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In this article, we propose the design of a multispectral metasurface (MSM), which can

simultaneously achieve quite good optical transparency, low infrared (IR) emissivity, and

widebandmicrowave absorption. To this end, optically transparent materials were used in

the MSM design, including indium tin oxide, polyethylene terephthalate, and polymethyl

methacrylate. The MSM is composed of three functional layers: a frequency-selective

surface (FSS) on the top, a resistively absorbing layer in the middle and a complete

conducting sheet at the bottom. Because of large occupation ratio of conducting

area and the low-pass property of the FSS, electromagnetic waves are allowed to

penetrate through it into the middle absorbing layer, simultaneously with low surface

IR emissivity. A prototype was designed, fabricated, and measured. Both the simulation

and experiment results show that the MSM can achieve strong absorption of > 90%

in 12.03–29.43 GHz and low IR emissivity of about 0.3 in 3.0–14.0 µm simultaneously.

Moreover, the average optical transparency is higher than 90%. Because of the excellent

multispectral compatibility, the MSMmay find applications in electromagnetic protection,

stealth technologies, etc.

Keywords: multi-spectral, compatible-metasurface, low infrared emissivity, microwave absorber, visible

transparence

INTRODUCTION

Metamaterials as artificial materials could actualize the propagation characteristic of manipulating
electromagnetic wave [1, 2]. Plenty of metamaterial structures are designed as low-scattering
materials, perfect absorbers, invisible cloak, surface wave suppressing materials, and so on [3–
10]. With the rapid development of the technologies of metamaterials, the function of single-
waveband materials can no longer satisfy the needs of various applications. It is the mainstream
to design the multispectral metasurfaces (MSMs) to apply under a variety of environments [11–
16]. According to spectroscopy, microwave band, infrared (IR) band, and visible light band are the
most commonly used region. However, the mechanisms of microwave and IR counter each other
in stealth technology. The mechanism of radar for microwave is to reduce echoes from the detected
objects [17–20]. In contrast, IR detection requires the low-emissivity materials to be undetected.
According to Kirchhoff’s law, high-reflectivity materials, which are low emitters, should be needed
for IR band. Therefore, this problem needs to be solved in our design thought.
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Many scientists have studied the metasurfaces in multiband
applications. Wang et al. [21] designed IR-radar bistealth
frequency-selective surface (FSS) with IR emissivity below 0.3
and above 90% absorption in 8–18 GHz for microwave band.
Zhong et al. [22] proposed a thin artificial structure with
wideband absorption from 3 to 8 GHz up to incident angles
of 30◦ and low IR emission value of 0.2. Hao et al. [23]
designed a stealth-compatible structure consisting of metallic
FSS and resistive FSS with reflectivity below –10 dB in
whole radar X wave band and IR emissivity < 0.3 in the
IR region of 8–14 µm. Pang et al. [24] fabricated an HMS
with an efficient reflection reduction larger than 10 dB in
the frequency band of 8.2–18 GHz and low IR emissivity
< 0.27 from 3 to 14 µm. Zhang et al. [25] present a
thin metasurface with broadband microwave absorptivity >

8.2–16.0 GHz and low IR emissivity in the region from 8
to 14 µm.

Except for using metals, scientists also chose the visible
transparent materials for studying these problems to use in
more scenes, such as using indium tin oxide as main materials,
polymethyl methacrylate (PMMA) as dielectric material, and so
on. Xu et al. [26] proposed optically transparent metamaterial
structure with a high absorptivity > 90% in the region of
6.28–12.29 GHz for TE polarization, and the absorptivity in
the region of 7.19–15.26 GHz is > 90% for TM polarization.
Its IR emissivity is about 0.30 in the IR region from 3 to
14 µm. Shuomin et al. [27] deposited four indium tin oxide
films on metasurface in order to realize a low microwave
reflectivity < 0.1 from 1.5 to 9 GHz and a thermal emissivity
approaching 0.52.

TABLE 1 | The compared results of typical compatible-metamaterials.

The frequency band of

IR-stealth

The absorption of microwave

frequency band

Optical transparency Reference

Hao T’s stealth-compatible structure 8–14µm Radar X wave band No [21]

Xu’s metamaterial structure 3–14µm 6.28–12.29 GHz for TE polarization

7.19–15.26 GHz for TM polarization.

Yes [24]

Our MSM 3–14µm 12.03–29.43 GHz Yes

FIGURE 1 | Schematic of the MSM’s physical mechanism.

In microwave band, radar absorbers must be the most stable
application. As the absorber, the operational bandwidth is the
most important parameter. In this article, we propose the
design of an MSM that can simultaneously achieve quite good
optical transparency, low IR emissivity, and widebandmicrowave
absorption. To this end, optically transparent materials were
used in the metasurface design, including indium tin oxide,
polyethylene terephthalate (PET), and PMMA. The MSM is
composed of three functional layers: an FSS on the top,
a resistively absorbing layer in the middle, and a complete
conducting sheet at the bottom. Because of large occupation
ratio (OR) of conducting area and the low-pass property of the
FSS, electromagnetic waves are allowed to penetrate through
it into the middle absorbing layer, simultaneously with low
surface IR emissivity. A prototype was designed, fabricated, and
measured. Both the simulation and experiment results show
that the MSM can achieve strong absorption > 90% in 12.03–
29.43 GHz and low IR emissivity about 0.3 in 3.0–14.0µm
simultaneously. Moreover, the average optical transparency is
higher than 90%. To better observe our properties of our MSM,
the compared results of typical compatible metamaterials are
presented as Table 1. It can be observed clearly that our MSM
has the best properties.

DESIGN AND DISCUSSION

In IR band, the most commonly used materials are metals
because of their low emissivity property, such as gold, aluminum,
silver, copper, etc. However, when human needs the perspective
property of the naked eyes, these metals could not work anymore.
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Thus, in this article, a fabricated MSM chose the ITO as the main
material and utilized PET and PMMA as dielectric material to
achieve the feature of the visible transparency. And the ITO also
has the property of metal, so it is appropriate that metals are
replaced by ITO.

In the design process of the MSM, the tailored structure
was divided into three functional layers: an FSS on the top,
a resistively absorbing layer in the middle, and a complete
conducting sheet at the bottom, as depicted in Figure 1. The
electromagnetic waves, including IR wave, microwave, and
visible, propagate in different directions after working with the
MSM. Because of the existence of the top layer, which consists
of the ITO patches as the low emissivity of IR layer (LIRL),
it has the property of displaying low temperature. For the
microwave, it must pass through the low-emissivity top layer
and work at the resistively absorbing layer. Thus, it must be
a loss-pass and high-resistance FSS to make the radar wave
propagate to the resistively absorbing layer as the wideband
microwave absorber (WMA) and be absorbed. For visible light,
because of the optical transparent materials, it can achieve
visible transparence.

Figure 2 depicts the unit of the MSM structure. Figures 2A,B
exhibit LIRL and WMA, respectively. And the resistance of LIRL
andWMA is different. The LIRL’s resistance is 6�/Sq, and that of
WMA is 30 �/Sq. The side view is shown in Figure 2C. And the
thicknesses of two stealth layers’ PET are different. The thickness
of LIRL’s is 0.175 mm, and that of WMA’s is 0.125 mm. The
other parameters are D = 1 mm, d = 0.1 mm, L = 19 mm, l1 =
18.7mm, l2 = 11.8mm,81 = 4.8mm,82 = 3mm,D1 = 0.5mm,
D2 = 1 mm, and the ITO of LIRL OR is 81%.

Because the emissivity of ITO is low, in the IR band, the
total IR emissivity ε can be calculated by the square rate in the
following formula:

ε = εifi + εpfp (1)

where ε in Equation (1) is the emissivity of the MSM, and the
εi and εp are emissivities of the ITO and PET, respectively. And

the fi is the OR of the ITO’s area to that of the metasurface.
The fp is the OR of the PET’s to metasurface’s. For this
MSM, the emissivity of the PET is high, nearly > 0.8, but
filling ratio is < 0.2, so the emissivity of the MSM lower
than 0.3.

In the microwave band, the simulation results were
obtained by the commercial software CST Microwave
Studio. The unit cell condition is set in the x–y
direction, and in the z direction, the open boundary
condition is chosen. The absorption can be calculated by
Equation (2),

A = 1− T − R = 1− |S21|
2 − |S11|

2 (2)

where |S21|2 and |S11|2, respectively, represent the transmissivity
and reflectivity. However, the microwave could not propagate
through the MSM because of the bottom a complete conducting
sheet of ITO without gaps, so the average transmission is

FIGURE 3 | The equivalent circuit model (ECM) of MSM.

FIGURE 2 | (A) LIRL layer, (B) WMA layer, (C) side view of the metasurface.
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nearly zero. For this reason, Equation (2) could be simplified as
Equation (3).

A = 1− R = 1− |S11|
2 (3)

MSM could be equivalent to the circuit as shown in Figure 3.
Z0 is the impendence of free space, which is equal to 377 �.
ZL and ZW are the equivalent impendence of the LIRL and
WMA, respectively.

We can calculate the ABCD matrix as Equation (4), where θ

= βt, β = 2π /λ:

FIGURE 4 | (A) Simulated absorption at different polarization modes for TE polarized and TM polarized. (B) Simulated absorption at different polarization modes for

full angle domain. (C) Simulated absorption at different incident angles.

FIGURE 5 | Total surface current distribution and part surface current distribution.

FIGURE 6 | Distribution of surface current resonance frequency f = 13.33 GHz: (A) top view, (B) bottom view, (C) side view.
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FIGURE 7 | Distribution of surface current resonance frequency f = 24.43 GHz: (A) top view, (B) bottom view, (C) side view.

FIGURE 8 | Distribution of surface current resonance frequency f = 27.85 GHz: (A) top view, (B) bottom view, (C) side view.

FIGURE 9 | Distribution of the electric field of WMA (A) f = 13.33 GHz, (B) f = 24.43 GHz, (C) f = 27.85 GHz.
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FIGURE 10 | (A) the photograph of WMA, (B) a large version of WMA, (C) visible transparent property of WMA, (D) a large version of LIRL.

[

A B
C D

]

=

[

1 0
1
ZL

1

]

[

cosθ jZd1 sinθ
1

Zd1
cosθ

]

[

1 0
1
Zw

1

]

=





cosθ + j
Zd1
Zw

sinθ jZd1 sinθ
ZL+Zw
ZLZw

cosθ + j
(

1
Zd1

+
Zd1
ZLZw

)

sinθ cosθ + j
Zd1
ZL

sinθ



 (4)

The calculated absorption curves including TE and TM
polarization are exhibited in Figure 4A. The MSM showed a
strong absorptivity of > 90% from 12.03 to 29.43 GHz. And the
simulation results of different polarizing angles φ are depicted in
Figure 4B to indicate that the tailored structure is polarization
independent significantly. The calculated absorption curves at
different incident angles are shown in Figure 4C. And it reveals
that the absorption of the MSM is > 80% within 40◦ of
incident angles.

In order to uncover the physics mechanism of the microwave
absorption, the surface current distributions and electric field at
resonant frequencies were chosen.

On the idea of designing the LIRL, the microwave must
propagate through it and work at the WMA. According to the
above reasons, a loss-pass and high-resist FSS is chosen, as shown
in Figure 5. To explain the physics mechanism of the microwave

FIGURE 11 | The measure scene of microwave-absorbing.

absorption behavior, based on the result of simulation, three
resonant frequencies are chosen, f = 13.33, 24.43, and 27.85 GHz,
with absorbance of 96.54, 97.65, and 95.68%, respectively.

It could be observed that an electric current loop is formed
between the top and bottom layer as Figures 6–8 depicted. It
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means that a magnetic dipole is at work to obtain the absorption
peak of microwave.

To understand the resonant modes of the three resonance
frequencies at the WMA, the distribution of the electric field
is shown in Figure 9. It is clear to observe that their strong

FIGURE 12 | The measurement result of microwave absorption.

interaction with the position of ITO ring is different. Figure 9A
depicts that the resonant mode at f = 13.33 GHz is mostly the
circular ring. By contrast, at f = 27.85 GHz, the resonant mode is
mostly ITO square ring as Figure 9B shows. And as presented in
Figure 9C, the mode at f = 34.43 GHz includes the circular ring
and the square ring.

EXPERIMENTAL DEMONSTRATION

A 300 × 300-mm sample was tailored by the printed circuit
board technique to check the simulation result of the MSM.
The PBC technique is one of the electron printing techniques.
In our article, we adopted this printing technique to obtain a
more accurate sample. First, ITO was deposited on the whole
PET board. After depositing, the PBC technique was adopted,
which uses laser to etch on the ITO film to tailor the shape of
the structure we need. In the article, the shape we need is the ITO
patches in LIRL, the circular ring and square ring in WMA, as
shown in Figure 10.

For microwave-absorbing ability, an Agilent 8720ET vector
network analyzer was used to measure the reflection of
microwave. The detection scene is presented as shown in
Figure 11.

The microwave was perpendicular to the sample, and the
distance between structure and antennas was 500 mm. The test
result is depicted in Figure 12. The tendency of the measured

FIGURE 13 | (A) the emissivity standard of IR emissivity, (B) the measurement result of the sample, (C) the measurement result of the sample’s back, (D) the

measurement result of the reference.
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FIGURE 14 | Experimental result: (A) contrast test for PET and sample, (B) IR thermal images at 45◦.

FIGURE 15 | The visible transmittance of the sample.

result and simulated result is consistent. However, the test result
is better than the simulation possibly because of the thinner
processed thickness of the dielectric layer.

For IR low emissivity property, TSS-5X IR emissivity and
G100EX thermal camera were utilized for test. In order to
get a direct analysis result, a PET board with the same size
was compared with the sample. The IR emittance results were
presented in Figure 13. Its back and the PET board were 0.27,
0.19, and 0.91, respectively, matching the intended results.

A qualitative experiment was conducted to better testify
the IR-stealth property of the sample. The sample and the
same size PET board were heated at the same temperature
by HZ-2019A high–low temperature test chamber. And then
the G100EX thermal camera was used to compare their IR
thermal images.

It is direct to reveal that the IR-stealth capacity of MSM
is effective as shown in Figure 14. Heated at the same 45◦

temperature, their IR thermal images show great differences. At

24.9◦ environment temperature (c point), the temperature of PET
was 43.8◦ (a point), whereas the sample only showed 26.6◦ (b
point), as displayed in Figure 14B.

The visible transmittances spectra of the sample are tested
by ultraviolet-visible spectrophotometer in order to get accurate
data of the optically transparent result. The average visible
transmittance of the sample is > 90% to reveal that it
has great visible light transmission property as exhibited
in Figure 15.

CONCLUSION

In conclusion, we propose the design of an MSM that can
simultaneously achieve quite good optical transparency, low IR
emissivity, and wideband microwave absorption. A prototype
was designed, fabricated, and measured. Both the simulation
and experiment results show that the MSM can achieve strong
absorption > 90% in 12.03–29.43 GHz and low IR emissivity
about 0.3 in 3.0–14.0 µm simultaneously. Moreover, the average
optical transparency is higher than 90%. Because of the excellent
multispectral compatibility, the MSM may find applications in
electromagnetic protection, stealth technologies, etc.
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