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Nuclei are used for high-precision tests of the Standard Model and for studies of physics

beyond the Standard Model. Without a thorough understanding of nuclei, we will not

be able to meaningfully interpret the growing body of experimental data nor will we

be able to disentangle new physics signals from underlying nuclear effects. This calls

for accurate calculations of nuclear structure and reactions. In this work, we focus

on electroweak decays in nuclei with mass number A ≤ 10 and report on ab initio

Quantum Monte Carlo calculations of reduced matrix elements entering beta decays

and electron captures in nuclei with mass number A ≤ 10. The many-body wave

functions are calculated using selected Norfolk two- and three-nucleon potential models

and associated one- and two-body axial currents at tree-level obtained from a chiral

effective field theory with pions, nucleons, and 1. The agreement with the experimental

data is satisfactory except for transitions in A = 8 nuclei. In this specific case, the theory

significantly underpredicts the experimental data, which indicates the need of further

improvements in the corresponding nuclear wave functions. In this study, emphasis

is placed on the contributions of two-body axial currents that are carefully analyzed

using two-body transition densities. This allow us to study the spatial distribution and

short-range behavior of two-body dynamics. In particular, the transition densities when

scaled to peak at 1.0 exhibit universal short-range behavior across the considered nuclei,

while they differ in the long-range tails.

Keywords: nuclear interactions, nuclear currents, chiral effective field theory, ab-initio calculations, weak

transitions

1. INTRODUCTION

Nuclei are used for high-precision tests of the StandardModel and for studies of physics beyond the
Standard Model. Without a thorough understanding of nuclei, we will not be able to meaningfully
interpret the growing body of experimental data nor will be able to disentangle new physics signals
from underlying nuclear effects. Current and next generation experimental programs are poised
to address open questions within fundamental symmetries and neutrino physics to understand the
origin of nonzero neutrino masses, the observed matter, and anti-matter unbalance, and the nature
of dark matter. These experimental endeavors often rely on accurate calculations of electroweak
structure and reactions in nuclei.

For example, nuclear physics plays a pivotal role in searches for neutrinoless double beta (0νββ)
decays, which are the subject of an intense experimental research program [1–14]. In these decays,
two neutrons inside the nucleus decay into two protons via the exchange of a neutrino, emitting
two electrons. The rates of these decays depend not only on unknown fundamental neutrino
parameters but also on nuclear properties. Extracting the neutrino parameters from experiments
requires theoretical evaluation of nuclear matrix elements for neutrinoless double beta decay. This
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decay, if observed, would have tremendous theoretical
implications and could give insight into our understanding
of the observed matter-antimatter asymmetry in the universe.
Calculations for nuclei of experimental interest (A ≥ 48)
are based on computational methods that inevitably adopt
approximations to solve the nuclear many-body problem—e.g.,
model space truncations and/or omission of many-body effects.
As a consequence, estimates of 0νββ matrix elements may vary
by a factor of two when computed using different computational
models (see [15] and references therein). It is then crucial to
understand neutrino–nucleus interactions with great accuracy as
well as the role and relevance of many-body dynamics, such as
many-nucleon correlations and currents.

Furthermore, intense experimental research activity is
currently focused on long-base neutrino oscillation experiments
(such as MiniBooNE, T2K, MicroBooNE, Minerνa, and the
upcoming DUNE; [16–20]) aimed at profiling neutrinos, whose
masses, among other properties, are still not known. Neutrinos
signal their presence by interacting with nuclei which are the
active material in the detectors. Additionally, in this case,
meaningful interpretations of the data require an accurate
understanding of the way neutrinos interact with nuclei.

The study of light nuclei, for which the nuclear many-
body problem can be solved exactly or within controlled
approximations by fully retaining many-nucleon correlations
and electroweak currents, offers the possibility of quantifying
the contribution from many-body effects and consequently of
assessing the robustness of a given approximation. In this work,
we report on a recent study of electroweak matrix elements in
A ≤ 10 nuclei entering single beta decays and electron captures
(or inverse beta decays). Rates of single beta decay—a process
in which a proton (neutron) inside the nucleus decays into a
neutron (proton) with the emission of a positron (electron) and
an electron (anti)neutrino—are, in most cases, experimentally
well-known. This provides us with stringent means to validate
our theoretical description of nuclear systems and to assess the
role of many-body dynamics. In particular, we work within the
nuclear microscopic approach in which nuclei are described in
terms of non-relativistic nucleons interacting with each other
via two- and three-body nuclear potentials and with external
probes, such as neutrinos, electrons, and photons, via one- and
two-body current operators. We use Quantum Monte Carlo
(QMC) computational methods [21–23] to solve the many-body
nuclear problem with a nuclear Hamiltonian consisting of high-
quality two- and three-body potentials obtained from a chiral
effective field theory (χEFT) that retains nucleons, pions, and
1-isobars as explicit degrees of freedom [24–28]. We base the
calculation of the transition matrix elements on one- and two-
body axial currents [29] and provide results for one- and two-
body weak transition densities. The latter will turn out to be
particularly important to understand the role of short-range
many-body dynamics.

Ab initio studies in light nuclei allow us to carefully test
many-body correlations and electroweak currents and serve
as benchmark to approximated many-body methods currently
employed to access heavier nuclear systems [30, 31]. A study
along these lines has been carried out recently in [32].

This study represents a first step into the validation of
our theoretical model. In fact, beta decay processes occur at
zero momentum transfer while the energy transfer involved is
of the order of a few MeVs. Neutrinos exchanged in 0νββ

processes carry a value of momentum transfer of the order
of few hundreds of MeV/c [15], while the energy transfer in
neutrino oscillation experiments covers a large phase space
reaching the GeV scale. It is then essential to validate the
theoretical model in a wide range of energy and momentum
transfer to have a complete and unified description of neutrino–
nucleus interactions. For example, calculations of total and
partial muon-capture rates and comparisons with the known
experimental data will probe our model at intermediate values of
momentum transfer and will be the subject of our future work. At
higher energies, neutrino–nucleus cross sections calculations [33,
34] are the main input to interpret the data from long
and short baseline neutrino-oscillation experiments, which use
nuclei as active material in the detectors. Specifically, current
challenges concern the implementation of microscopic models
of nuclear dynamics—that fully capture correlation effects—in
neutrino event generators [35] used to simulate the neutrino
interaction physics.

The paper is structured as follows: In section 2, we briefly
summarize the theoretical and computational methods adopted
in the present work and refer the interested reader to [36]
for further details. In sections 3 and 4, we present our results
and conclusions.

2. THEORY

2.1. Quantum Monte Carlo Methods
Quantum Monte Carlo methods have been most recently
described in several review articles [21–23]. Here, we briefly
sketch the employed calculational scheme and refer the reader
to [36] for details. We use both Variational Monte Carlo (VMC)
and Green’s FunctionMonte Carlo (GFMC)methods to calculate
transitions matrix elements. We base our study on the following
many-body Hamiltonian:

H =
∑

i

Ki +
∑

i<j

vij +
∑

i<j<k

Vijk (1)

where Ki is the non-relativistic kinetic energy operator and vij
and Vijk are the NV2 and NV3 Norfolk local chiral interactions
developed in [24–28]. Together, we denote these interactions
as NV2+3.

For a nuclear state with given angular momentum and parity
Jπ , isospin T, and isospin projection TZ , the VMC method
takes as a starting point a trial wave function 9V (J

π ,T,Tz),
constructed as follows

|9V〉 = S

A
∏

i<j



1+ Uij +

A
∑

k 6=i,j

ŨTNI
ijk



 |9J〉. (2)

The Jastrow wave function 9J is fully antisymmetric and has the
(Jπ ;T,Tz) quantum numbers of the state of interest, and Uij and
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ŨTNI
ijk

are two- and three-body correlation operators that reflect

the influence of the two- and three-body forces, respectively [37–
40]. The state |9V〉 has embedded variational parameters that one
adjusts to minimize the expectation value

EV =
〈9V |H|9V〉

〈9V |9V〉
≥ E0 (3)

evaluated with Metropolis Monte Carlo integration [41].
The VMC wave function |9V〉 is further improved using the

GFMC method. The variational state is propagated in imaginary
time with the operator exp

[

−(H − E0)τ
]

. This is done in small
steps in imaginary time, 1τ , and produces the following:

9(τ ) = e−(H−E0)τ9V =
[

e−(H−E0)1τ
]n

9V (4)

One can see that, for τ → ∞, the variational state
becomes the desired state 90. The evaluation of the off-diagonal
expectation value of a given operator O is calculated using the
following approximation

〈9 f (τ )|O|9 i(τ )〉
√

〈9 f (τ )|9 f (τ )〉
√

〈9 i(τ )|9 i(τ )〉

≈ 〈O(τ )〉Mi + 〈O(τ )〉Mf
− 〈O〉V , (5)

where 〈O〉V is the variational expectation value and 〈O(τ )〉M is
the mixed estimate defined as the following:

〈O(τ )〉Mf
=

〈9 f (τ )|O|9 i
V〉

〈9 f (τ )|9
f
V〉

√

√

√

√

〈9
f
V |9

f
V〉

〈9 i
V |9

i
V〉

, (6)

and 〈O(τ )〉Mi is defined similarly (see [42] for more details).

2.2. Norfolk Interaction Models
The calculations of weak transitions presented in this work
employ the high-quality local NV2+3 interactions developed in
[24–27]. The two-nucleon potentials, NV2s, include a strong
interaction component derived from a χEFT that involves
nucleons, pions, and 1-isobars as explicit degrees of freedom
and an electromagnetic interaction component, including up to
terms quadratic in the fine structure constant α. The component
induced by the strong interaction is separated into long- and
short-range parts, labeled vLij and vSij, respectively. The v

L
ij part is

mediated via one-pion-exchange (OPE) and two-pion-exchange
(TPE) terms up to next-to-next-to-leading order (N2LO) in the
chiral expansion. Its strength is determined by the nucleon axial
coupling gA and the nucleon-to-1 axial coupling hA, the pion
decay amplitude Fπ , and LECs c1, c2, c3, c4, and b3 + b8
constrained by fits to πN scattering-data [43]. Values of these
LECs are provided in Table 1 of [36].

The pion-range operators are strongly singular at short-range
in configuration space and are regularized by a radial function
that is characterized by a cutoff RL as reported in [24–27]. The vSij
part, however, is described by contact terms up to next-to-next-
to-next-to-leading order (N3LO), characterized by 26 unknown

LECs. These interactions have been recently constrained to a
large set of NN-scattering data, as assembled by the Granada
group [44–46], including the deuteron ground-state energy and
two-neutron scattering length. For the contact terms, we use a
Gaussian representation of the three-dimensional delta function,
with RS being the short-range regulator.

In this work, we focus on one class of NV2 interaction, namely
the NV2-Ia. This class fits about 2,700 NN scattering data in the
range of 0–125 MeV of laboratory energies with a χ2/datum
. 1.1 [24, 25]. The NV2-Ia uses the combination of short- and
long-range regulators (RS, RL) = (0.8, 1.2) fm.

The NV2 models alone are not enough to provide sufficient
attraction in GFMC calculations of the binding energies of light
nuclei [25]. For this reason, a consistent three-body interaction
up to N2LO in the chiral expansion has been developed [47] to go
with the two-body potential. This interaction consists of a long-
range part mediated by two-pion exchange and a short-range
part parameterized in terms of two contact interactions [48, 49].
The two 3N LECs, namely cD and cE, have been obtained either
by fitting exclusively strong-interaction observables [47, 50–52]
or by relying on a combination of strong- and weak-interaction
ones [27, 53, 54]. This last approach is made possible by a
relation established in χEFT [55] between cD and the LECs
entering the contact axial current at N3LO [53, 54], [Schiavilla,
private communication].

In [47], the values for cD and cE were obtained by reproducing
both the experimental trinucleon ground-state energies and nd
doublet scattering length for each of the NV2 models considered.
On the other hand, in [27], these LECs were constrained by
fitting, in addition to the trinucleon energies, the empirical value
of the Gamow-Teller matrix element in tritium β-decay. The
resulting Hamiltonian is denoted as NV2+3-Ia (or Ia for short) in
the first case, and as NV2+3-Ia* (or Ia* for short) in the second.

As shown in Table 1, these two different procedures for
fixing cD and cE produced rather different values for these
LECs, particularly for cE which was found to be relatively large
and negative in the unstarred models but quite small, and not
consistently negative, in the starred models. This in turn impacts
predictions for the spectra of light nuclei [36] and the equation of
state of neutron matter, since a negative cE leads to repulsion in
light nuclei but attraction in neutron matter [56].

The starred and unstarred NV2+3 Norfolk interactions have
been implemented in both the VMC and GFMC codes and used
to perform calculations of the energy levels [28, 47], charge
radii, and longitudinal elastic form factors [23] of A = 4 − 12
nuclei that are found to be in very satisfactory agreement with
the experimental data. Furthermore, two of the NV2+3∗ models
have been also used to perform VMC calculations of the Fermi,
Gamow-Teller, and tensor densities for 6He→ 6Be and 12Be−→
12C transitions [57], relevant for studies of 0νββ .

The NV2 models have recently been used in benchmark
calculations of the energy per particle of pure neutron matter
as a function of the baryon density using three independent
many-body methods: Brueckner-Bethe-Goldstone (BBG), Fermi
hypernetted chain/single-operator chain (FHNC/SOC), and
AFDMC [58]. The inclusion of three-body forces is essential for a
realistic description of neutron matter. These types of calculation
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TABLE 1 | cD and cE values of the contact terms in the three-nucleon interactions

obtained from fits to (i) the nd scattering length and the trinucleon binding

energies [27, 47]; and (ii) the central value of the 3H GT matrix element and the

trinucleon binding energies (starred values).

Ia Ia*

cD 3.666 −0.635

cE −1.638 −0.090

See text and [36] for details.

FIGURE 1 | Diagrams illustrating the contributions to the axial current up to

N3LO (Q0) used in this work. Nucleons, 1-isobars, pions, and external fields

are denoted by solid, thick-solid, dashed, and wavy lines, respectively. The

diagrams in (A,B) represent the leading order one-body term and its relativistic

correction (denoted by the square vertex), respectively. The remaining

diagrams, (C–E) provide two-body corrections to the one-body terms. The dot

in (D) denotes a vertex induced by subleading terms in the π-nucleon chiral

Lagrangian [26]. Only a single time ordering is shown.

are particularly relevant for the quantitative assessment of the
systematic error of the different many-body approaches and how
they depend upon the nuclear interaction of choice.

Preliminary AFDMC calculations of the equation of state
of pure neutron matter carried out with the unstarred NV2+3
Norfolk interactions [Piarulli et al., private communication] are
not compatible with the existence of two solar masses neutron
stars, in conflict with recent observations [59, 60]. However,
the smaller values of cE in the 3N force of the starred NV2+3
potentials might mitigate, if not resolve this problem, while
predicting light-nuclei spectra <4% away from the experimental
data [36]. Studies along these lines are under way.

2.3. Axial Currents in χEFT
Many-body currents are crucial for providing a quantitatively
successful description of many nuclear electroweak
observables [61], such as nuclear electromagnetic form

factors [62–65], low-energy electroweak transitions [66–
73], and electroweak scattering [33]. They have also been used
in studies of double beta decay matrix elements [32, 57, 74, 75].
The study of the electroweak matrix elements carried out in this
work employs one- and two-body axial currents derived within
the same χEFT used for the NV2+3 interactions [27]. We use
two-body axial currents at tree-level constructed in [26, 27, 29].
Here, we briefly describe the contributions shown in Figure 1

and refer the reader to [27, 36] for the explicit expressions of the
current operators and for the tables reporting the values of the
parameters adopted in the present work. We note that χEFT
electroweak operators have been also derived in [76–79].

In Figure 1A, the LO term, which scales as Q−3 in the power
counting (Q denotes generically a low-momentum scale), is given
by the standard Gamow-Teller one-body operator

jLO5,a (q) = −
gA

2
τi,aσ ie

iq·ri , (7)

where gA is the nucleon axial coupling constant (gA = 1.2723 [80])
σ i and τ i are the spin and isospin Pauli matrices of nucleon i, q
is the external field momentum, ri is the spacial coordinate of
nucleon i, and a = x, y, z.

We account for an additional one body-operator shown in
Figure 1B. This contribution enters at N2LO (or Q−1) in the
chiral expansion and represents a relativistic correction to the
single-nucleon operator at LO. At N2LO there is the appearance
of the leading two-body contribution illustrated in Figure 1C by
the tree-level diagram involving the excitation of a 1-isobar. In
the tables and figures below, we label these two contributions
as N2LO-RC and N2LO-1, respectively. Following the same
notation introduced in [27], we write the cumulative N2LO
contribution as

jN2LO5,a (q) = jN2LO5,a (q;RC)+ jN2LO5,a (q;1). (8)

Finally, the N3LO contributions (scaling as Q0) involve a
term of one-pion range illustrated in Figure 1D and a contact
term shown in Figure 1E, which together give the following
N3LO correction

jN3LO5,a (q) = jN3LO5,a (q;OPE)+ jN3LO5,a (q;CT). (9)

These terms are denoted with N3LO-OPE and N3LO-
CT, respectively, and their expression are reported in
Equations (2.7)–(2.10) of [27]. As discussed at length in
[36], the N3LO-CT contact current involves the LEC cD, which
also enters the three-nucleon force. The values for the LEC
cD used in this work are reported in Table 1 and are changed
consistently in the axial current depending on the nuclear
interaction used to construct the wave functions. In this work,
we especially focus on the nuclear interactions NV2+3-Ia
and NV2+3-Ia*.
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TABLE 2 | Gamow-Teller RMEs in A = 6, 7, 8, and 10 nuclei obtained with chiral axial currents [27] and VMC wave functions corresponding to the NV2+3-Ia/Ia*

Hamiltonian models [24, 25, 27, 47].

Transition Model LO N2LO-RC N2LO-1 N3LO-OPE N3LO-CT (Total-LO) Total Expt.

6He(0+;1)→ 6Li(1+;0) Ia 2.200 −0.016 0.037 0.039 −0.005 0.056 2.256 2.1609 (40)

[42]→[42] Ia* 2.192 −0.015 0.036 0.038 −0.054 0.005 2.197

7Be( 32
−
; 12 )→

7Li( 32
−
; 12 ) Ia 2.317 −0.024 0.099 0.083 −0.010 0.148 2.465 2.3556 (47)

[43]→[43] Ia* 2.327 −0.024 0.098 0.082 −0.121 0.036 2.362

7Be( 32
−
; 32 ) →

7Li( 12
−
; 12 ) Ia 2.157 0.000 0.066 0.063 −0.009 0.121 2.278 2.1116 (57)

[43]→[43] Ia* 2.158 0.000 0.065 0.063 −0.103 0.026 2.184

8Li(2+;1)→8Be(2+;0) Ia 0.147 0.000 0.032 0.011 −0.001 0.041 0.188 0.284 [84]

[431]→[44] Ia* 0.141 0.000 0.031 0.010 −0.017 0.025 0.166 0.190 [85]

8B(2+;1)→8Be(2+;0) Ia 0.146 0.000 0.032 0.011 −0.001 0.042 0.188 0.269 (20)

[431]→[44] Ia* 0.148 0.000 0.032 0.010 −0.016 0.026 0.174

8He(0+;2)→8Li(1+;1) Ia 0.386 −0.004 0.034 0.009 −0.001 0.038 0.424 0.512 (6)

[422]→[431] Ia* 0.362 −0.004 0.035 0.009 −0.010 0.029 0.391

10C(0+;1)→10B(1+;0) Ia 1.940 −0.024 0.026 0.042 −0.006 0.039 1.9879 1.8331 (34)

[442]→[442] Ia* 2.051 −0.012 0.020 0.039 −0.065 −0.017 2.033

Columns labeled with “LO,” “N2LO-RC,” “N2LO-1,” “N3LO-OPE,” and “N3LO-CT” refer to the contributions given by the diagrams illustrated in Figures 1A–E, respectively. The

cumulative results are reported in the column labeled “Total.” Experimental values from [81–85] are given in the last column. The dominant spatial symmetry of the VMC wave function

are reported in the first column. Statistical errors associated with the Monte Carlo integrations are not shown but are below 1%. Values for the N2LO-RC for transitions to states in 8Be

and to the state 7Li( 3
2

−
; 1
2
) are 0.000 within the statistical uncertainty of the integration.

3. RESULTS

3.1. VMC Reduced Matrix Elements
In this section, we present the results of calculations of GT
reduced matrix elements (RMEs), defined as the following:

RME =

√

2Jf + 1

gA

〈JfM|jz5,±|JiM〉

〈JiM, 10|JfM〉
(10)

where jz5,± is the z-component in the limit q → 0 of the charge-
raising/lowering current j5,±= j5,x ± ij5,y, and 〈JiM, 10|JfM〉 is
a Clebsch-Gordan coefficient. Table 2 summarizes the results
of the VMC calculation of GT RMEs. These calculations
were evaluated with variational wave functions generated using
the NV2+3-Ia and NV2+3-Ia* nuclear Hamiltonians. The
table breaks the calculations down order-by-order: the LO
contribution from the one-body axial current in Figure 1A,
the N2LO contributions coming from a one-body relativistic
correction to the LO term (Figure 1B) and a two-body
contribution involving the excitation of a nucleon into a 1

by pion exchange (Figure 1C), and the contributions at N3LO
from the one pion exchange (Figure 1D) and the contact term
(Figure 1E). The sum of the two body contributions (Total-LO)
and the total RME are given in addition to the breakdown of each
contribution. The dominant spatial symmetries [86] of the wave
functions in each calculation are listed below the transition in
Table 2. Experimental values from [81–85] are listed in the last
column of Table 2.

From these results, we see that in the A = 3, 6, 7, and 10
cases, the LO contribution is ≈ 97% of the total RME in VMC
calculations. The other ≃ 3% are made up of beyond leading
order contributions. While beyond leading order contributions
only make up a small percentage of the total RME for the A =

3, 6, 7, and 10 cases, they are a much larger contribution forA =

8, making up ∼ 20–30% of the total RME. This is attributed to a
difference in the dominant spatial symmetries between the initial
and final states of the A = 8 VMC wave functions, resulting in
a smaller overlap between the initial and final wave functions
and a consequent suppression of the GT RME at leading order.
This indicates that the wave functions are lacking correlations
and that an improvement of the theoretical prediction will
require further developments of the wave functions, such as
the inclusion of more correlations and development of better
constrained small components. As similar behavior is also found
in the calculations of [87]. The total two-body contribution
is typically an enhancement of the total RME, except in the
A = 10 case for model NV2+3-Ia*, where the matrix element
is reduced. The short-range behavior of the two-body corrections
is studied in detail in section 3.2 where we analyze the two-body
transition densities.

For 8Li→8 Be beta decay, there are two different log(ft) values
in the literature that provide very different values for the GT
matrix element. In Table 2, we present the RMEs for this decay
using the ft values from [84, 85], obtained with the following
formula [83]:

RME(EXPT) =
1

gA

√

2Ji + 1

√

6139± 7

ft
, (11)

where Ji is the angular momentum of the initial state. Note
that the Fermi transition strength is negligible in deriving
Equation (11). This formula uses the value gA = 1.2723.
Additionally, we note that in [82, 88], a value of 6,147 is used
in place of 6,139. Even with this uncertainty in the experimental
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value of the RME, our predictions for the A = 8 systems
significantly underestimate the data.

3.2. One- and Two-Body Transition
Densities
To investigate the behavior of individual contributions to the
RMEs, one- and two-body transition densities are calculated. One
can define the one-body transition density as a function of the
distance of nucleon i from the center of mass:

RME(1b) =

∫

dri4πr
2
i ρ

1b(ri) . (12)

In Figures 2, 3, the one-body transition density is found to be
consistent between the two cases. Indeed, this is what we expect
based on Table 2. The LO contribution is consistent between the
two interactions and is not sensitive to how the LECs of the
three-body interaction are fit. Looking at the sub-leading order
contributions, we find that, with the exception of the N2LO-RC
term in the A = 10 transitions, the only term that is model
dependent is the N3LO contact term. To better understand this
difference, in a fashion similar to what is done in Equation (12)
for the one-body case, a two-body transition density as a function
of inter-particle spacing rij can be defined:

RME(2b) =

∫

drij4πr
2
ijρ

2b(rij) (13)

Two-body transition densities are plotted in Figure 4. For the
same transition, the N2LO-1 and the N3LO-OPE contributions
in models NV2+3-Ia and NV2+3-Ia* are nearly identical. This
is to be expected, as the two models use the same cutoffs to
regularize the interactions and have the two-body interaction fit
to the same data. Where the models differ is in the N3LO-CT
contribution. Model NV2+3 Ia* has a larger contribution from
this term compared to its counterpart. This model-dependence
of the contact contribution to the RME makes sense in light
of the difference between models NV2+3-Ia and NV2+3-Ia*.
The LECs cD and cE entering the three-body contact current
were fit with two different procedures. In model NV2+3 Ia, the
contribution was constrained using only strong interaction data
while in model NV2+3 Ia*, both strong and electroweak data
were used to constrain it. This results in the two models having
different values for these LECs and thus different strengths in the
contact term. While there is evidently a model-dependence, it is
worth noting that this is a small contribution to the overall RME
for the transitions.

Although there is a model dependence in the N3LO-CT term,
it is interesting to ask if the behavior of the current is still
similar between the two models. For this purpose, in Figure 5,
transition densities for the N3LO-CT current selected nuclei are
scaled to peak at 1.0 to see if there is a universal behavior in the
interactions. The scaling factors to generate Figure 5 are given
in Table 3. While there was a difference seen in the size of the
contribution of the N3LO-CT term when comparing the un-
scaled transition densities, it is seen here that the scaled curve
overlaps for not only both models within the same transition but

FIGURE 2 | One-body density as defined in Equation (12) for the 6He → 6Li

GT RME obtained using the NV2+3-Ia/Ia* models.

FIGURE 3 | One-body density as defined in Equation (12) for the 8B → 8Be

GT RME obtained using the NV2+3-Ia/Ia* models.

also for all transitions under study. The change in the LECs cD
and cE results in a re-scaling of the N3LO-CT term. For theA ≤ 7
transitions, the enhancement of the N3LO-CT term relative in
NV2+3-Ia* relative to the value given by its counterpart NV2+3-
Ia is a factor of≈ 6.4 for the same transition. For the A ≥ 8 cases,
this enhancement is on average a factor of≈ 2.2.

Another important feature of the two-body transition
densities is the difference in the long-range behavior of the
N2LO-1 and N3LO-OPE terms. In [27], Equations (2.9) and
(2.10) give the operator structure of these two currents. In the
limit of vanishing momentum transfer, these currents have the
same operator structure up to a momentum dependent term
that has been verified numerically to provide small contributions.
The structures of these operators result in cancelations that
are sensitive to the LECs entering into each of these currents,
impacting the behavior of the two-body transition density for
rij & 2 fm. In particular, the N2LO-1 density is sensitive
to the transition under study. In the case of the A = 10
transition, the N2LO-1 density becomes negative near ≈ 2
fm. When integrating over the whole two-body contribution for
the NV2+3-Ia* model, this results in a non-trivial cancelation
leading to the quenching of the RME from the inclusion of
sub-leading contributions.
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FIGURE 4 | Two-body density as defined in Equation (13) for GT RMEs obtained using the NV2+3-Ia/Ia* models for select nuclei.

FIGURE 5 | Scaled two-body density as defined in Equation (13) for GT RMEs obtained using the NV2+3-Ia/Ia* models for select nuclei. The distributions are scaled

to have a peak value of 1.0 using the factors in Table 3.
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3.3. GFMC Extrapolation
In addition to VMC calculations of the RME, we also perform
a GFMC extrapolation of the RME. The GFMC wave functions
generated with the NV2+3-Ia model in this work produce
energies that are in statistical agreement with the results of
[47]. For all cases presented below, with the exception of
two transitions, GFMC propagation are performed between
imaginary time steps τ = 0.2 and 0.82 MeV−1. Typically, an
imaginary time evolution of the VMC estimate produces an RME
that is reduced by a few percent and stabilizes at τ ≈ 0.2 MeV−1.

TABLE 3 | The scaling factors (r2ij ρ
2b)max used to normalize the N2LO-1,

N3LO-OPE, N3LO-CT, and total two-body transition densities in Figure 5.

Transition Model N2LO-1 N3LO-OPE N3LO-CT Total 2b

3H → 3He Ia 0.111 0.082 −0.010 0.189

Ia* 0.107 0.081 −0.120 0.147

6He → 6Li Ia 0.058 0.045 −0.005 0.101

Ia* 0.054 0.043 −0.061 0.075

7Be → 7Li Ia 0.124 0.093 −0.012 0.212

Ia* 0.121 0.091 −0.137 0.161

8B → 8Be Ia 0.023 0.011 −0.002 0.034

Ia* 0.022 0.010 −0.019 0.028

8Li → 8Be Ia 0.023 0.011 −0.002 0.033

Ia* 0.022 0.011 −0.020 0.028

8He → 8Li Ia 0.023 0.009 −0.001 0.032

Ia* 0.037 0.008 −0.012 0.029

10C → 10B Ia 0.070 0.057 −0.006 0.122

Ia* 0.061 0.050 −0.073 0.085

See text for details.

In the calculations of transitions involving the (Jπ ;T) = (2+; 0)
state of 8Be and the ground state of 8B, the extrapolation must be
treated differently. In this two states, as τ increases, the binding
energy, magnitude of the quadrupole moment, and point-proton
radius all increase monotonically. This is interpreted as the
dissolution of 8Be into two alpha particles and 8B into p+7Be.
Datar et al. [71], Pastore et al. [72], and Wiringa et al. [89]
have previously addressed this issue for 8Be. Similar to those
references, we perform the extrapolation by noting that the
energy drops rapidly in τ , stabilizing at τ ≈ 0.1 MeV−1. We
assume that, at this point, spurious contamination in the wave
function has been removed by the GFMC procedure and average
in a small interval around τ = 0.1 MeV−1, taken to be τ

from 0.06 to 0.14 MeV−1. This introduces and additional ≈ 5%
systematic uncertainty to these calculations in addition to the
statistical uncertainties of QMC.

In all transitions, except for the NV2+3-Ia* model for A = 10,
the GFMC extrapolation reduces the VMC RME by a . 4%.
Table 4 summarizes results of the LO, total sub-leading order
(Total-LO), and total RMEs for the transitions under study. In the
A < 10 transitions, the LO contribution is consistent between the
two different models under study. In the A = 10 case, this model
dependence can be understood by the existence of nearby Jπ = 1+

excited states in 10B. The lower state is predominantly 3S1[442]
state and the upper one a 3D1[442] state. These two states are split
by only 1 MeV. The transition from the predominantly 1S0[442]
10C(0+) state is large in the S → S components but about five
times smaller in the S → D components. This causes the GT
matrix element to be particularly sensitive to the exact mixing of
the 3S1 and

3D1 components in the two 10B(1+) states produced
by a given Hamiltonian, as was observed for the calculation of GT
matrix elements using the AV18+IL7 interaction [73]. In either
case, the NV2+3 interactions overpredict the data.

TABLE 4 | Gamow-Teller RMEs in A= 6, 7, 8, and 10 nuclei obtained with chiral axial currents [27] and GFMC (VMC) wave functions corresponding to the NV2+3-Ia/Ia*

Hamiltonian models [24, 25, 27, 47].

Transition Model LO (Total-LO) Total Expt.

6He(0+;1)→ 6Li(1+;0) IaI* 2.125 (2.200) 0.071 (0.056) 2.195 (2.256) 2.1609 (40)

[42] → [42] Ia*I 2.107 (2.192) 0.011 (0.005) 2.118 (2.197)

7Be( 3
2
−
; 1
2
)→7Li( 3

2
−
; 1
2
) IaI* 2.273 (2.317) 0.164 (0.165) 2.440 (2.482) 2.3556 (47)

[43] → [43] Ia*I 2.286 (2.327) 0.052 (0.053) 2.338 (2.380)

7Be( 3
2
−
; 1
2
)→7Li( 1

2
−
; 1
2
) IaI* 2.065 (2.157) 1.03 (0.121) 2.168 (2.278) 2.1116 (57)

[43] → [43] Ia*I 2.061 (2.158) 0.009 (0.025) 2.070 (2.183)

8Li(2+;1)→8Be(2+;0) IaI* 0.074 (0.147) 0.029 (0.041) 0.103 (0.188) 0.284 [84]

[431] → [44] Ia*I 0.096 (0.148) 0.025 (0.026) 0.120 (0.174) 0.190 [85]

8B(2+ ;1)→8Be(2+ ;0) IaI* 0.091 (0.146) 0.035 (0.042) 0.125 (0.188) 0.269 (20)

[431] → [44] Ia*I 0.102 (0.148) 0.024 (0.026) 0.126 (0.174)

8He(0+;2)→8Li(1+;1) IaI* 0.262 (0.386) 0.040 (0.038) 0.302 (0.424) 0.512 (6)

[422] → [431] Ia*I 0.297 (0.362) 0.025 (0.029) 0.322 (0.391)

10C(0+ ;1)→10B(1+ ;0) IaI* 1.928 (1.940) 0.050 (0.041) 1.978 (1.981) 1.8331 (34)

[442] → [442] Ia*I 2.086 (2.015) −0.031 (−0.037) 2.055 (1.978)

Results corresponding to the one-body current at LO (column labeled “LO”), and to the sum of all the corrections beyond LO (column labeled “Total-LO”) are given, along with the

cumulative contributions (column labeled “Total”) to be compared with the experimental data [81–85] reported in the last row. Statistical errors associated with theMonte Carlo integrations

are not shown, but are below 1%. Transitions for the A = 8 systems are affected by an additional systematic error of ∼ %, see text for explanation.
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4. CONCLUSIONS

With this work we set the foundations for the development
of an accurate and unified understanding of neutrino–nucleus
interactions. We are in the process of exploring and validating
the QMC approach’s description of electroweak processes in a
wide range of energy and momentum transfer; in this work, we
therefore focused on calculating matrix elements entering beta
decay and inverse beta decay in light nuclei. These processes
occur at zero momentum transfer and involve energy transferred
of the order of a few MeVs.

In our approach, we fully retained two- and three-nucleon
correlations induced by the Norfolk potentials, and we described
the interaction with the external electroweak probes by means
of the associated one- and two-body axial currents at tree-level.
This study was focused on the NV2+3-Ia and NV2+3-Ia* models,
and was aimed at carefully studying the contributions from
two-body axial currents in the two different implementations
of the three-nucleon forces. In the unstarred model the LECs
cD and cE entering the three-nucleon force were fitted to the
trinucleon binding energies and the nd scattering length, while
the starred model is constrained by the experimental GT value
of the triton decay and the trinucleon binding energies. The axial
two-body contact current at N3LO, which involves cD, was taken
consistently with the three-nucleon force adopted to generate the
nuclear wave functions.

In analogy with previous QMC studies of beta decay in light
nuclei [36, 73], we find that corrections from two-body axial
currents are at the ∼ 3% level in A = 6, 7 and 10. The A = 8
systems are instead severely underpredicted by the theory, even
after the inclusion of large (∼ 30−40%) contributions from two-
body axial currents. Studies on the electromagnetic transitions
in A = 8 nuclei were also found to be problematic [70, 72],
which indicates the need of further developments of the A = 8
wave functions.

In this work, we especially focused on the contributions
from two-body currents, which, despite the fact that they are in
these cases small, can provide us with valuable insights on the
composition of these corrections. To this end, we reported studies
on two-body transition densities which allow us to understand

the relevance of the two-body currents as a function of the
interparticle distance. As expected, we find that, for a given
interaction model, the transition densities exhibit a universal
short-range behavior across the considered nuclei, while they
differ in the long-range tails. The starred and unstarred results
differ in the contact contribution at N3LO. This is rather visible
in the panels of Figure 4 where the starred model leads to a total
transition density (black symbols) which presents one or more
nodes. The presence of nodes implies non-trivial cancelations
when using the starred models.
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