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For the graphs G1, G2, and G, if every 2-coloring (red and blue) of the edges of G results

in either a copy of blue G1 or a copy of red G2, we write G → (G1,G2). The size Ramsey

number R̂(G1,G2) is the smallest number e such that there is a graph G with size e

satisfying G → (G1,G2), i.e., R̂(G1,G2) = min{|E(G)| :G → (G1,G2)}. In this paper, by

developing the procedure and algorithm, we determine exact values of the size Ramsey

numbers of some paths and cycles. More precisely, we obtain that R̂(C4,C5) = 19,

R̂(C6,C6) = 26, R̂(P4,C5) = 14, R̂(P4,P5) = 10, R̂(P4,P6) = 14, R̂(P5,P5) = 11,

R̂(P3,P5) = 7 and R̂(P3,P6) = 8.
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1. INTRODUCTION

We use standard notions and symbols from the field of graph theory, see [1]. By G = G(V ,E), we
denote a simple graph with vertex and edge sets V and E having cardinalities |V(G)| and |E(G)|,
respectively. For S1, S2 ⊆ V(G), we denote E(S1) = {uv ∈ E(G)|v, u ∈ S1} and E(S1, S2) = {uv ∈

E(G)|u ∈ S1, v ∈ S2}. Moreover, we denote: the degree of a vertex v in G by d(v|G) (or d(v)), the
minimum degree among the vertices of G by δ(G), a path and a cycle having i vertices by Pi and
Ci, respectively. For the graphs G1, G2, and G, if every 2-coloring (red and blue) of the edges of G
results in either a copy of blue G1 or a copy of red G2, we call it Ramsey property of G and write
G → (G1,G2). The size Ramsey number R̂(G1,G2) is the smallest number e such that there is a
graph G with size e satisfying G → (G1,G2), i.e., R̂(G1,G2) = min{|E(G)| :G → (G1,G2)}. For
k ∈ N, a non-complete graph G is called k-connected if |V(G)| > k and G − X is connected for
every set X ⊆ V with |X| < k. The greatest integer k such that G is k-connected is the connectivity
κ(G) of G. For the complete graph Kn, we define κ(Kn) = n− 1.

In 1978, Erdös et al. initiated the study of the size Ramsey number, and later it was continued
by Faudree [2, 3], Lortz and Mengersen [4], and Pikhurko [5]. From these studies, we can see
that the size Ramsey number R̂(G1,G2) exists for the graphs G1 and G2. Su and Shao applied a
backtracking algorithm to find some upper bounds for the size Ramsey numbers. The study of
the size Ramsey numbers based on the graph coloring is implicitly connected to several branches of
science, such as: the energies of the status level “fully functional nodes,” “partially functional nodes,”
and “non-functional nodes” can be interpreted by the way of graph coloring [6], frequency channel
assignment [7, 8], time tabling [9], and CAD problems [10, 11]. For more literature regarding the
Ramsey numbers, we refer [12–16] to the readers. This paper is devoted to study the properties of
the graphs G with the smallest size for which G → (G1,G2) for given graphs G1 and G2. Moreover,
by developing the procedure and algorithm, we determined size Ramsey numbers of some paths
and cycles.

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00350
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00350&domain=pdf&date_stamp=2020-09-18
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:asfandfahad1@yahoo.com
https://doi.org/10.3389/fphy.2020.00350
https://www.frontiersin.org/articles/10.3389/fphy.2020.00350/full


Li et al. Some Size Ramsey Numbers

2. THE APPROACH

LEMMA 1. Let G be a graph with the smallest size for which
G → (G1,G2). Then any G′, obtained by removing all the isolated
vertices of G, is connected.

PROOF: By the definition of G′, we have G′ → (G1,G2). Suppose
to the contrary that there are at least two components H1,H2 in
G′. Let G′ = H1 ∪ H2 ∪ . . . ∪ Hn with n ≥ 2. Since Hi is not
an isolated vertex for any i, we have |E(Hi)| < |E(G′)| for any i.
Then there is a 2-coloring (red and blue) fi of the edges ofHi such
that Hi contains neither red G1 nor blue G2. Now, consider a 2-
edge coloring f of the edges of G′ with f (e) = fi(e) for any e ∈ Hi

for i = 1, 2, · · · , n. Then G contains neither red G1 nor blue G2

under f , and so G′
9 (G1,G2), a contradiction.

Remark 1: Given the graphs G,G1,G2 with G → (G1,G2),
by the Lemma 1, we only need to consider the connected
graphs for G.

LEMMA 2. If G is a graph with the smallest size for which
G → (G1,G2), and G is a connected graph, then κ(G) ≥

min{κ(G1), κ(G2)}.

PROOF: Assume on contrary that we have κ(G) < min{κ(G1),
κ(G2)}. Let S ⊆ V(G) such that |S| = κ(G) and G − S is
disconnected and assume G − S = H1 ∪ H2 ∪ . . . ∪ Hn with
n ≥ 2. Let V(Ti) = V(Hi)∪S and E(Ti) = E(Hi)∪E(Hi, S). Since
G is a graph with the smallest size for which G → (G1,G2), there
is a red-blue coloring fi of the edges of Ti such that Ti contains
neither red G1 nor blue G2 for any i. Let E(S) = {e1, e2, · · · , ek}
for some k. Now consider a 2-edge coloring f of the edges of G
with f (e) = fi(e) for any e ∈ Hi for i = 1, 2, · · · , n, f (e1) = red,
f (ei) = blue for any i = 2, 3, · · · , k. Then G contains neither red
G1 nor blue G2 under f , and so G

′
9 (G1,G2). Now, we consider

the following two cases:
Case 1: If there is a red copy of G1 as a subgraph of G.
Subcase 1.1: E(G1) ⊆ E(Ti) ∪ E(S) with i ∈ {1, . . . , n}.
Since fi is a red-blue coloring of the edges of Ti such that Ti

contains no red G1. Then E(G1) ∩ E(S) 6= ∅. Since G1[E(G1) ∩
E(S)] is not a clique with |S| vertices, there is a cut-set S1
of G1 with S1 ⊆ S. Then |S1| ≤ |S| < κ(G1) by the
assumption, a contraction.
Subcase 1.2: E(G1) ∩ E(Hi) 6= ∅,E(G1) ∩ E(Hj) 6= ∅ with i 6= j.
Then S is a cut-set of G1 with |S| < κ(G1) by the
assumption, a contraction.
Case 2: If there is a blue copy of G2 as a subgraph of G.
Subcase 2.1: E(G2) ⊆ E(Ti) ∪ E(S) with i ∈ {1, . . . , n}.
Since fi is a red-blue coloring of the edges of Ti such that Ti

contains no blue G2. Then E(G2) ∩ E(S) 6= ∅. Since G2[E(G2) ∩
E(S)] is not a clique with |S| vertices, there is a cut-set S2
of G2 with S2 ⊆ S. Then |S2| ≤ |S| < κ(G2) by the
assumption, a contraction.
Subcase 2.2: E(G2) ∩ E(Hi) 6= ∅,E(G2) ∩ E(Hj) 6= ∅ with i 6= j.
Then S is a cut-set of G2 with |S| < κ(G2) by the
assumption, a contraction.

LEMMA 3. For the graphs G, G1 and G2, if there exist vertices
v1, . . . , vt for some 1 ≤ t ≤ |V(G)| satisfying that d(vi|G

i−1) <

δ(G1) + δ(G2) − 1 for any i = 1, 2, · · · , t and Gt 9

(G1,G2), where Gi = G − {v1, . . . , vi} and G0 = G.
Then G 9 (G1,G2).

PROOF: We apply induction on t to prove it. Firstly, it is clear
that the lemma holds if t = 1. Now, we suppose the stated
result holds for t = i, we need to prove it for t = i + 1.
Since the lemma holds if t = i, we have G1

9 (G1,G2).
Then there is a red-blue coloring g of the edges of G1 such
that there is neither a red copy of G1 nor a blue copy of
G2 in G1. Let E(w) = {uv ∈ E(G)|u = w or v = w}.
Since d(v1|G

0) < δ(G1) + δ(G2) − 1, we can divide E(v1)
into E1,E2 with |E1| < δ(G1), |E2| < δ(G2). Let f be a
coloring of G obtained by assigning red to E1, blue to E1
based on g.
Case 1: If there is a red copy of G1 as a subgraph of G under
f , then v1 ∈ V(G1). Since |E1| < δ(G1), then d(v1|G1) <

δ(G1), a contraction.
Case 2: If there is a blue copy of G2 as a subgraph of G under
f , then v1 ∈ V(G2). Since |E2| < δ(G2), then d(v1|G2) <

δ(G2), a contraction.
There is neither a red copy ofG1 nor a blue copy ofG2 inG under
f . Therefore, G 9 (G1,G2).

The contrapositive of the Lemma 3 for t = 1 produces the
following corollary:

COROLLARY 1. For any graphs G1 and G2, if G is any graph
with the smallest size for which G → (G1,G2), then δ(G) ≥

δ(G1)+ δ(G2)− 1.

LEMMA 4. For any graphs G1 and G2, if G is any graph with
order n and size m such that G 6→ (G1,G2), then for any graph

G′ with order at most n and size m − 1 <
n(n−1)

2 , we have
G′ 6→ (G1,G2).

PROOF: First, we have G′ is not a complete graph, then there are
two vertices u, v with uv /∈ E(G′). Now, we insert the edge uv
to obtain a graph G′′ based on G′. Then G′′ is a graph with m
edges and n vertices and so G′′ 6→ (G1,G2). Therefore, there is a
red − blue coloring f of G′′ such that there is neither a red copy
of G1 nor a blue copy of G2 in G′′ under f . Then, there is also
neither a red copy of G1 nor a blue copy of G2 in G′ under f |G′ .
Then G′ 6→ (G1,G2).

By applying the Lemma 1 and the Corollary 1, we only
need to consider the connected graphs, and then propose
the following algorithm (FindSizeRamseynumber) to find the
size Ramsey number of G1 and G2. We will use the
software nauty [17] to generate non-isomorphic graphs with
necessary properties. If G1 and G2 are k-connected graphs,
we further apply the Lemma 2 to reduces the number
of graphs needed to be processed. For testing if G →

(G1,G2), we applying the backtracking procedure proposed
in [18].

Procedure Find(m,n,G1,G2);
input:m, n be integers;

graphs G1 and G2.
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TABLE 1 | Exact values R̂(G1,G2) of the size Ramsey numbers of some paths and

cycles.

G1 G2 (n,m) #A(n,m) #B(n,m) result

C4 C5 (7,19) 2 1 R̂(C4,C5) = 19

C6 C6 (8,26) 2 1 R̂(C6,C6) = 26

P4 C5 (7,14) 59 1 R̂(P4,C5) = 14

P4 P5 (6,10) 14 4 R̂(P4,P5) = 10

P4 P6 (7,14) 64 30 R̂(P4,P6) = 14

P5 P5 (6,11) 9 3 R̂(P5,P5) = 11

P3 P5 (5,7) 4 2 R̂(P3,P5) = 7

P3 P6 (6,8) 22 1 R̂(P3,P6) = 8

begin

generate the family G of all the non-isomorphic connected
graphs with sizem and
order n with minimum degree δ(G1) + δ(G2) − 1; (Apply

Lemma 1 and Corollary 1);
foreach G in G

if (G → (G1,G2))
return true;

end if

end for

return true;

end.

Algorithm FindSizeRamseynumber(G1,G2);

input: graphs G1 and G2.
begin

1 : Find a graph G such G → (G1,G2);
2 : m = |E(G)| − 1;
3 : n = min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m+ 1};

4 : while Find(m, n,G1,G2) do;
5 : n = n− 1;
6 : ifm >

n(n−1)
2 do

7 : m = m− 1;
8 : n = min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m+ 1};

9 : end if

10: end while

11: returnm+ 1.
end.

3. RESULTS

EXAMPLE 1. R̂(C4,C5) = 19.

PROOF: Consider G1 = C4, G2 = C5. By Algorithm
FindSizeRamseynumber, we first find the graphH satisfyingH →

(C4,C5) (line 1). Therefore, R̂(C4,C5) ≤ 19. Then, we consider
the edge number less than 19 (i.e., m ≤ 18, by line 2), and the
order of graph at most min{⌊ 2m

δ(G1)+δ(G2)−1
⌋,m + 1} ≤ 12. Now,

the procedure will check if there is no graph G with minimum
degree 3, size at most and order from 7 to 12 satisfying G →

(C4,C5) (line 3-10). In this case, by applying Procedure Find, we
find that there is no such graph. Therefore, R̂(C4,C5) ≥ 19.

By applying Algorithm FindSizeRamseynumber, we obtain
many size Ramsey numbers presented in Table 1, where #A(n,m)
denote the number of non-isomorphic connected graphs with
minimum degree δ(G1)+ δ(G2)− 1 with sizem and order n, and
#B(n,m) denote the number of such graphsGwithG → (G1,G2).
An application of the algorithm can be used in some other graph
problems, see [19].

4. CONCLUSION

It is a very hard task to determine the size Ramsey number
even for small graphs. Faudree and Sheehan gave a table of
the size Ramsey numbers for graphs with order not more than
four [3]. Su and Shao [18] provide upper bounds for the size
Ramsey numbers of some paths and cycles. Until now, very
limited results on the size Ramsey numbers are known. In
this paper, we have developed some computational techniques
to determine many of those size Ramsey numbers. There are
numerous variants of the Ramsey numbers such as ordered
Ramsey numbers, size Ramsey numbers and zero-sum Ramsey
numbers, see [20]. It is also very difficult to compute each variant
of these Ramsey numbers. In order to compute some possible
Ramsey numbers, we need to obtain the structure of the graphs
by studying their mathematical properties. So, the approach of
this paper may be considered to compute some challenging
Ramsey numbers.
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