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Deep learning algorithms’ powerful capabilities for extracting useful latent information

give them the potential to outperform traditional financial models in solving problems

of the stock market which is a complex system. In this paper, we explore the use of

advanced deep learning algorithms for stock-index tracking. We partially replicate the

CSI 300 Index by optimizing with respect to the difference between the returns of the

tracking portfolio and the target index. We extract the complex non-linear relationship

between index constituents and select a subset of constituents to construct a dynamic

tracking portfolio by six well-known auto-encoders (single-hidden-layer undercomplete,

sparse, contractive, stacked, denoising, and variational auto-encoders) that have been

widely used in contexts other than stock-index tracking. Empirical results show that the

auto-encoder-based strategies perform better than conventional ones when the tracking

portfolio is constructed with a small number of stocks. Furthermore, strategies based on

auto-encoders capable of learning high-capacity encodings of the input, such as sparse

and denoising auto-encoders, have even better tracking performance. Our findings offer

evidence that deep learning algorithms with explicitly designed hierarchical architectures

are suitable for index tracking problems.

Keywords: stock-index tracking, complex system, deep learning, auto-encoders, non-linear relationship

INTRODUCTION

The market index system has evolved with the development of the securities market. Financial
products such as index funds, index futures, and index options emerge endlessly, indicating that
indexing investment has won the favor of investors, especially institutional investors. Traditional
investment based on the analysis of timing and stock fundamentals is an actively managed strategy,
whereas indexing investment is passively managed. By constructing a portfolio to track a market
index, investors expect to obtain the same return and volatility as the target index, with relatively
lower risk and management cost, as well as better liquidity. The choice of how to construct a
tracking portfolio (i.e., of an index tracking method) is crucial for the management of index
funds, for hedging or arbitrage through index financial derivatives such as index futures, and
for maximizing the performance of index investment generally. At the present time, the tracking
methods utilized with stock index funds are fairly homogeneous but the tracking errors differ
significantly. Therefore, there is great value in attempting to improve index tracking technology.
In recent years, the rapid development of computer technologies and the discipline of quantitative
finance especially make it possible to propose more effective index tracking methods.

The many index tracking strategies that have been put forward in theory and practice can be
divided into full replication strategies and optimization strategies [1]. In the full replicationmethod,
all the constituent securities of the target index are purchased and allocated the same weights
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that they have in the index. Although full replication is easy
to manage and operate and is highly consistent with the target
index, it has many unavoidable defects. Its large portfolio size
brings high transaction costs and large tracking errors [2]; some
of the constituent securities may not be traded due to liquidity
problems; the adverse effects of individual securities cannot be
avoided; etc. In the optimization method, the historical data of
the components are analyzed and a suitable number of assets
for inclusion in the tracking portfolio are selected with the help
of advanced algorithms. Thus, fewer securities are required to
achieve the purpose of indexing investment [3]. Compared with
full replication, the optimization method can significantly reduce
management costs and increase tracking efficiency, advantages
which have made it the focus of much current academic research.

Among the most widely applied approaches for selecting a
subset of constituent stocks are market-value ranking, weight
ranking, liquidity ranking [4], correlation coefficient ranking,
random sampling, stratified sampling [5], and genetic algorithms
[6]. However, these established stock selection approaches fail
to collect and utilize adequately historical information about
constituent stocks, target indexes, and the correlations between
them. Therefore, it is necessary to develop new techniques.

The goal of index tracking is to make the return of the
tracking portfolio as close as possible to the return of the
target index. There are two main indicators used to evaluate
the performance of index tracking: the standard deviation of
the difference between the return of the tracking portfolio
and that of the benchmark index [7] and the square root
of the second-order moment of the difference [8]. There are
also other, less common metrics for measuring tracking errors,
such as Mean Absolute Deviation (MAD), Maximum Absolute
Deviation (Max), Mean Absolute Downside Deviation (MADD),
and Downside Maximum Absolute Deviation (DMax) [8]. The
objective function can be constructed by minimizing one of
the tracking errors defined above; the weight allocations of the
tracking portfolio can then be obtained. When the tracking error
is defined as the square root of second-order moment of the
return difference, minimizing it requires a quadric programming
model, and therefore its optimal solution can be found by best
linear unbiased estimation (BLUE) [9], a standard econometric
method. We will use this model to construct a tracking portfolio.

SinceMarkowitz [10] first proposed themean-variancemodel,
themeasurement of index tracking errors and optimal replication
methods have generated an extensive literature. For example,
Roll [11] studies partial replication of the index by optimizing
with respect to the volatility of the tracking error based on
Markowitz’s mean-variance model. Ammann and Tobler [12]
present four suitable decompositions of tracking error variance.
Dunis and Ho [13] introduce the concept of co-integration into
the problem of index tracking optimization and obtain good
tracking performance. Chiam et al. [14] build a multi-objective
evolutionary system that can simultaneously optimize tracking
performance and transaction cost to track the index. Filippi et al.
[15] focuses on the problem of index tracking with consideration
of the expected excess return, using a bi-objective approach.

Machine learning algorithms have made dramatic progress
over the past four decades, and applications for them have

been found in various disciplines, including financial asset
management. The tools of machine learning have notable
advantages in solving asset management problems. Asset
managers can use machine learning techniques to identify
underlying assets by discovering new patterns in a complex
system and immediately make investment decisions based these
insights. Further, machine learning algorithms enable new forms
of data, such as data in graphic and sound formats, to be used
as input to models, helping investment managers better analyze
the market trend. In addition, machine learning algorithms may
also reduce the negative impact of human subjective biases on
investment decisions. Consequently, a growing body of research
takes advantage of machine learning algorithms to study asset
management or index tracking. Focardi and Fabozzi [16] propose
to use clustering for constructing index tracking portfolios.
They cluster co-integrated stocks based on Euclidean distances
between stock price series and select one stock from each cluster
to include in the tracking portfolio. Yang et al. [17] study the
index-tracking problem by applying a support-vector machine
model. Their empirical results show the model performs robustly
on tracking the Hang Seng Index (HSI). Jeurissen and Berg
[18] use a hybrid genetic algorithm, where each chromosome
represents a subset of the stocks, to address the problem of
stock index tracking by partial replication. A backpropagation-
based neural network has been built by Zorin and Borisov
[19] to form full replication of the stock index (although the
tracking performance is not as good as expected). Fernández
and Gómez [20] propose a heuristic solution for the portfolio
selection problem based on the Hopfield network, but their
results demonstrate no superiority over other heuristic models.
By analyzing data from the Brazilian stock market, Freitas
et al. [21] find a neural network model that outperforms the
Markowitz’s mean-variance model in portfolio optimization.
Chen et al. [22] propose a flexible neural tree ensemble model to
predict the NASDAQ-100 and S&P CNX NIFTY stock indexes,
achieving reliable forecast performance. Wu et al. [23] use the
non-negative-lasso method to fit and predict the CSI 300 Index
with short-selling constraints; the results indicate that non-
negative lasso can achieve a small tracking error.

Recently, with the rapid development of deep-learning
technology, methods based on artificial intelligence have enjoyed
unprecedented popularity [24]. One approach involves applying
deep learning algorithms to the problem of index replication
since the stock market is a complex system. A portfolio
construction approach based on deep learning is first proposed
in academia by Heaton et al. [25]. Ouyang et al. [26] have
subsequently expanded this framework by including a dynamic
asset-weight calculation method and implemented this model
to track the HSI. However, their optimized asset weights
may become negative, contrary to traditional asset allocation
implementations. In order to accomplish partial replication,
both Heaton et al. [25] and Ouyang et al. [26] select stocks by
measuring the Euclidean distance between the original returns
and the reconstructed returns of the index components using
auto-encoders, which are the core elements of their frameworks.

Kim and Kim [27] argue that such an asset selection criterion
is artificial. They modify it by constructing an auto-encoder in
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such a way that the deepest hidden layer has only one node
(a proxy for the market index) and measuring the similarity of
this latent representation to individual asset returns. We disagree
with this approach. If an auto-encoder uses non-linear activation
functions, then the deepest latent representations are non-linear
combinations of the input original asset returns and capture some
complex abstract features of the market index. Although these
features can represent the market index, it is generally difficult
to find their corresponding economic meanings. The candidate
asset returns’ similarities to these abstract features are not equal
or even related to their similarities to the target index returns. A
selection criterion based on this measure would therefore seem
to be meaningless. Moreover, the extremely contractive structure
of the auto-encoder with a single-node deepest latent layer may
result in excessive loss of input information. None of the above
three papers [25–27] suggests that the index tracking approach
based on deep learning algorithms can outperform traditional
index tracking techniques. Evidence is needed that deep learning
is sufficiently advanced to handle index tracking problems.
Moreover, various auto-encoders with more complex structures
and better properties have been developed; it is reasonable to ask
whether they can improve the performance of stock selection.

Based on the framework proposed by Heaton et al. [25],
this paper investigates the applications of various auto-encoder
deep-learning architectures in selecting representative stocks
from the index constituents. The stocks are also selected by
measuring the Euclidean distance between the original returns
and the reconstructed ones. We then build dynamic tracking
portfolios with the selected stocks to partially replicate the
return of the index and evaluate their tracking performances.
This article differs from Heaton et al. [25] and other related
papers in several respects. First, we examine the effectiveness
not only of the single-hidden-layer undercomplete auto-encoder
but also of five other auto-encoders widely used in academe and
industry, including the stacked auto-encoder and the denoising
auto-encoder. Second, we propose a method for constructing
dynamic tracking portfolios. The weights of the stocks in the
tracking portfolio are calculated and adjusted periodically. This is
more feasible and appropriate for practical indexing investment
than what is done in other deep-learning methods. Third, we
introduce two conventional stock selection strategies (weight
ranking and market-value ranking) in addition to the strategies
implemented by auto-encoders. The tracking performances of
all these strategies in selecting various numbers of stocks are
contrasted to confirm the advantages of applying auto-encoders.

The rest of the paper is organized as follows: section
Methodology outlines the related algorithms and how they
will be implemented. Section Empirical Analysis details our
experimental setups for index tracking and presents the empirical
results and discussion. Section Conclusions concludes the paper.

METHODOLOGY

Stock Selection Using Auto-Encoders
Auto-encoders are a special case of feedforward neural networks
[28]. They are generally used for dimensionality reduction and
feature extraction. Recently, they have also been employed as

FIGURE 1 | General processing flow of an auto-encoder.

generativemodels to produce, for example, pictures. Unlike other
feedforward neural networks, auto-encoders use unsupervised
learning; their task is to copy the input to the output. An auto-
encoder is composed of an encoder and a decoder. In Figure 1,
x represents the input data; f (x) represents the encoder, forming
a hidden layer h that discovers some latent state representation
of the input; and g(h) = g(f (x)) represents the decoder,
which produces a reconstruction x

′. In general, the learning
process of an auto-encoder can be described as minimizing
the reconstruction error L(x, g(f (x))), which is defined as the
difference between x and x

′. The output of an auto-encoder is
worthless if it is simply a copy of the input. Auto-encoders are
prevented from replicating the input completely by imposing
constraints on the hidden layers, such as limiting the number of
hidden units and adding regularizers, so that latent attributes of
the input data can be learned and described.

A common way to obtain useful features from an auto-
encoder is to require the dimension of h to be smaller than
x. An auto-encoder with this bottleneck structure is called an
undercomplete auto-encoder. Consider first a single-hidden-
layer undercomplete auto-encoder that contains one hidden
layer with five neurons, consistent with Heaton et al. [25].
Its architecture is shown in Figure 2. Given a training batch
D = {x(1), x(2), . . . , x(m)} containing m samples, the input
of a single-hidden-layer undercomplete auto-encoder is x =

[x1, x2, . . . , xn]
⊤ ∈ R

n, a vector representing n index component
stock returns on a certain trading day. Similarly, the output is

x
′ = [x′1, x

′
2, . . . , x

′
n]

⊤
∈ R

n. The input x is mapped to h which
is a vector of hidden units through the encoder. The subsequent
decoder maps h to the output vector x′ to reconstruct x. The two
steps can be written

h = f (W⊤
1 x+ b1), (1)

x
′ = W2h+ b2, (2)
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FIGURE 2 | Architecture of the single-hidden-layer undercomplete

auto-encoder.

where W1, W2 represent the weights of a linear transformation;
b1, b2 are the biases; and f (·) is an activation function. Frequently
used activation functions are sigmoid (1/(1+ e−x)) [29, 30],
hyperbolic tangent (tanh(x)) [31], or rectified linear units (ReLU)
(max{0, x}) [32–34]. In this paper, f (·) is set to be a ReLU
function, because ReLU solves the gradient vanishing problem
(in the positive interval) with a high speed of convergence
and calculation compared to other activation functions. When
the activation functions are linear and the loss function is
the mean squared error, the action of the single-hidden-
layer undercomplete auto-encoder is equivalent to Principal
Component Analysis (PCA) [35]. In addition, we do linear
transformation other than use non-linear activation functions
on the output layer to make the output zero-centered. The
characteristics of the output are thereby kept consistent with the
input data.

The network of the single-hidden-layer undercomplete auto-
encoder is trained by minimize the reconstruction error L(x, x′),
i.e., the two-norm difference between the input vector and the
output vector:

min
W1 ,W2 ,b1 ,b2

m
∑

i=1

L(x(i), x′
(i)
) = min

W1 ,W2 ,b1 ,b2

m
∑

i=1

∥

∥

∥
x(i) − x′

(i)
∥

∥

∥

2
. (3)

Back-propagation is used for the solution of Equation (3),
with the popular gradient descent optimization algorithm called
Adaptive Moment Estimation (Adam) [36]. (Unless otherwise
stated, in the constructions of other auto-encoder models in
this paper, the designs of the input and output vectors, the

FIGURE 3 | Architecture of the sparse auto-encoder.

activation functions of the hidden layers, the loss functions, and
the parameter-optimization algorithms are consistent with those
of the single-hidden-layer undercomplete auto-encoder).

We already know that undercomplete auto-encoders can
learn the most significant features of data distribution. However,
if these auto-encoders are given too much capacity, they
cannot learn any useful information. Regularized auto-encoders
can solve this problem by imposing particular forms of
regularization on the networks in order to encourage the models
to have better generalization abilities rather than limiting their
capacity. Sparse auto-encoders [37, 38] are a common kind
of regularized auto-encoders. A sparse auto-encoder suppresses
the activation of most neurons in the hidden layer by adding
a sparsity penalty in the loss function, thereby providing
another method of knowledge compression without reducing
the number of nodes in the hidden layer. The architecture
of the sparse auto-encoder applied in this paper is shown
in Figure 3. The hidden layer has the same dimension as
the input and output layers. The light-colored circles in the
hidden layer represent suppressed neurons, while the dark-
colored circles represent activated neurons. Since the activation
of neurons is data-driven, the sparse auto-encoder can obtain
specific feature representations for different input data. The
network’s capacity is limited to prevent excessive memorizing
of input data, while the capacity to extract data features is
not limited. There are two common ways of constructing the
sparsity penalty: L1 regularization [39] and Kullback–Leibler
(KL) divergence [40]. In this paper, we use L1 regularization.
The loss function for training our sparse auto-encoder is
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given by

Loss = L(x, x′)+ λ‖h‖1, (4)

where the second term penalizes the output value of the hidden
layer, scaled by a tuning parameter λ.

We also consider another regularized auto-encoder, the
contractive auto-encoder [41], which is designed to make the
learned feature representation insensitive to small changes
around the training examples. This is accomplished by penalizing
instances where a small change in the input results in a large
change in the encoding space. Thus, the loss function is

Loss = L(x, x′)+ λ ‖∇xh‖
2
F , (5)

where the penalty term is the squared Frobenius norm (sum
of squared elements) of the Jacobian matrix for the hidden
layer outputs with respect to the input observations. Although
the contractive auto-encoder regularization criterion is trivial to
calculate in the case of a single hidden layer auto-encoder, it
becomesmuchmore difficult in the case of deeper auto-encoders.
Therefore, the contractive auto-encoder used in this paper adopts
the same structure as the single-hidden-layer undercomplete
auto-encoder mentioned above. Since we employ ReLU as
the activation function on the hidden layer, the regularization
criterion can be given the following analytical form:

‖∇xh‖
2
F =

∑

i,j

(

∂hj

∂xi

)2

=
∑

j

φ2(zj)
∑

i

(W⊤
ji )

2
, (6)

φ(zj) = φ(
∑

i

Wijxi + bj) =

{

1, if zj ≥ 0,
0, otherwise.

(7)

Auto-encoders are not required to be composed of a single-
layer encoder and a single-layer decoder. In fact, deep auto-
encoders yield much better compression than corresponding
shallow auto-encoders [42]. The general method for training
a deep auto-encoder consists of training a stack of shallow
auto-encoders so as to pretrain the deep architecture. For
this reason, deep autoencoders are also called stacked auto-
encoders. The stacked auto-encoder employed in this paper is
built with the structure shown in Figure 4, where the numbers
of hidden layers and neurons in each layer are set by trial
and error.

Till now, the input and output of the auto-encoders we
have introduced are identical. Such models may not perform
well on a testing set where the testing and training data do
not exhibit the same distribution. The denoising auto-encoder
[43] provides remedies for this deficiency. Denoising auto-
encoders receive as input data that have been corrupted by some
form of noise, and are trained to reconstruct the uncorrupted
data as their output. After denoising training, the network
is forced to learn more robust invariant features and obtain
more effective representations of the input. This is very similar

to a contractive auto-encoder in the sense that the noise is
considered a series of small perturbations to the input. The
difference is that contractive auto-encoders make the feature
extraction function resist small perturbations of the input,
while denoising auto-encoders make the reconstruction function
resist them [44]. The initial input can be corrupted by adding
Gaussian noise or stochastically discarding certain features. The
denoising auto-encoder employed in this paper is constructed
with the same architecture as the stacked auto-encoder. The only
difference is that the input is the corrupted data x̃, as shown in
Figure 5, and given by

x̃ = x+ ηN (0, I), (8)

where N (0, I) represents a multivariate standard normal
distribution with a diagonal covariance structure,
and η denotes noise intensity. The loss function for
the denoising auto-encoder still computes the two-
norm difference between the output vector x

′, and the
original data x.

The decoder networks built by the auto-encoders we have
introduced above output a single value to describe each
latent attribute. However, sometimes we hope to learn a
probability distribution for each latent attribute to produce
a better generalization and ensure that the latent space has
properties that enable the generative process. This goal can
be achieved by applying a well-known generative model, the
variational auto-encoder [45, 46]. The special structure of
the variational auto-encoder designed for the purpose of this
paper is shown in Figure 6. Its encoder outputs parameters
describing a distribution for each dimension in the latent space.
Here we assume that the prior distribution p(h) of the latent
representation obeys a standard normal distribution, and the
encoder therefore outputs two vectors describing the mean µ

and variance σ
2 of the latent state distribution. The decoder

will then generate a latent vector h by sampling from a
multivariate Gaussian model with a diagonal covariance matrix
and reconstruct the original input. It is worth noting that a
simple trick, reparametrization, is used when sampling. It can be
expressed as

h = µ + σ ⊙ ε, ε ∼ N (0, I), (9)

This allows us to sample from a unit Gaussian N (0, I) rather
than sampling from the distribution N (µ, σ 2), so as to ensure
that the results of sampling are derivable and the error can be
backpropagated through the network. The loss function for the
variational auto-encoder is defined as

Loss = L(x, x′)+ λ
∑

j

DKL(qj(hj |x )
∥

∥p(hj) ), (10)

where

DKL(qj(hj |x )
∥

∥p(hj) ) = DKL(N (µj, σ
2
j )

∥

∥N (0, 1) )

=
1

2
(− log σ 2

j + µ2
j + σ 2

j − 1). (11)
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FIGURE 4 | Architecture of the stacked auto-encoder.

FIGURE 5 | Architecture of the denoising auto-encoder.

The first term in Equation (10) penalizes reconstruction errors
(a feature also found in other auto-encoders). The second term
encourages the learned latent-state distribution q(h |x ) to be
similar to the prior distribution p(h), which minimizes the KL

divergence between these two distributions. The relative weights
of these two items are controlled by a hyperparameter λ.

After the auto-encoders have been trained, their encoders
output an n-dimensional vector that contains n different latent
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FIGURE 6 | Architecture of the variational auto-encoder.

factors. These latent factors are obtained by the process of
dimensionality reduction or compression and can be used to
represent n independent implied abstract features of the stock
index market. This technique is of great significance in finance.
Traditional financial pricing models with shallow architectures
(at most two layers) typically describe market information based
on linear portfolios. For example, the capital asset pricing
model (CAPM) proposed by Sharpe [47] assumes that the
market return is expressed by a linear combination of asset
returns. In the arbitrage pricing theory (APT) proposed by
Rosenberg and McKibbon [48] and Ross [49], a layer of linear
factors is used to perform pricing. These traditional financial
theories also apply the idea of dimensionality reduction, as
they reduce a dataset of n observations (returns or factors)
to one parameter. However, while the implied market prices
capture linear features of the input asset returns or factors,
they ignore a large amount of latent information and the non-
linear relationship between the assets in a complex system with
fractality properties. For this reason, we use the auto-encoder
model with a hierarchical structure of univariate activation
functions of portfolios to make up for the shortcomings of
traditional financial models.

The decoders then proceed to reconstruct the input individual
stock-returns from the latent representations of the stock index
market. However, this process involves compression encoding,
and therefore will inevitably bring information loss. Following
Heaton et al. [25], we calculate the information loss of each stock
during the encoding-decoding process by using Equation (12)
below to measure the similarity of the j-th stock with the stock
index market (i.e., the total two-norm difference between every
original stock return and the corresponding reconstructed one
on the training batch):

Lj =

m
∑

i=1

∥

∥

∥
x
(i)
j − x

′(i)
j

∥

∥

∥

2
. (12)

The smaller Lj is, the less information the j-th stock loses, and
therefore the more similar it is to the stock index market. We
rank the stocks by their communal information content, i.e.,
the amount of information that they share with the stock index
market. Since it is not beneficial for improving index tracking
performance to include too many stocks contributing the same
information, we select a fixed number of the most-communal
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stocks plus a variable number of the least-communal stocks to
construct a tracking portfolio.

In addition, in order to investigate the superiorities of
auto-encoder-based stock selection strategies, we also adopt
for comparison two conventional index-tracking stock-selection
strategies: weight ranking and market-value ranking. We
evaluate the tracking performance of these strategies under the
same conditions.

Index Tracking Model
After selecting the representative stocks by the strategies above,
we use an index tracking model to determine the investment
weight allocated to each stock in the tracking portfolio, with the
objective of minimizing tracking error and other constraints. The
index tracking model established in this paper can be expressed
as the following quadric programming problem:

w
∗ = argmin

w
‖RI − Rxw‖

2
2 + λ ‖w‖22

s.t.

n
∑

i=1

wi = 1,

wi ≥ 0, i = 1, 2, . . . , n, (13)

where RI ∈ R
m is a vector of the index return time series;

Rx = [R1,R2, . . . ,Rn] ∈ R
m×n denotes the return matrix of

the selected stocks; and w = [w1,w2, . . . ,wn]
⊤ ∈ R

n is a vector
of stock weights. The objective function is complemented with a
regularization term, λ ‖w‖22, to avoid overfitting. In addition, the
stock weights are kept non-negative, considering the short-selling
restrictions in China’s stock market.

EMPIRICAL ANALYSIS

Data Description and Processing
We investigate partial replication of the CSI 300 Index with the
index tracking strategies we have proposed. The CSI 300 Index is
a barometer of China’s stock market. Its main income accounts
for more than seventy percent of the Chinese market, and it well-
represents emerging markets throughout the world. We use the
daily closing prices of the CSI 300 Index and its constituent stocks
from the sample period January 1, 2010 through December 31,

2018 (comprising 2,187 trading days). Because the constituents of
the CSI 300 Index are adjusted semi-annually, generally in early
January and early July, we obtain the daily closing prices of all
the stocks that have been included in the constituents during the
sample period.We also record the mid-year and end-year market
values of the constituents and their weights from 2010 to 2018, for
use in weight ranking and market-value ranking.

To ensure the analysis results are accurate and reliable, we first
clean the original pricing data by the following steps:

(i) Exclude the stocks if more than 20% of the pricing data is
missing in the training set (defined in the next sub-section).

(ii) Exclude the stocks if all pricing data for the first 5 days and
the last 5 days is missing in the training set.

(iii) Exclude the stocks if they have been ejected from the
constituents of the CSI 300 Index during the training set and
the following testing set (defined in the next sub-section).

(iv) Perform linear interpolation to fill the missing prices of the
retained stocks.

We obtain the daily return time series ri,t for each stock or the
index by calculating ri,t = (Pi,t − Pi,t−1)/Pi,t−1 , where Pi,t
denotes the daily closing price of stock (index) i on day t. Then
all daily returns are standardized using z-score normalization
as follows:

xi,t =
ri,t − r̄i

σi
, (14)

where r̄i and σi denote the mean and standard deviation of
ri,t , respectively.

Design of Tracking Strategy
In order to construct a dynamically adjusted out-of-sample
portfolio to track the index, the data sample is divided into
training and testing sets by the rolling-window approach [50].
The rolling-window approach keeps the features of time series
in the data, making it match the investment decision-making
process in practice. The training set is used to train the stock
selection model to select a subset of constituents. The index
tracking model which takes the returns of the selected stocks
as input is then also trained on the training set to obtain the

FIGURE 7 | Arrangement for training and testing sets during the whole sample period.
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FIGURE 8 | Stock (601618.SH) with the most communal information: the

prices of the actual and auto-encoded stocks are nearly the same across the

period shown.

FIGURE 9 | Stock (600015.SH) with the least communal information: the

prices of the actual and auto-encoded stocks differ significantly across the

period shown.

stock weights. Afterwards, we construct a tracking portfolio with
the selected stocks and corresponding weights obtained from the
training set, and compute its portfolio return as well as the index
tracking error on the testing set. We use the past four years’
data as a training set. The dataset for the following 6 months is
regarded as a testing set, in line with the adjustment frequency of
the index constituents. This process continues for 5 years on each
half-year from Jan. 2014 to Dec. 2018. For each stock selection
model, there are in all 10 periods and 5 yearly index tracking
results. The tracking procedure is illustrated in Figure 7.

Performance Measurement
We select stocks for each training set by employing eight selection
approaches: six auto-encoder-based models, weight ranking, and
market-value ranking. The auto-encoders are used to measure

the degree of communal information between the stock index
market and the constituent stocks. We then sort the constituents
accordingly and select a subset of constituents that satisfy our
requirements. As an example, Figures 8, 9 illustrate the stock
601618.SH, which shares the most communal information with
the stock index market in the first period of the training sets
(adopting the signal-hidden-layer undercomplete auto-encoder),
and the stock 600015.SH, which shares the least. Obviously, stock
600015.SH loses much more information than stock 601618.SH
during the encoding-decoding process. We already know that
it is not necessary to add too much communal information to
a portfolio. Following Heaton et al. [25], we select the 10 most
communal stocks plus the n − 10 least communal stocks to
construct a tracking portfolio, where n increases from 15 to 80
in steps of five. The weight (market value) ranking method is
to select the n stocks with the largest half-yearly average weights
(market values) for inclusion in a tracking portfolio.

After determining the stocks required for inclusion in the
tracking portfolio, we apply the index tracking model introduced
in section Index Tracking Model to determine the stock weights
and construct a tracking portfolio to partially replicate the CSI
300 Index. We evaluate the tracking errors on portfolios with
the same number of stocks selected by different strategies. A
smaller tracking error indicates better tracking performance of
the stock selection strategy. The equation for calculating the
average tracking error ATE is

ATE =

√

√

√

√

1

T

T
∑

t=1

(RIt − Rpt)
2, (15)

where the T represents the total number of out-of-sample trading
days (which spans from January 1, 2014 to December 31, 2018
and covers 10 adjustment periods as the tracking portfolio is
adjusted every half-year); RIt and Rpt are the returns of the index
and of the tracking portfolio at time t.

Table 1 shows the out-of-sample tracking error values for
the CSI 300 Index. Figure 10 plots how the tracking error
values change as a function of the number of stocks for all
stock selection strategies. The tracking errors of all strategies
decrease as the number of stocks in the tracking portfolio
increases. In particular, the tracking error falls quickly when
< 40 stocks are included in the portfolio. Furthermore, when
the number of stocks included is < 30, the tracking errors of
the six auto-encoder-based strategies are significantly smaller
than those of the weight ranking and market-value ranking
strategies. However, the falling rate of the tracking error slows
down when over 40 stocks are required for inclusion. Moreover,
the tracking errors of the six auto-encoder-based strategies
exceed those of the weight ranking and the market-value ranking
strategies when over 40 and 55 stocks are required for inclusion,
respectively. We suggest the following explanations for the above
results. When the tracking portfolio is constructed with many
stocks selected by the weight ranking and market-value ranking
strategies, the cumulative origin weight in the index of the
selected stocks is larger, making the performance of the tracking
portfolio closer to that of the index. While as the number of
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TABLE 1 | Out-of-sample tracking error values (×10−3) for all strategies covered by this study.

Number of

stocks for

inclusion

Stock selection strategy

Weight

ranking

Market-value

ranking

Single-hidden-layer

undercomplete AE

Sparse

AE

Contractive

AE

Stacked

AE

Denoising

AE

Variational

AE

15 6.554 8.590 5.285 4.976 5.294 5.329 5.115 5.814

20 5.982 7.128 4.770 4.246 4.648 4.491 4.396 4.874

25 5.224 5.940 4.134 3.971 3.993 4.058 3.940 4.403

30 4.351 5.243 3.977 3.737 3.688 3.910 3.659 4.232

35 3.728 4.645 3.812 3.681 3.606 3.766 3.617 4.126

40 3.464 4.077 3.656 3.636 3.517 3.696 3.507 4.052

45 3.208 3.793 3.697 3.492 3.498 3.641 3.309 3.838

50 3.034 3.561 3.535 3.338 3.479 3.426 3.241 3.830

55 2.893 3.155 3.507 3.259 3.353 3.345 3.211 3.820

60 2.736 2.947 3.366 3.151 3.261 3.296 3.195 3.700

65 2.661 2.823 3.320 3.072 3.233 3.268 3.104 3.604

70 2.563 2.722 3.273 3.046 3.248 3.236 3.084 3.569

75 2.489 2.598 3.254 2.965 3.195 3.185 3.053 3.479

80 2.379 2.504 3.222 2.976 3.100 3.171 3.031 3.374

“AE” is short for “auto-encoder”.

FIGURE 10 | Tracking error curves for all strategies covered by this study.

stocks in the tracking portfolio increases, the auto-encoder-
based strategies append more stocks with medium communal
information to the portfolio. The portfolios containing the
most- and least-communal stocks are well able to reflect the
market information. Thus, there is no benefit in having more
medium-communal stocks.

Comparing the auto-encoder-based strategies to one another,
the tracking errors of the strategies based on sparse, contractive,
stacked, and denoising auto-encoders are almost always < that
of the strategy based on single-hidden-layer undercomplete

auto-encoder regardless of the number of stocks, although
the difference is not sizeable. The explanation is that some
of these four types of auto-encoders have a deeper structure
that can learn more complex coding and deeper market
information, while others are regularized to encourage the
model to learn other features (except copying the input
to the output) without limiting the model capacity by
keeping the encoder and decoder shallow and the code size
small. In either case, these auto-encoders can create more
information-efficient representations of the market than the
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FIGURE 11 | Out-of-sample cumulative return curves of the CSI 300 Index and the 25-stock tracking portfolios constructed by all strategies covered by this study.

FIGURE 12 | Tracking error curves for all strategies with 3-year training sets.

single-hidden-layer undercomplete auto-encoder, so that the
stocks selected by the strategies based on them better represent
the entire market.

However, the strategy based on the variational auto-encoder
does not perform better than that based on single-hidden-
layer undercomplete auto-encoder. This can also be explained.
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The purpose of an auto-encoder in the present work is
to replicate the original input stock information from the
latent space representing the compressed market information.
However, a variational auto-encoder (mentioned in section
Stock Selection Using Auto-Encoders, and normally used as a
generative model) is meant to generate variations on an input
vector from a continuous latent space: that is, its encoder
only outputs a range of possible representations of the market,
and these do not necessarily describe the market’s current
state. Therefore, the output reconstructed by the decoder is
far from being a copy of the original input stock information.
From this perspective, it is not surprising that the strategy
based on the variational auto-encoder does not yield the
desired result.

Although increasing the number of stocks in the tracking
portfolio will reduce the tracking error, it will not significantly
improve the tracking performance, while it will create additional
transaction cost when the number of stocks included reaches a
certain value. According to the previous analysis, the tracking
error decreases rapidly as the number of stocks increases
and the corresponding transaction cost is acceptable if a
tracking portfolio is constructed with < 40 stocks. Therefore,
the number of stocks in the tracking portfolio should be
kept under 40 when balancing the tracking error and the
transaction cost.

Considering the absolute tracking error values and the slope of
the curves for the auto-encoder-based strategies in Figure 10, we
find the tracking performance of auto-encoder-based strategies
greatly surpasses that of conventional strategies for a 25-
stock tracking portfolio. Figure 11 shows the out-of-sample
cumulative return curves of the CSI 300 Index and the 25-stock

tracking portfolios constructed by our proposed strategies.
The relative advantages of auto-encoder-based stock selection
strategies can be seen clearly. In particular, the tracking error
of the market-value ranking strategy is 5.940 × 10-3, and that
of the weight ranking strategy is 5.224 × 10-3. Among the six
auto-encoder-based strategies, the tracking error of the denoising
auto-encoder-based strategy is the smallest at 3.940×10-3, which
is 33.67% lower than that of market-value ranking and 24.58%
lower than that of weight ranking. The other five auto-encoder-
based strategies also track better than the conventional strategies
to varying degrees. Even the worst-performing auto-encoder-
based strategy (the variational auto-encoder) has reductions of
25.88 and 15.72% compared to market-value ranking and weight
ranking strategies, respectively. In conclusion, auto-encoder-
based strategies outperform conventional strategies, provided
that only a small number of stocks are required for inclusion in a
tracking portfolio.

Robust Test
To evaluate the sensitivity of these empirical results
to changes in the data sample, we perform various
robustness checks.

First, variations in length of the training set may have
an impact on the results. As a robustness check, we analyze
the tracking performance when each training set length is
changed to 3 or 5 years, respectively. Keeping each testing set
length at 6 months, the length of the out-of-sample period
accordingly changes to 6 and 4 years, respectively. Figures 12,
13 illustrate how the curves of the tracking error vary with
the number of stocks when each training set has a length
of 3 and 5 years, respectively. The results reveal that the

FIGURE 13 | Tracking error curves for all strategies with 5-year training sets.
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FIGURE 14 | Tracking error curves for all strategies with quarterly rebalancing.

FIGURE 15 | Tracking error curves for all strategies with yearly rebalancing.

auto-encoder-based strategies tracks the index better than the
conventional strategies when < 30 stocks are included in a
tracking portfolio. In particular, the sparse auto-encoder-based
strategy gets the lowest tracking error among all the auto-
encoder-based strategies with 3-year training sets, whereas the
denoising auto-encoder-based strategy performs best with 5-
year training sets. In addition, the tracking error values change
little in response to variations in the length of the training set.

Thus, our base case results hold for these alternative training-
set lengths.

Second, the rebalancing frequency, which is the reciprocal
of the length of each testing set, will affect the performance
of dynamic portfolio management. We compute quarterly and
yearly rebalanced portfolios while keeping the training-set
length unchanged to investigate the sensitivity of our results to
alternative rebalancing frequencies. The results in Figures 14, 15
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verify that our base case results are robust to these changes. In
particular, with quarterly rebalancing, the sparse auto-encoder-
based strategy tracks the index best among all auto-encoder-
based strategies and brings greater improvement on conventional
strategies’ tracking performance compared to the base case
results. In the case of a 25-stock portfolio, the tracking error of
the sparse auto-encoder-based strategy is 3.861 × 10-3, which is
34.91% lower than the market-value ranking and 25.86% lower
than the weight ranking. In contrast, with yearly rebalancing,
the denoising auto-encoder-based strategy gets the best tracking
performance. This proves that the sparse and denoising auto-
encoder-based strategies are better at index tracking than the
other four auto-encoder-based strategies.

CONCLUSIONS

We investigate the index tracking performance of deep learning-
based tracking approaches. In particular, we use a variety
of advanced auto-encoders: single-hidden-layer undercomplete,
sparse, contractive, stacked, denoising, and variational auto-
encoders to extract the complex non-linear relationship between
stocks in a complex stock market system and construct dynamic
tracking portfolios with subsets of stocks. Only one or two
of these auto-encoders has previously been examined in the
context of stock selection. Moreover, we evaluate for the first
time whether auto-encoder-based strategies improve the tracking
performance over the conventional strategies of weight ranking
and market-value ranking.

In general, we find that whether auto-encoder-based strategies
outperform conventional ones depends upon the number
of stocks included in the tracking portfolio. When only
a small number of stocks (probably < 30) are needed
to construct a tracking portfolio, the auto-encoder-based
strategies are generally superior to conventional strategies in
terms of tracking performance. Furthermore, auto-encoders
with particular architectures that can learn high-capacity,
overcomplete encodings of the input, e.g., sparse and denoising
auto-encoders, are better even than other auto-encoders at
capturing complex latent representations of the market. The
portfolios with stocks selected by these auto-encoders better

replicate the index. However, if more than 40 stocks are
required for inclusion, the conventional strategies still have
the advantage.

Our findings suggest that deep learning algorithms are suitable
for index tracking problems if the hierarchical architectures
are explicitly designed. We expect these findings to be helpful
in making asset-allocation decisions, especially, for indexing
investment. Nonetheless, there are some limitations to the study:
our analysis concerns a specific dataset; the impact of transaction
costs on index tracking performance is not quantified; and hyper-
parameter optimization is not well performed when constructing
the models. Therefore, additional work with a more extensive
dataset, optimized model settings, and greater practical realism
would help to confirm our findings. This research can easily
be extended to test other deep learning frameworks for index
tracking in the future.
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