP finite difference scheme can be again lifted to the interval
boundaries

aUTMDU � a
2
UT BU , (49)

but this time without any assumption on a necessary quadrature
rule precision. In fact, this is general and holds for all diagonal
norm SBP finite difference operators. Again, with the assumption
of time continuity and periodic boundary conditions (UN�U0), it
follows that the discrete L2-norm of the SBP finite difference
solution ‖U‖2SBP � UT MU is bounded for all t.

We emphasize again that neither the reconstruction
techniques of LeFloch et al., nor the SBP finite difference
framework as a whole, depend on integration or exact
evaluation of integrals. Thus, in contrast to the DG stability
results discussed above, the stability results obtained for SBP
finite differences by Fisher et al. do not assume exact evaluation
of any integrals. Thus, such methods yield efficient algorithms
with feasible implementations that have provable stability
estimates.

The second important result was separately discovered in 2013
by Gassner [111]. He realized that the base operators of the nodal
discontinuous Galerkin spectral element method (DGSEM) have
the diagonal norm SBP property as long as the collocation nodes
{xj}Nj�0 and weights {ωj}Nj�0 were chosen to be those associated with
LGL quadrature. It is interesting to note, that earlier, in 2010,
Kopriva and Gassner [34] already found out that for DGSEM
with LGL quadrature, the weak DG formulation and the strong
DG formulation are discretely equivalent. As shown in Eqs. 9 and
10, the weak form and strong form can be transformed into one
another with integration-by-parts. Thus, when both forms are
discretely equivalent, it basically means that discrete integration-
by-parts, i.e., SBP, holds. We point out that in 1996, in the context
of spectral methods with Chebyshev-Lobatto nodes or LGL
nodes, Carpenter and Gottlieb [112] showed a similar property
as SBP for these spectral operators, however they assumed that
integration-by-parts holds for the proof. The results in Refs. 34
and 111 complete their findings as they remove the assumption of
exact integration.

In the nodal DGSEM-LGL framework, similar to the finite
difference framework, the solution coefficients of the DG
polynomial are nodal values Uj(t) at the location of the LGL
nodes xj. The nodal DG polynomial is represented with Lagrange
basis functions {ℓj(x)}Nj�0 spanned with the LGL nodes

u(x, t)|E ≈ U(x, t) �∑N
j�0

Uj(t) ℓj(x), (50)

which have the Kronecker delta property that ℓj(xi) � δij, i.e., 1 if
i � j and 0 otherwise. With this choice of basis function and
quadrature rule, it is possible to find discrete versions of the
corresponding integral operator and the differentiation operator.
For the integral we consider

∫
E

u(x) v(x) dx ≈ ∑N
j�0

ωju(xj) v(xj) � UT MV , (51)

with M � diag(ω0, . . . ,ωN) and the vector of LGL nodal
values U and V. Furthermore, we have for the discrete
differentiation

d
dx

u(x, t)|xi ≈ U ′(xi, t) �∑N
j�0

Uj(t) ℓ′j(xi), (52)

where we used the short hand notation for the spatial derivative of
the Lagrange basis d

dx ℓ(x) � ℓ′(x). Introducing the differentiation
matrix as

Di j � ℓ′j(xi), i, j � 0, . . . ,N , (53)

we get

d
dx

u(x, t)|xi ≈ (DU)j. (54)

As was shown in Ref. 111, these two discrete operators are again
compatible and provide the SBP property

(MD) + (MD)T � B, (55)

which means that the DGSEM-LGL operators belong to the class
of diagonal norm SBP operators. This simple property of one-
dimensional discrete integration-by-parts is the basis for a whole
polynomial spectral calculus [113] that includes, for instance,
discrete version of Gauss’ law on curvilinear grids in three spatial
dimensions.

Returning to the discussion on stability, the LGL quadrature
rule with N+1 points has an integration precision of 2N−1. Thus,
the DGSEM-LGL is stable for scalar linear advection as shown
above. However, the DGSEM-LGL is not stable for nonlinear
problems, e.g., for the quadratic flux function discussed in
Section 2.1 where an integration precision of 3N−1 is
necessary i.e., exact integration of the volume terms. But using
the SBP property of the DGSEM-LGL operators, it is possible to
apply ideas similar to Fisher et al. and construct a novel DGSEM
with LGL quadrature, that is discretely L2-stable for the nonlinear
Burgers’ equation, without the assumption on exact evaluation
of the integrals [111]. These first results have been extended and
compounded upon for the compressible Euler equations
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[114–118], the shallow water equations [63, 119–121],
the compressible Navier-Stokes equations [32, 122, 124],
non-conservative multi-phase problems [124],
magnetohydrodynamics [125, 126], relativistic Euler [127],
relativistic magnetohydrodynamics [128], the Cahn-Hilliard
equations [129], incompressible Navier-Stokes (INS) [130],
and coupled Cahn-Hilliard and INS [131] among many other
complex PDE models and DG discretization types e.g., [132].

4 WHAT IS THE KEY IDEA?

To recap the discussion, there are several obstacles that make it
difficult to obtain entropy stability estimates for high order DG
methods in the case of a general nonlinear system of hyperbolic
PDEs: 1) The assumption of exact evaluation of integrals is
unfeasible in practice; 2) We need to contract with entropy
variables w that nonlinearly depend on the conservative
quantities u, which means that we need to replace the test
functions by a projection (or interpolation) of w(u) ; 3) We
need to satisfy a discrete version of the chain rule to contract the
flux divergence into entropy space, i.e. a discrete version of
wT(f i)xi � (f si )xi, i � 1,2,3, where now the entropy variables
and the flux functions are discrete projections and the
derivative is replaced with our discrete derivative operator.

In what follows, the key ideas to resolve all three issues are
presented. We focus on issue 1) and consider a scalar nonlinear
problemwith quadratic fluxes discussed above first. Thenwe ramp-up
the complexity in the second subsection and discuss how to extend the
novel approach to general systems and how to resolve all issues (i)-(iii).

4.1 On the Conservative Form, Split Forms
and Skew-Symmetry
To illustrate the general idea of a split form and how to
incorporate it into a high order DG approximation we
examine our simple scalar nonlinear hyperbolic conservation
law, the Burgers’ equation. We start with the conservative form

ut + (u2

2
)

x

� 0, (56)

that can be rewritten into its advective form

ut + u ux � 0, (57)

which is equivalent in the continuous case for smooth solutions.
We can also consider an equivalent combination of the two forms

ut + α(u2

2
)

x

+ (1 − α) u ux � 0, (58)

where α ∈ R is an arbitrary parameter. This form is called the split
form of Burgers’ equation, with α being the split form parameter.

While in the continuous case with smooth solutions all of
these forms are equivalent, it is important to note that in the
discrete case this is not true. Considering the DGSEM operators
with N+1 LGL nodes, the volume terms for the conservative form
are given by

(u2

2
)

x

≈
1
2
DU U , (59)

where U is the vector of values of u at the LGL nodes, D is the
DGSEM-LGL derivative operator and U � diag(U0, . . . ,UN ) is a
matrix that has the nodal values U injected onto its diagonal.
Analogously, the volume terms for the advective form are

u ux ≈ U DU . (60)

Only for polynomial functions u with degree ≤N/2 and their
corresponding nodal values U, do we have

1
2
DU U � U DU . (61)

In all other cases, i.e. in the general case for arbitrary nodal vectors
U, we get

1
2
DU U ≠U DU . (62)

The discrete forms are different because of different aliasing
errors. Whereas the conservative form computes a discrete
derivative of U2, the second form computes a “clean”
derivative of U, but on the other hand needs to compute the
product of two functions U and DU on a grid with only N+1
nodes. An interesting question is, if we can make use of the
different (aliasing) errors in the two forms and find combinations
via the split formulation where these errors cancel.

We note that the idea of split formulations was already introduced
in the spectral community to develop stable numerical methods for
the incompressibleNavier-Stokes equations e.g., [133], but is especially
prominent in the finite difference fluid dynamics community e.g.,
[134–139]. Split formulations are used as a built-in dealiasing
mechanism to stabilize numerical methods e.g., [140].
Combinations of different forms of the advective terms of the
compressible Euler equations yield finite difference approximations
that are more robust than the standard conservative ones. In a perfect
world, it would be desirable if we could choose the split form
parameter α such that the different aliasing errors cancel exactly.
Unfortunately, in general, it is not possible to cancel the aliasing errors
for each grid node; however, what we will show next is that it is
possible to cancel the aliasing errors in a way to get a global L2-stability
estimate similar to the estimates by Jiang and Shu [65], but without the
assumption of exact integration.

First, we derive the strong DG formulation of the split form of
Burgers’ Eq. 58 by multiplying with a test function ϕ, integrating
over a grid cell E, inserting a numerical flux function f* at the grid
cell interface to account for the discontinuous nature of our
ansatz, and use integration-by-parts again to arrive at

∫
E

Ut ϕ dx + ⎡⎢⎢⎢⎢⎢⎣(f *(U+,U) − f (U)) ϕ]zE + ∫
E

⎡⎢⎢⎢⎢⎢⎣α(U2

2
)

x

+ (1 − α)U Ux
⎤⎥⎥⎥⎥⎥⎦ ϕ dx � 0, (63)

where the flux is f(U) � U2/2. We consider specifically the
DGSEM-LGL variant to get discrete operators that satisfy the
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SBP property with diagonal norm (mass matrix)M. We arrive at
the DGSEM-LGL variant when we replace the integrals by
discrete quadrature with N+1 LGL nodes and when using the
same N+1 LGL nodes to span the Lagrange basis functions used
for our polynomial ansatz. This gives the following discrete
DGSEM-LGL split form

ztU +M−1B [F* − F] + α
1
2
DU U + (1 − α)U DU � 0, (64)

where B is the boundary evaluationmatrix from the SBP property
Eq. 41, F � F(U) is the vector of collocated nodal flux values
i.e., Fj � f (Uj)∀j, and F* is a vector that contains the numerical
fluxes at the interfaces “left” and “right” in its first and last entry
and is zero elsewhere. The value U+, again, indicates that the
numerical flux functions depends not only on local element
values U, but also on the values from the neighbor grid cells.
We refer to Gassner [111] for a detailed derivation of this form
and its connection to the SBP framework with simultaneous-
approximation-terms (SAT).

Next, we follow the standard procedure to derive an L2-
stability estimate by multiplying the scheme with the DG
solution and use the quadrature rule to numerically integrate
over the element i.e., we multiply by UTM

UTM ztU + UTB [F* − F] + α
1
2
UTMDU U

+ (1 − α)UT UMDU � 0, (65)

where we used the fact that MU � UM because both matrices
are diagonal. Again, we consider the semi-discrete version and
assume continuity in time to have

UTM ztU � 1
2
ztU

2
M,E, (66)

the evolution of the discrete L2-norm in the grid cell E. Next,
we focus on the volume terms. Note, that in the analysis of
Jiang and Shu exact integration was assumed to contract the
volume contribution to the surface. This is very important, as it
allows direct control over the stability of the scheme with the
choice of the numerical interface flux F*. Without the
assumption of exact integration however, we look at the
influence of the choice of the split form parameter α
instead. We realize that the second term in the volume
integral can be transposed UT UMDU � UT(MD)T U U
and is similar to the first term in the volume integral,
except for (MD)T is now transposed. Using the SBP
property (MD)T � B −MD we get

α
1
2
UTMDU U + (1 − α)UT UMDU

� α
1
2
UTMDU U + (1 − α)UT (MD)T U U ,

� (α 3
2
− 1)UTMDU U + (1 − α)UT BU U .

(67)

The termwith the boundary evaluationmatrixB is a surface term,
however the remainder term is a volume term that can either
increase or decrease the L2-norm. Hence, this term can be

potentially critical in cases where it increases the norm, as this
is an unstable behavior that could lead to break down of the
simulation. We note that this volume term is another expression
of the aliasing issues. To guarantee that this term does not affect
stability, we need to guarantee that it vanishes. We see that there
is a single (unique) choice of the split form parameter α � 2/3 that
cancels the remaining volume term. With this choice, the discrete
change of the L2-norm reads as

1
2
ztU

2
M,E + UTB [F* − F] + 2

3
UT B F

� 1
2
zt ||U ||2M,E + UTB [F* − 1

3
F] � 0. (68)

This estimate is now analogous to the one with exact integration
Eq. 19 and hence, with the same arguments, the choice of the
numerical flux functions as

f *,EC(U+,U) � 1
6
((U+)2 + U+ U + U2), (69)

gives again a discrete stability estimate

zt‖U‖2M � 0, (70)

for the split form DGSEM-LGL with α � 2/3 when summing
over all grid cells with periodic boundary conditions. It is
important to observe that this estimate is discrete in the sense
that it did not assume exact integration and that it can be only
derived with the particular choice α � 2/3 to cancel out the
volume contribution of the aliasing errors. With this, we have a
novel method where we have solved issue i) mentioned in the
beginning of the section.

We note that this particular choice of numerical flux function
exactly preserves the discrete L2-norm. If one considers non-
smooth solutions this choice would be inappropriate as for e.g.,
shocks, because the L2-norm needs to decrease as u2 is a
mathematical entropy for Burgers’ equation. For scalar
equations, s(u) � u2/2 is the square entropy (which leads to an
L2-stability estimate e.g., [99, 141]) that gives the simple entropy
variables w(u) � ds

du � u. Hence, the specific choice of numerical
flux Eq. 72 is often referred to as an entropy conservative (EC)
flux function. For an entropy dissipative flux function, there are
many choices available. It can be shown that the class of E-fluxes,
e.g., [33], are guaranteed dissipative and lead to the estimate

zt‖U‖2M ≤ 0. (71)

As an example, a simple choice of an entropy dissipative
numerical flux function is that of Rusanov

f *(U+,U) � 1
2
(F(U+) + F(U)) − 1

2
λmax(U+ − U),

λmax � max
U+ ,U
(zf
zu
). (72)

An important question is how we can extend this approach to
general nonlinear systems. Following the same ideas, it was
possible to derive split forms for the shallow water equations
[63, 119, 142], a simplified version of the compressible Euler
equations. There are many split forms for compressible Euler

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 50069011

Gassner and Winters Robust DG for Computational Fluids

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


that, for instance, give kinetic energy preserving properties e.g.,
[143, 144]. However, up to now, no split form for the
compressible Euler equations is known that gives the desired
discrete entropy stability estimate. The problems are issues ii) and
iii) mentioned in the beginning of the section, where we need the
discrete chain rule property to contract the volume terms to the
surface. Concluding this subsection we revisit the derivations of
Burgers’ equation and make two important observations.

First, with the proper choice of α � 2/3, we get the so-called
skew-symmetric form

ut + 1
3
((u2)x + u ux) � 0. (73)

Skew-symmetry is strongly connected to entropy, see e.g.,
Tadmor [85]. Multiplying the spatial derivative term by u as
in the L2-stability analysis gives

u ((u2)x + u ux) � u (u2)x + u2 (u)x � (u3)x, (74)

which shows that the skew-symmetric form gives a product-rule
type form in the stability analysis that can directly be contracted to
the divergence form i.e., contracts to the surface when integrating. In
fact, for this simple problem, the chain rule needed for contraction
reduces to the simpler product rule. Analogously, we get for the
discrete skew-symmetric volume terms of the DGSEM-LGL

UTMDU U + UT UMDU � UTBU U . (75)

Thus, in our derivation, we already used a specific discrete version
of the chain rule (product rule) to get our estimate. The question
is, how to extend this idea to the general case?

The second important observation pioneered for SBP schemes
by Fisher in his PhD thesis [88] (in the spirit of earlier work by
LeFloch et al. [100]) is that the particular skew-symmetric volume
terms 1

3 [DU U + U DU] can be rewritten for any diagonal norm
SBP operator (hence, also for the DGSEM-LGL case) into

1
3
[DU U + U DU]i � 2∑

j�0

N

Dij
1
6
(U2

j + Uj Ui + U2
i )

� 2∑
j�0

N

Dijf
*,EC(Uj,Ui)

� DECf ,

(76)

with f *,EC being the particular numerical flux Eq. 69 that is
symmetric in its arguments and that leads to exact conservation
ofU2. We further introduced the shorthand notationDECf for the
volume term, that indicates that we use a specific derivative
operator built on the EC-flux. As a remark, we note that this
relation is easy to prove, as the discrete derivative of a constant is
zero and then, for instance,

∑N
j�0

DijU
2
i � U2

i ∑N
j�0

Dij � 0. (77)

In combination with the first observation we get the property that
this new discrete derivative operator (or divergence operator in
the multi-dimensional case) satisfies

UT MDECf � B Fs, (78)

where Fs is the collocated nodal vector of the entropy flux f s �
u3/3 for Burgers’ equation with the square entropy s(u) � u2/2.
This relation is the important discrete analogue of the chain-rule
property u fx � f sx , as it follows with integration that (82) is the
discrete analogue of

∫
Q

u fx dx � [f s]zQ. (79)

We will see in the next subsection, how these observations guide
the path to discrete stability estimates for general hyperbolic PDE
systems.

4.2 On the Discrete Entropy Stability of the
DGSEM-LGL
We have demonstrated how to build a high order skew-
symmetric DG approximation of the scalar nonlinear Burgers’
equation. To do so required a very particular discrete derivative
operator Eq. 78 that was the key to restore discrete entropy
stability. We now discuss how to extend the split form approach
to general systems of nonlinear hyperbolic conservation laws. For
general nonlinear systems, it is unclear how to explicitly construct
the split form to obtain a discrete chain rule property. In
particular, the compatibility condition on the physical fluxes
obtained when one contracts into entropy space Eq. 29 that
we reproduce here, assuming one spatial dimension, due to their
pertinence in the present discussion

wT fx � f sx . (80)

As previously indicated, the chain rule is either unfeasible or even
impossible to directly recover with discrete differentiation. With
this in mind we apply the product rule to this compatibility
condition between the physical flux f and the entropy flux f s

to find

wT
x f � (wT f)x − f sx � (wT f − f s)x. (81)

A principle motivation for this manipulation is because it is far
easier to recover the product rule discretely than it is the chain
rule. That is, we already have a particular discrete equivalent for
the product rule if the discrete derivative matrix D is a SBP
operator.

Next, we aim to find a discrete version of the new compatibility
condition Eq. 81 following the ideas of Tadmor [78]. Tadmor
analyzed low order FV schemes and developed conditions on the
numerical surface flux to derive a discretely entropy conserving
scheme. In the context of the low order FV methodology, our
unknowns in the elements are mean values that are naturally
discontinuous across grid cell interfaces. As mentioned above, the
idea to resolve these discontinuities with numerical flux functions
was also used in the construction of the DG approximation.
Consider the contribution to the compatibility condition Eq. 81
at an arbitrary interface. It depends on the discrete values in the
current cell and the direct neighbor of that cell, denoted again
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with a “+”. We approximate all derivatives with first order
differences and define Tadmor’s entropy conservation
condition on the numerical surface flux function

((w(U+)) − w(U)
Δx )T

f *,EC(U+,U)

� (w(U+)T f(U+) − f s(U+)) − (w(U)T f(U) − f s(U))
Δx , (82)

where Δx is the size of each grid cell. Equivalently, we arrive at the
following general condition on the numerical surface flux for
entropy conservation

((w(U+)) − w(U))T f *,EC(U+,U) � (w(U+)T f(U+) − f s(U+))
− (w(U)T f(U) − f s(U)).

(83)

For scalar nonlinear problems this condition can be solved
explicitly [145]. For example, in the case of Burgers’ equation,
we have w(u) � u, f(u) � u2/2, and f s(u) � u3/3 such that solving
Eq. 83

f *,EC(U+,U) � 1
6
(U+)3 − U3

U+ − U
� 1
6
((U+)2 + U+U + U2), (84)

which matches the particular entropy conservative flux derived in
Section 4.1. We note again that the entropy conservative flux is
symmetric in its arguments U+ and U, and is consistent to the
physical flux in the sense that for the same arguments we recover
the PDE flux f *,EC(U ,U) � f (U).

However, for systems of nonlinear hyperbolic conservation
laws Eq. 83 is a single algebraic condition for a system vector of
unknown flux quantities. Therefore, care must be taken to define
an entropy conservative numerical flux function that remains
physically consistent. That being said, the entropy conservation
condition on the numerical surface flux Eq. 83 is an incredibly
powerful statement. Provided we know an explicit form of the
entropy variables, the physical flux, and the entropy flux we can
define an appropriate numerical flux that ensures entropy
consistency for a low order FV numerical approximation. A
general form for such a numerical flux was developed by
Tadmor [77] defined as a phase integral

f *,EC(U+,U) � ∫1
2

−12
f( ~W(U(ξ))) dξ,

~W(U(ξ)) � 1
2
(W(U+) +W(U)) + ξ(W(U+) −W(U)).

(85)

To evaluate the phase integral form of the numerical flux function
requires a certain quadrature rule that defines a path through phase
space. Though theoretically useful, this phase integral form is
computationally prohibitive for practical simulations, even for low
order numerical approximations. However, over the past 20 years
“affordable” versions of the entropy conservative flux function
f *,EC(U+,U) have been developed for a variety of nonlinear
systems like the shallow water equations [119, 146], compressible
Euler [81, 83], and ideal magnetohydrodynamics [147].

The key to these numerically tractable versions of the entropy
conservative numerical flux function is to evaluate the
components of the physical flux at various mean states
between U+ and U. Note that these mean states can take on
incredibly complex forms that depend on the arithmetic mean,
the product of arithmetic means, or more uncommon quantities
like the logarithmic mean. Complete details on the derivation of
such numerical flux functions can be found in e.g., [81, 83,
146, 147].

For illustrative purposes we summarize the specific form of an
entropy conservative numerical flux for the one dimensional
compressible Euler equations with the ideal gas assumption
due to Chandrashekar [81]. First, we introduce notation for
the arithmetic mean and the logarithmic mean for two
quantities a and a+:

{{a}} � 1
2
(a+ + a), aln � a+ − a

ln(a+) − ln(a). (86)

Also, we introduce a variable proportional to the inverse of the
temperature

β � p
2ρ
, (87)

which simplifies the form of the entropy variables Eq. 36 to be

w � [ c − s
c − 1

− βv2 , 2βv , − 2β]T . (88)

Then, applying the entropy conservation condition Eq. 83 and
many algebraic manipulations later, we arrive at an analytical
expression of an entropy conservative numerical flux for the
compressible Euler equations

f *,EC(U+,U) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρln{{v}}

ρln{{v}}2 + {{ρ}}
2{{β}}

{{v}}
2
( ρln

βln(c − 1) +
{{ρ}}{{β}}) + ρln{{v}}

2
(2{{v}}2 − {{v2}})

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(89)

So far, the discussion on entropy conservative numerical
approximations has all been in the context of low order finite
volume methods. It is possible to create a high order entropy
aware scheme with ENO [148] or WENO type reconstructions
[149]. However, as mentioned above, a critical and remarkable
result of Fisher’s work is that a low order finite volume entropy
conservative scheme can be extended to an arbitrarily high order
accurate spatial scheme, when it is based on diagonal norm SBP
operators [101]. As was described for Burgers’ equation in the last
two observations in Section 4.1, the crucial part is to move the
contribution to the entropy production from the volume terms to
the surface via a discrete version of the chain rule. Once stability is
only governed by surface contributions, it is possible to control
the stability with a proper choice of numerical interface flux
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function. In this sense, the analysis of the high order scheme
reduces to a similar problem as for the low order finite volume
method Eq. 83 and the well-established theoretical analysis tools
and results can be reused. It is worth mentioning that f*,EC is not
unique and that a particular choice of the entropy conservative
flux generates a different split form of the governing equations,
e.g., [144, 150, 151].

We return to a strong form DG approximation of a nonlinear
hyperbolic system of conservation laws that takes a form identical
to Eq. 38 but now only considered in one spatial dimension

〈Ut , ϕ〉E + [ϕT(f *(U+,U) − f(U))]1−1 + 〈fx, ϕ〉E � 0. (90)

Here the standard tools of a nodal DG approximation have been
applied:

1. The solution and physical fluxes are approximated with
polynomials.

2. Any integrals in the variational formulation are approximated
with high order LGL quadrature.

3. The interpolation and quadrature nodes are collocated.

Importantly, these steps mean that the discrete DG
differentiation matrix is a SBP operator. Furthermore, we use
the entropy conservative numerical surface flux at the interface
and the particular discrete derivative projection DEC defined in
Eq. 76 in the volume contribution to arrive at the entropy
conservative DG approximation

ϕT(MUt + [f *,EC(U+,U) − f]1−1 +MDECf) � 0, ∀ϕ ∈ RN+1.

(91)

Now, if we take the test function ϕ � W with Wj � w(Uj)
evaluated at each LGL node xj, we obtain

WTMUt �∑N
j�0

ωjW
T
j (Ut)j �∑N

j�0
ωj(St)j � 〈St , 1〉E, (92)

assuming continuity in time. Also, the discrete differentiation
operator DEC moves volume information onto the boundary, see
Refs. 32, 101, and 125 for complete details, such that

WTMDECf � BFs. (93)

We note that this remarkable property holds for general
nonlinear systems with available entropy estimate and a
corresponding low order entropy conserving flux f*,EC.
Combining this with the definition of the entropy conservative
flux Eq. 83, the discrete entropy evolution of the DGSEM-LGL
becomes

〈St , 1〉E + [Fs]1−1 � 0, (94)

which is the discrete analogue of the integral form of the entropy
conservation law discussed in Section 2.2. The resulting DGSEM-
LGL is entropy conservative by construction and it is important
to note we have assumed no exactness on the integration. From
this baseline entropy conservative numerical scheme, that does
not dissipate entropy by construction, we can create a high order

DGSEM-LGL that enforces the entropy inequality Eq. 32. We do
so by introducing dissipation at the element interfaces via the
choice of the numerical surface flux function, e.g., the Rusanov
flux Eq. 72. More complex dissipation techniques are also
available that dissipate solution information according to the
different wave strengths with complete details found in, e.g.,
[152–156]. We finally note that this discussion was restricted to
one spatial dimension for the sake of convenience and simplicity.
Extensions to general three dimensional curvilinear coordinate
systems are available, see e.g., [32, 101, 116, 125, 157, 158] for
details.

4.3 Validation of Robustness and
Application to Space Physics of the Entropy
Stable DGSEM
In this subsection, we demonstrate two exemplary simulation
results of a DG scheme based on the key ideas outlined above. The
general split form DGSEM with LGL nodes on three dimensional
curvilinear hexahedral unstructured meshes is implemented in
the open source software FLUXO (project-fluxo/fluxo at github),
written in modern Fortran with a special emphasis on massively
parallel CPU based hardware. The main focus of the software is
on compressible Navier-Stokes and visco-resistive MHD
equations. Time integration of the semi-discrete form is done
with a fourth order accurate low storage Runge-Kutta method of
Carpenter and Kennedy [159].

For the validation of the robustness we revisit an important
numerical contribution of Moura et al. [67]. They were the first to
report of a test case that the DG scheme with (numerical) exact
integration was not able to run, demonstrating, that further
improvement on the robustness of the DG methodology was
necessary. For this validation test, we consider the compressible
Navier-Stokes equations (viscous case) or the compressible Euler
equations (inviscid case, basically setting the viscosity parameter
to zero). The considered problem is the Taylor-Green vortex in a
fully periodic domain, which serves as a test case for a fully
periodic turbulent box [0,1]3, that starts with a smooth initial
velocity field

v1 � v0 sin(2 π x1)cos(2 π x2)cos(2 π x3),
v2 � −v0 cos(2 π x1)sin(2 π x2)cos(2 π x3),
v3 � 0, (95)

and transitions to turbulence during its temporal evolution until
it reaches a state similar to homogeneous turbulence. The initial
density is uniform ρ � 1 and the initial pressure is give by
p � p0 + 1

16 (cos(4 π x1) + cos(4 π x2))(cos(4 π x3) + 2), where
p0 is a background pressure and v0 the velocity amplitude
used to set the initial Mach number. In our case, we choose
the Mach number to be Ma � 0.1. Unresolved vortical driven
flows are especially prone to the aliasing issues discussed above.
The difficulty of this test case lies in its wide range of scales when
the Reynolds number increases (i.e., for low viscosities), e.g., [39].
For the DGSEM discretisation, we choose the polynomial degree
N and the number of grid cells N3

Q. Thus, the total number of
degrees of freedom (DOF) for one conserved quantity is
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(N + 1)3 N3
Q. For the numerical flux function at the surface, we

use the Rusanov flux.
For the robustness investigation, we consider an inviscid flow

(with the viscosity parameter is zero) and focus on three
particular setups, where N � 1,3,7 with number of elements
NQ � 56,28,14 respectively. This ensures that for all three
computations the overall number of DOF per conserved
quantity is equal, about 1.4 million. There are many more
investigations of different configurations presented in Ref. 160,
but they all demonstrate the same behavior: while the low order
variants N � 1,3 seem to be relatively robust with full integration,
the higher the polynomial degree, the less stable the DG method
becomes. And for the case N � 7 with NQ � 14 the simulation
crashed at about a simulation time of tcrash � 8.4, even when
increasing the quadrature nodes from 83 up to 323 � 32768 per
element. In contrast, the novel entropy stable DGSEM with
standard LGL nodes runs all configurations without crashing.

Furthermore, it is possible to run this challenging test case
even without any artificial dissipation, i.e. with the F*,EC

numerical flux instead of the Rusanov flux function. This is
very interesting, as it allows us to fully observe and control the
artificial numerical dissipation generated by the scheme. To
demonstrate this, we consider again the Taylor-Green vortex
test case, but this time with non-zero viscosity such that the
Reynolds number is Re � 1600. In this Navier-Stokes case, it is
possible to relate the kinetic energy decay over time with the
temporal behavior of the enstrophy to get an estimate for the
Reynolds number. In theory, this should be Re � 1600 for the
simulation. In practice, the finite resolution causes numerical
errors such as dispersion and dissipation, e.g., [55]. We present
two results in Figure 1 for the viscous test case with N � 7 and
NQ � 8.

We note, that this test case would crash for the standard DG
scheme, however for the presented novel DGSEM-LGL with the
proper discrete chain rule, it runs with the dissipative Rusanov
numerical flux F*,Rusanov (entropy stable DGSEM-LGL) and even
with the non-dissipative numerical flux F*,EC (entropy
conservative DGSEM-LGL). After an initial transition zone,
the entropy conservative scheme retains the physical Reynolds
number remarkably well with Renumerical � 1600 and the
simulation is virtually dissipation free throughout the temporal
evolution. The entropy stable variant clearly introduces
stabilizing dissipation as soon as the spatial scales can no
longer be resolved. It is interesting to note, that these results
hint toward the possibility of quantifying and controlling the
artificial dissipation of the DGSEM for under resolved turbulence
and use this to construct high fidelity turbulence models, see e.g.,
for a proof of concept [161].

For an exemplary application we consider a complex test case
from space physics. We focus on the electrodynamic and plasma
interaction of the moon Io with the strong magnetic field of
Jupiter. Io is embedded in a dense plasma torus, induced by the
magnetosphere of Jupiter, and it exhibits interesting plasma flow
characteristics containing steep gradients and discontinuities
[162]. The general problem setup is illustrated in Figure 2.
Neglecting neutral density, relativistic, viscous, resistive, and
Hall effects, this MHD flow within Io’s plasma torus can be

modeled with the ideal MHD equations. For such
magnetohydrodynamic flows, the entropy stable DGSEM
solver in FLUXO uses a hyperbolic divergence cleaning
mechanism to enforce the divergence-free constraint on the
magnetic field variables B

→
[125]. Additionally, the solver must

be augmented with a shock capturing technique in order to
handle strong discontinuities [163].

As Io orbits Jupiter, plasma from the torus streams in and
forms a local ionosphere that induces polarisation charges and
modifies the electric field, thus changing the local Lorentz force
and damping electron and ion flow close to Io. The plasma flow is
strongly reduced inside Io’s (very weak) atmosphere, which can
bemodeled by incorporating a neutral collision source term to the
ideal MHD system, Saur et al. [162, 164],

scollision � [0 , − ϖρ v→ , − 1
2
ϖρ ‖ v→‖2 , 0

→]T , (96)

with the collision frequency

ϖ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϖin , x→ ∈ U

ϖinexp(rU − r
d
) , x→ ∈ T

0 , x→ ∉ U∪T

, (101)

where ϖin > 0 is constant. The inner atmosphere of Io is
represented as a neutral gas cloud U. In order to model the
ionosphere, we also introduce a smooth transition area T by an
exponential blending dependent on the radii rU, r and the
dilatation factor d. In this region the neutral atmosphere thins

FIGURE 1 | The estimate of the numerical Reynolds number of an under
resolved simulation with polynomial degree N � 7 and eight elements (643

DOF). The physical Reynolds number of the Taylor-Green vortex setup is Re �
1600. The entropy conservative (EC) scheme retains the physical
Reynolds number remarkably well and is virtually dissipation free. The entropy
stable (Rusanov) variant clearly introduces stabilizing dissipation as soon as
the scales can no longer be resolved starting at about t � 3.
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causing ionospheric conductivities to shrink such that they are no
longer able to maintain the ionospheric current perpendicular to
the magnetic field. Eventually, electric current is continued along
the magnetic field lines out of Io’s ionosphere, where it is finally
fed into Io’s Alfvén wings as illustrated in Figure 3.

In the dimensionless computational domain we scale the
radius of the atmosphere to take a spherical shape with radius
one and locate the center of the sphere at the origin

U � { x→ ∈ Ω
∣∣∣∣∣ ‖ x→ ‖ ≤ rU � 1}. (102)

The ionospheric processes uses the exponential blending of the
collision frequency above with a dilatation factor d � 150/1820.
The initial conditions for the flow are taken as

ρ � 1, v→ � (1, 0, 0)T , p � 0.148, B
→ � (0, 0,−3.41)T ,

(103)

that will evolve to a final time T � 5. The gas constant is taken to
be c � 5/3. The boundary states at the left, front and back
boundary faces are constant to this reference state, whereas we
define outflow boundary conditions at the right, top and bottom
of the domain.

In anticipation to capture the relevant physical interactions at
the sphere as well as the development of the Alfvén wings best, we
exploit the geometric flexibility of the entropy stable DGSEM
solver and divide the computational domain into an
unstructured, curvilinear mesh presented in Figure 4. Within
each element we use a polynomial order of N � 3.

In Figure 5we show a 2D-slice of the B1 and v1 components at
y � 0 of the entropy stable approximation at the final time which
presents the numerically generated Alfvén wings from the
entropy stable DGSEM. It also demonstrates the expected
positive correlation of the B1 variable with the velocity variable
v1 in the northern Alfvén wing and the negative correlation in the

southern wing. Moreover, we consider profile slices in these B1
and v1 along the line z � 5 and compare the results to a solution
computed by the open source software ZEUS (www.astro.
princeton.edu/jstone/zeus.html) in Figure 6. ZEUS is a FV
solver written in spherical coordinates that uses explicit time
integration. For the presented comparison, ZEUS used 10 million
grid cells (DOF) in total whereas the entropy stable DGSEM
solver used approximately 14,336 elements with N�3
polynomials and a total of about 1 million DOF. The
reduction of DOFs also translated in a nearly 10 fold
reduction of overall CPU time when both codes were run in
parallel using MPI on 100 cores. This increased efficiency of the
high order DGSEM-LGL, the increased robustness due to discrete
entropy stability, and the geometrical flexibility are several
advantages of this novel DG framework.

5 WHERE TO GO NEXT?

The response of the DG community to the split form DGSEM
with LGL quadrature on tensor-product hexahedra has been
astounding. However, naturally, there are still many
limitations of this method. Some that have been recently
addressed and many others still open. So far, we discussed
semi-discrete DGSEM-LGL variants with tensor product
expansions on possible curvilinear unstructured hexahedral
meshes. Direct extensions of this variant include non-
conforming meshes [166, 167], moving meshes [168–170],
different related versions such as e.g., the line DG method
[171], and a fully discrete space-time approach without the
assumption on time continuity [172–175]. An exciting recent
development are explicit modified Runge-Kutta methods that
retain the semi-discrete entropy stability estimates [176].

A downside of LGL is that in comparison to the Legendre-
Gauss (LG) points, the accuracy in dispersion and dissipation is

FIGURE 2 | Io’s electrodynamic interaction is unique due to its fast rotation and the influence of the strong magnetic field of Jupiter. Plasma interactions with Io’s
atmosphere lead to mass loss in the form of ions and neutrons. These neutrons then ionize through radiative effects and accumulate around Io forming a plasma torus.
Consequently, this flow of magnetized plasma past the obstacle Io, combined with atmospheric interactions, are the engine behind Io’s plasma interactions with Jupiter’s
magnetosphere.
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lower, see e.g., [56]. Unfortunately, LG points do not include the
boundary nodes, hence they do not directly satisfy the classic SBP
property and the presented developments cannot be directly
applied to this case. However, there are several developments
where the framework was extended to construct entropy stable
variants with LG nodes. One is based on a staggered grid
approach by Parsani et al. [176]. The authors used the
standard LG nodes to span the solution, however to compute
the discrete derivative operator, they interpolate onto a higher
order staggered LGL grid where they can use the SBP property.
Then they ensure that the back-projection is still entropy stable to
retain the stability estimate on top of the accuracy of the LG
nodes. Another approach is presented by e.g., Ortleb [177] where
the author directly constructed a scheme that preserves the
kinetic energy with LG nodes. Although SBP could not
directly be applied, the difference lies only in the boundary
operator B. For classic SBP B is diagonal, whereas in case of
LG nodes B has some columns filled. Ortleb fixed this by
considering special correction terms at the boundary, while
using similar ideas as in the LGL case for the volume terms.
In his PhD thesis, Fernández [178] extended the classic SBP
property to general node sets that do or do not include the
boundary nodes, where all grid nodes lie inside or even outside of
the considered domain.

A generalization onto multi-dimensional domains is given in
e.g., [179], termed multidimensional SBP operators. This is an
interesting development, as it resolves another limitation of the
classic DGSEM-LGL. In some applications, it is favourable to
have more flexibility when generating meshes for geometries with

complex shapes. In this case, meshes with simplex element types
such as triangles and tetrahedra or even hybrid element types
such as prisms and pyramids are desired. We will mention some
recent developments and extensions here, but stress that this list
is not complete and there are many more. Returning to the
multidimensional SBP framework, this approach’s strength is
that it can be used to construct stable methods on simplex meshes
e.g., by Chan [115, 180], Chen and Shu [132], Hicken et al. [181],
and Crean et al. [182]. Another interesting approach to generate
DG scheme on general meshes is presented by Chan [115]. He
shows that a special projection directly with the entropy variables
collocated at the grid nodes can give a SBP type property that can
be used to construct stable discretisations.

As stated the response of the DG community has been
astonishing with an explosion of developments, extensions,
and new insights. However, there are still many unresolved
issues that need to be researched in the future to further
evolve high order DG methods into a viable tool for
computational physics. The most important problem is still
robustness. Although entropy stability significantly improves
the stability of the scheme in many applications, there are still
situations where no significant gain in robustness of the DG
scheme can be observed [183, 184]. A possible reason could be,
for instance, the incorrect choice of mathematical entropy
function. While there is typically only one physical
(thermodynamic) entropy, there are many mathematical ones
that often lead to a stability estimate in corresponding norms of
the solution. So what are the important entropy quantities to
consider? What about e.g., kinetic energy, cross helicity and

FIGURE 3 | Standing Alfvén current tube magneto-spheric disturbances, termed Alfvén wings, that spread and propagate away along field lines in both directions.
The development of the Alfvén wings are observable in the regions with decreasing plasma bulk velocity v1 and perturbed magnetic field B1 north and south of Io in the xz
plane. It is known that the Alfvén current tubes are bent back by a constant angle with respect to the unperturbed background magnetic field. Further, the perturbation of
the magnetic field is positively correlated with the perturbation of the velocity field in the northern Alfvén wing and negatively correlated in the southern wing [133].
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FIGURE 4 | Computational mesh for the Alvénwing test problem built from 14,336 curved elements. At the origin the elements are curved to capture the spherical shape of the
neutral gas cloudU. Due to the geometric flexibility of theDGSEM themesh in the northern and southern regions are titled in order to capture theAlvénwing structuresmore accurately.

FIGURE 5 | Alfvén wings numerically computed with the entropy stable DGSEM for the plasma interaction of a spherical gas cloud. The snapshot is a slice in the xz
plane at y � 0 at the final time T � 5. The polynomial order in each spatial direction was N � 3 in each spatial direction. As expected, the Alfvén wings evolve from the
northern and southern poles of the neutral gas cloud and are bent back by a constant angle with respect to the background magnetic field. This bending was taken into
account in the construction of the curvilinear mesh.
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related quantities? For example, in turbulence, the kinetic energy
and proper prediction of its behavior seems to play an important
role [144, 161, 185, 186]. Besides getting discrete entropy stability
estimates, it is possible to use the split form DGSEM-LGL
approach from Section 4.1 to construct DG schemes that
discretely preserve the kinetic energy and are discretely
compatible for the inner and the total energy, e.g., [116]. It
could be shown in Refs. 160 and 161 that such kinetic energy
preserving DG schemes behave favourably for the simulation of
compressible turbulence in comparison to the standard DG,
especially in combination with subgrid turbulence models.
However, just as in the development of entropy conservative
(and in turn entropy stable) numerical flux functions there is
nonuniqeuness. There exist many possible solutions to create a
numerical flux that is e.g., kinetic energy preserving or entropy
conservative or both e.g., [81, 83, 144, 185, 187]. Moreover, the
discrete behavior of the kinetic energy as it evolves in time for
under-resolved turbulent flows is quite different even between
fluxes that are all provably kinetic energy preserving on paper [116,
187, 188]. So, an important question for the future is thus:What are
the important quantities not only from a mathematical, but also
from a physical point of view?

A fundamental issue in this context are problem setups that
involve physical discontinuities e.g., shock waves in the
compressible Euler or ideal MHD equations. Discontinuities
trigger another instability, inherent in high order methods: the
Gibbs phenomenon i.e., numerical oscillations. These oscillations
can be devastating as under- or overshoots can cause non-physical
state solutions e.g., negative density or pressure. Hence, positivity is
a necessary criterion for all numerical methods when simulating
such problems. However, up to this date there is still not enough
research into the topic of entropy stability and positivity e.g., [40].
It is worth pointing out, that mathematically, the entropy function

is only well-defined for positive solutions and, hence, is strongly
connected to positivity. Generalizing this discussion, it is evident
that entropy stability is “not enough” as a property for the
numerical method. We need more properties, such as e.g.,
positivity. However, this is also where we reach uncharted
research territory as even for many continuous problems e.g.,
the compressible Navier-Stokes equations it is up to this point
unclear to show positivity even for the model itself.

The overview in this work focused on the volume contributions
and the underlying tools (physical and mathematical) which led to
the entropy stable DG method. However, the contributions at the
physical boundaries have been ignored. Properly posing the
boundary conditions to be entropy stable for a given model, like
the compressible Euler or Navier-Stokes equations, has been
considered [189–195], but this is remains an active area of
research particularly because the treatment and behavior of the
solution (whether on the continuous or discrete level) is directly
related to the validity of a mathematical PDEmodel and directly tied
into issues of well-posedness.

Concluding, we are currently at an exciting development stage
with high order DG methods, where we can mimic important
continuous stability estimates by careful construction of discrete
operators. However, practical simulations show that these are not
enough for the most complex problems that we desire to simulate.
Plus, our numerical schemes and their properties are very close to
the current analytical knowledge we have about the physical
models. It is very hard to progress with the numerical
developments further than what is analytically known: Which
properties are important? How do you show positivity? Or a more
general question: How does one prove physicality of the solutions
for a given PDE model? It seems that the answers can only be
given in close collaboration of researchers from physics and
mathematics.

FIGURE 6 | One dimensional visualization of the Alfvén wing solution along the line z � 5 from the xz plane slice at y � 0. A comparison is performed between the
entropy DG solver withN � 3 in each spatial direction and the first order finite volume solver ZEUS. The entropy stable DG approximation uses 90% fewer DOF compared
to the 10 million DOF used for the ZEUS computation. Qualitatively, the solutions are very similar.
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