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Effective field theory provides a new perspective on the predictive power of

Renormalization Group fixed points. Critical trajectories between different fixed points

confine the regions of UV-complete, IR-complete, as well as conformal theories. The

associated boundary surfaces cannot be crossed by the Renormalization Group flow

of any effective field theory. We delineate cases in which the boundary surface acts

as an infrared attractor for generic effective field theories. Gauge-Yukawa theories

serve as an example that is both perturbative and of direct phenomenological interest.

We identify additional matter fields such that all the observed coupling values of the

Standard Model, apart from the Abelian hypercharge, lie within the conformal region.

We define a quantitative measure of the predictivity of effective asymptotic safety and

demonstrate phenomenological constraints for the associated beyond Standard-Model

Yukawa couplings.

Keywords: renormalization group, interacting fixed points, effective field theory, (beyond) standardmodel physics,

asymptotic safety

1. MOTIVATION

Effective field theory (EFT) describes all of high-energy physics remarkably well—see [1] for a
review of Standard Model (SM) EFT, and [2] for a well-defined EFT of gravity below the Planck
scale. EFTs are solely governed by their field content and symmetries (both global and local). The
theory space of all possible realizations of an EFT is spanned by the couplings associated with the
(infinite) set of all independent symmetry invariants. A specific realization is characterized by its
coupling values at some Renormalization Group (RG) scale. Despite the infinitely many couplings,
perturbative and local EFTs are predictive toward the infrared (IR) since the infinite tower of
higher-order interactions permitted by symmetries and field content is suppressed by powers of
the ratio between experimentally accessible scales and the cutoff scale, i.e., by the RG structure
around the free fixed point. A sufficiently high cutoff scale thus gives retrospective insight into the
success of perturbatively renormalizable gauge-Yukawa theories such as the SM.

On the other hand, it has been of paramount interest to identify fundamental, i.e., ultraviolet
(UV) complete, quantum field theories in which the cutoff can be removed—first asymptotically
free [3–21], and more recently, asymptotically safe [22–43] gauge-Yukawa theories. See also [44–
58] (with potential caveats discussed in [59–61]) for asymptotically safe gauge-Yukawa theories
from resummation at a large number of matter fields and [62] for a recent review including
lattice results.
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The RG flow of asymptotically free theories emanates from a
fixed point at which all interactions vanish and the theory exhibits
classical scale invariance. Asymptotic safety [63] generalizes
asymptotic freedom to include UV-complete theories that
emanate from (partially) interacting fixed points at which some
of the couplings remain finite and the fixed-point theory exhibits
quantum not classical scale invariance, cf. [64].

Quantum scale invariance of asymptotically safe theories
(including the special case of classical scale invariance of
asymptotically free theories) can entail enhanced predictivity.
Close to a fixed point, this predictivity can be quantified by
the eigenvalues of the linearized RG flow, i.e., by the number
of IR-attractive opposed to IR-repulsive directions in theory
space, cf. e.g., [65] for an introduction. Toward the IR, the
RG flow can emanate from the fixed point only along IR-
repulsive directions. Hence, the subset of EFTs emanating from
the fixed point, referred to as its UV-critical hypersurface, is
spanned only by the subset of IR-repulsive directions. On the
contrary, IR-attractive directions become predictions of such
fundamental theories because their coupling values have to
remain fixed to the UV-critical hypersurface. A fundamental
theory is predictive whenever the UV-critical surface is finite-
dimensional. All perturbative fixed points—both free and
interacting—are automatically predictive because perturbative
quantum fluctuations are (by definition) too weak to cause
classically irrelevant couplings to become IR-repulsive.

The present work is limited to non-gravitational theories.
Concerning gravity, a considerable body of evidence, pioneered
by [66], suggests the existence of an interacting fixed point for
Euclidean quantum gravity, cf. [67–69] for introductory texts. If
present, such a fixed point could extend EFTs beyond the Planck
scale 3Planck. Here, we will only be concerned with perturbative
EFTs at energies below 3Planck. Nevertheless, the Planck scale
plays a crucial role. Most conservatively, it is to be regarded as
the unavoidable cutoff scale for any non-gravitational theory.
Hence, phenomenological implications of (non-gravitational)
asymptotic safety should be discussed in the framework of an EFT
that is valid only between 3Planck and the scale 3NP at which
the new physics decouples. Assuming that new physics below
the electroweak scale 3ew is excluded by collider experiments1,
the EFTs of interest are therefore valid over at most 17 orders of
magnitude in energy scales, i.e.,

102 GeV ≈ 3ew . 3NP . 3Planck ≈ 1019 GeV . (1)

This motivates us to explore effective asymptotic safety, i.e., the
predictivity of RG fixed points over a finite range of scales,
cf. also [65, 70–72]. Moreover, we are interested in the global RG
structure encompassing all fixed points available in perturbation
theory. Effective—in comparison to fundamental—asymptotic
safety can alter conclusions about phenomenology as well as
about the exclusion of specific models. To put the results of
this paper in a wider context, we make the following simple

1This assumption can be circumvented by very weakly coupled particles, in which

case the new-physics scale may lie below the electroweak scale. We will not discuss

these cases here.

observation about the RG flow in the theory space of perturbative
gauge-Yukawa theories:

The respective boundaries of the set of all UV-complete, IR-

complete, and both UV- and IR-complete theories constitute

hypersurfaces in theory space that cannot be crossed by the RG

flow of any EFT. With respect to other directions orthogonal to

such a boundary hypersurface, the latter inherits the IR-attractive

properties of the fixed points by which it is delimited. In these

cases, the entire boundary surface, not just the fixed point, can

constitute an IR-attractor and generic EFTs tend to cluster close

to it2.

Possible proof of this claim in more general settings is beyond
the scope of this work and might be provided elsewhere in
the future. Besides its potential importance for a structural
understanding of the behavior of RG flows, it can have
phenomenological implications which, in our opinion, deserve
more attention. In the following, we will demonstrate this
observation for the case of gauge-Yukawa theories. These make
for a particularly suitable example because (i) their fixed-
point structure is both rich enough and perturbatively well-
controlled [34, 36, 38, 39, 42, 73] and (ii) they are of direct
phenomenological significance as possible extensions of the SM
[37, 40, 41, 43].

1.1. Synopsis of Results
• In section 2, we review the different phases, i.e., the possible

perturbative fixed-point structures, of simple gauge-Yukawa
theories identified in [22, 73]. This discussion allows us to
delineate how the above observation is realized. Readers who
are familiar with the fixed-point structure of gauge-Yukawa
theories and are not interested in a respective discussion of
effective asymptotic safety may want to skip this section.

• In section 3, we look at each simple SM subgroup by
itself which leads to a transparent understanding of why
within perturbation theory: (i) additional matter fields can
induce fully IR-attractive interacting fixed points for the non-
Abelian SM subgroups, while (ii) interacting fixed points with
UV-attractive directions are not available, and (iii) Abelian
subgroups will always remain trivial.

• Turning to phenomenological implications, we introduce a
novel quantitative measure for the global predictivity of EFTs
in section 4. This effective notion of predictivity applies to
(finite-dimensional truncations of) perturbative as well as
non-perturbative EFTs, more widely.

• In section 5, the SM serves as a first example to demonstrate
the predictivity measure. Here, we also conclude that
whenever the non-Abelian sectors remain perturbative, the
Abelian Landau pole of the SM remains safely beyond the
Planck scale.

• In section 6, we discuss phenomenological conclusions of
effective asymptotic safety for extensions of the SM by

2We caution that these observations require a truncation of the perturbative series

or any other expansion which is sufficiently converged to have revealed all physical

fixed points. Otherwise, the statement still applies to the truncated RG flow but

might lose its phenomenological significance.
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additional matter fields along the lines of [22]. We identify
specific BSM matter for which all the SM coupling values
(apart from the Abelian hypercharge coupling) lie within the
conformal region.

We conclude in section 7. Throughout this analysis, we work with
well-established perturbative MS beta functions. The respective
collection of NLO and NNLO beta-functions required for this
work, cf. [3–5, 74–103] for original references, is relegated
into Appendices.

2. RG STRUCTURE OF GAUGE-YUKAWA
THEORIES: AN EFT POINT OF VIEW

Before explicitly discussing the SM and its possible extensions,
we briefly review the available fixed-point structures of simple
gauge-Yukawa theories previously discussed in [22, 73]. This
serves as a specific example to characterize the global RG
structure, effective asymptotic safety and their significance for
generic EFTs. For the purpose of this section, we focus on a simple
gauge group for which we denote the squared gauge coupling by
αg = g2/(4π)2, cf. [34] for a generalization to semi-simple gauge
groups.

Weyl-consistency conditions suggest that the RG equations
of gauge-Yukawa theories should be obtained in hierarchical
schemes [38, 104–108]. In particular, Yukawa couplings
contribute to gauge couplings only at 2nd loop order. Quartic
couplings contribute to Yukawa and gauge couplings only at
2nd and 3rd loop order, respectively. Therefore, included loop
orders of gauge, Yukawa, and quartic couplings should relate as
(n + 2, n + 1, n), respectively. Throughout this paper, we will
neglect quartic couplings for simplicity and work in the (2, 1, 0)-
scheme (subsequently referred to as NLO). We check that fixed
points remain perturbatively well-controlled by extending to
the (3, 2, 0)-scheme (subsequently referred to as NNLO)3. In
the notation of [38], what we call NLO (NNLO) is referred
to as NLO′′ (2NLO′′). The explicit RG equations of the latter
are discussed in Appendices since they merely serve to ensure
perturbative control. Following [73], the beta-function of general
Yukawa couplings LYukawa = −Y tr

[
ψ̄L χ ψR + ψ̄R χ

†ψL

]
,

suppressing indices, takes the form

βY = E(Y)− αg F(Y) , (2)

where E and F are matrices qubic and linear in the Yukawa-
coupling matrices Y, respectively. Therefore, besides a trivial
fixed point at Y∗ = 0, additional non-trivial (partial) Yukawa
fixed-points exist. The latter depend parametrically on αg [73],
i.e.,

Y(∗)(α) =
√
αg C , (3)

3Given this setup, we are only able to make statements about those non-vanishing

fixed points that potentially arise from a balance between leading order (LO) and

NLO contributions. In principle, there could be further fixed points for which

NNLO (or even higher) loop orders are required. However, one should then always

be careful to test their nature by confirming that (at least) they persist upon

inclusion of the subsequent higher-loop order. Since 3NLO contributions are not

available at present, such an analysis cannot reliably be made.

TABLE 1 | Different perturbative Renormalization Group phases for simple

gauge-Yukawa theories.

Conditions dIR dUV dUV-IR

Complete asymptotic freedom (CAF) B < 0, C < 0, C′ < 0 0 2 0

Banks-Zaks (BZ) conformal window B < 0, C > 0, C′ < 0 1 2 1

Gauge-Yukawa (GY) conformal window B < 0, C > 0, C′ > 0 2 2 2

Litim-Sannino (LS) conformal window B > 0, C > 0, C′ < 0 2 1 1

Complete triviality (CT) B > 0, C > 0, C′ > 0 2 0 0

Conditions on B, C, and C′ can be translated into conditions on parameters like the size

of the gauge group and number of fermionic/scalar representations. We also indicate the

dimensionalities dIR, dUV, and dUV-IR = Min(dUV,dIR ) of the IR-complete, UV-complete

and conformal, i.e., UV- and IR-complete, region in theory space, respectively.

where the C is independent of the gauge coupling, cf. [73]. These
partial fixed points (also referred to as Yukawa-nullcline) always
exist and occur at positive (but not necessarily perturbative)
values of the Yukawa couplings. Under the RG flow, they focus
the values of Yukawa couplings toward a small IR interval, as
for instance in the SM. We will see in section 6 that they are of
phenomenological importance, cf. also [109–111]. Evaluating the
(2-loop) running of the gauge coupling αg by use of the above
partial fixed-point solution results in

βαg = α2g
[
−B− C αg + 2Dαg

]
. (4)

The scalar coefficients B, C, and D are purely group-theoretic
and can be found in [73]. B and C arise from gauge-coupling
contributions, while D arises from Yukawa couplings at their
partial fixed point. Since αg = g2/(4π)2, the fixed points for g∗
are physical, i.e., real, only if αg ∗ > 0. While D > 0 (D = 0 for
the vanishing Yukawa fixed point), the signs of B and C depend
on the matter content of the theory4. Defining C′ = C−2D (note
that C′ < C, always), one can fully classify the general theory
by two types of interacting fixed points, cf. [22, 73]: one with
vanishing and one with non-vanishing Yukawa couplings, i.e.,

αg ∗, BZ = −
B

C
, Y∗, BZ = 0 , (5)

αg ∗, GY = −
B

C′ , Y∗, GY =
√
α C , (6)

respectively. Depending on which of these are physical, i.e.,
occur at αg ∗ > 0, [73] have classified the five possible
phases, i.e., perturbative fixed-point structures, of simple gauge-
Yukawa theories. These are summarized in Table 1 and depicted
schematically in Figure 1.

Preceding the EFT discussion of these phases, it is important
to distinguish the following terminology. A set of gauge-
Yukawa theories is determined by its gauge group and matter
content, parameterized, for instance, by the number of fermionic
representations NF . To agree with previous literature [112], we

4We have chosen the signs to reflect the antiscreening non-Abelian case without

matter content. Note that this choice agrees with [112] but differs from [22].
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FIGURE 1 | Possible RG structures, cf. [73] (see main text for further discussion), of simple gauge Yukawa-theories, depending on the signs of one- and two-loop

coefficients B, C, and C′ of the gauge coupling β-function, cf. Equation (4) and in turn on the gauge group and matter content of the theory. The x-axis (y-axis) shows

the gauge coupling αg (Yukawa coupling αy ). Thick white lines indicate the boundary surface of the UV-complete, IR-complete, or conformal regions in theory space.

White flow lines (arrows) point toward the IR. The heat maps in the background indicate how a set of random EFTs, uniformly distributed over the full depicted range of

couplings, is focused toward the boundary surface. Lighter areas indicate a high density of theories one order of magnitude below the cutoff scale. The explicit

β-function coefficients, cf. Equation (4), required to obtain the plots have been chosen as: CAF: B = C = C′ = E = F/2 = 1/10; BZ: 2B = −C = 2C′ = 2E = F = 1;

GY: 2B = −C = −2C′ = 2E = 2F = 1; LS: −2B = −C = 2C′ = 2E = 2F = 1; CT: −2B = −C = −2C′ = 2E = 2F = 1.

refer to the possible values of NF which realize certain gauge-
Yukawa phases as “windows.” This is distinct from a particular
realization within a set of gauge-Yukawa theories. The latter is
further parameterized by coupling values, i.e., by a choice of RG
trajectory. When referring to possible values of the couplings, we
talk about “regions.” In particular, we say that the set of all UV-
complete trajectories makes up the UV-complete region, the set
of all IR-complete trajectories makes up the IR-complete region,
and the set of all UV- and IR-complete trajectories makes up
the “conformal” region. Crucially, the terminology “conformal
window” and “conformal region” are to be distinguished.

2.1. Complete Asymptotic Freedom (CAF)
For antiscreening B > 0 as well as C > 0, the only physical fixed
point is the Gaußian one, cf. left-hand upper panel in Figure 1.
The former is completely asymptotically free when approached
from below the Yukawa nullcline, i.e., whenever Y < Y∗(αg).
This case also encompasses asymptotic freedom of Yang-Mills
theory without Yukawa couplings, cf. the RG flow along the x-
axis in the left-hand upper panel of Figure 1. The UV-complete
region is 2-dimensional and extends to infinite coupling values
(or more accurately beyond perturbative control) although it
is partially bound by the Yukawa-nullcline (white line). This

boundary surface inherits the IR-attractive property of the free
fixed point along the Yukawa direction (y-axis) and is hence IR-
attractive from above, i.e., for Y > Y∗. This entails that generic
UV-incomplete EFTs will be attracted to the boundary. The IR-
complete (and thus also the conformal) region is reduced to the
trivial theory. All other theories eventually escape perturbative
control toward the IR.

2.2. Banks-Zaks (BZ) Conformal Window
Scalar, as well as fermionic matter, adds screening fluctuations
and modifies the running of non-Abelian gauge couplings.
This can flip the signs of C, C′, and B. Independent of the
specific matter representation, the sign of C is always flipped
first and the theory (with vanishing Yukawa couplings) enters
the so-called conformal window [112], cf. upper panel in the
middle of Figure 1. As C flips sign (but before C′ or B do
so), the Banks-Zaks fixed point becomes physical. For vanishing
Yukawa coupling and 0 < αg < αg ∗, BZ, the theory is now
both UV- and IR-complete. In fact, since the IR-complete and
thus the conformal region is still only one-dimensional, the
RG-scale can be mapped directly to a unique gauge-coupling
value. Put differently, there only exists a single conformal
theory. The gauge-Yukawa fixed point is still not physical and
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thus every theory with non-vanishing Yukawa coupling will
eventually diverge in the IR. This is a consequence of the Banks-
Zaks fixed point being IR-attractive in the direction of the
gauge coupling but IR-repulsive in the direction of the Yukawa
coupling. To distinguish this situation, we refer to this as the “BZ
conformal window.” However, the UV-complete region is still
two-dimensional. Its boundary inherits the partial IR-attractive
nature of the two fixed points. (The free fixed point is IR-
attractive in the Yukawa-coupling direction and the Banks-Zaks
fixed point is IR-attractive along the gauge-coupling direction).
The corresponding sections of the boundary surface act as an
IR-attractor, in particular for EFTs outside of the UV-complete
region. We emphasize that it is the boundary and not a single
fixed point which is IR-attractive.

Adding further matter representations can flip the sign of C′

or B first. Therefore, there are now two distinct phases that can
occur when further matter is added. Which of these is realized
depends on the ratio of scalar and fermionic matter and on the
set of possible Yukawa interactions.

2.3. Gauge-Yukawa (GY) Conformal
Window
Whenever C′ turns negative before B does, the theory develops
a fully IR-attractive gauge-Yukawa fixed point, cf. right-hand
upper panel in Figure 1. As C′ is varied, the fixed point formally
enters from infinity (or from outside the perturbative regime)
along the direction in which the two nullclines of the BZ phase
join. The gauge-Yukawa fixed point serves as an endpoint of the
two nullclines and delimits the two-dimensional UV-complete
region, which is now also IR-complete. As a consequence, there
is now a two-dimensional region of distinct conformal theories.
In correspondence to the “BZ conformal window,” we refer to
this as the “gauge-Yukawa (GY) conformal window.” This case
is particularly predictive. If realized only over a finite range
of scales, e.g., due to the decoupling of massive modes, this
realizes effective asymptotic safety. All EFTs are attracted first to
the boundary of the “gauge-Yukawa conformal window” and
eventually into the gauge-Yukawa fixed point.

2.4. Litim-Sannino (LS) Conformal Window
If, on the other hand, B turns negative before C′ does, a Litim-
Sannino fixed point [22] becomes available, while the Banks-Zaks
fixed point [112] disappears (formally it escapes the perturbative
regime in direction of increasing gauge coupling) and the free
fixed point becomes fully IR-attractive, cf. lower panel in the
middle of Figure 1. It is now the IR-complete region which is
two-dimensional. However, the UV-complete region and hence
the set of conformal theories, is just one-dimensional. The latter
is delimited by the free and the Litim-Sannino fixed point, while
the former also extends beyond the Litim-Sannino fixed point
and corresponds to its UV-critical hypersurface. Concerning
generic EFTs, the conformal theory which splits the IR-complete
region, i.e., the separatrix between the Litim-Sannino and the free
fixed point, acts as an IR-attractor because it inherits this property
from the shared IR-attractive direction of both its delimiting
fixed points. The boundary of the IR-complete region, however,
is not IR attractive since it inherits the IR-repulsive direction

of the Litim-Sannino fixed point. Again, generic EFTs tend to
cluster close to the UV-complete theories, i.e., exhibit effective
asymptotic safety.

2.5. Complete Triviality (CT)
The final possibility occurs if all three signs are flipped, i.e.,
B < 0 and C < C′ < 0. Since all contributions have
now turned screening, the theory remains only with the free
fixed point. The latter is now fully IR-attractive. This phase
occurs for the perturbative range of any Abelian gauge group,
cf. section 3.2. Formally, the UV-complete and conformal regions
reduce to the trivial theory to which all EFTs are attracted. The IR-
complete region now covers all of the theory space. The triviality
problem can therefore be seen as a consequence of “effective
asymptotic freedom.”

This concludes the review of all possible fixed-point structures
[73] which can occur due to different cancelations at NLO
in simple gauge-Yukawa theories. One can schematically
think of semi-simple cases, such as the SM, as the higher-
dimensional combinations of these phases, cf. [34] for an
explicit discussion. In the following, we will always check
whether potential fixed points persist at NNLO. We present
our formal definition of perturbativity in section 4. Before
doing so, we provide insight into the single gauge groups
of the SM which is sufficient to qualitatively understand the
available fixed points that we identify in the coupled system in
section 6. In all phases, some form of IR-attractor dominates the
RG flow.

3. AVAILABLE PHASES FOR THE SIMPLE
STANDARD-MODEL SUBGROUPS

Following [22], we remain focused on a simple gauge group
with NF copies of a single type of fermionic representation
RF and uncharged scalars to allow for Yukawa couplings,
cf. Appendix A or [22] for the explicit Lagrangian. In this case,
the Yukawa-coupling matrices E(Y) and F(Y) in Equation (2)
reduce to scalar coefficients E and F of a single Yukawa
coupling y for which we introduce αy = y2/(4π)2. The
NLO coefficients that determine the interacting fixed-points,
cf. Equations (5) and (6) and the resulting RG-structure are
given by, cf. [73],

B =
2

3 dadj

(
11 dadj C

adj
2 − 2NF d

RFCRF
2

)
,

C =
68

(
C
adj
2

)2

3
−

4dRFCRF
2 NF(5C

adj
2 + 3CRF

2 )

3dadj
, (7)

C′ =
4

3


−

5dRFC
adj
2 CRF

2 NF

dadj
+

3dRF
(
CRF
2

)2
NF

(
10NF − dRF

)

dadj
(
2NF + dRF

)

+17
(
C
adj
2

)2]
. (8)
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Here,C
adj
2 and dadj refer to the second Casimir and the dimension

of the adjoint representation, respectively. Similarly, CRF
2 and dRF

denote the same for the fermionic representation5.
Naively, there are two ways to achieve perturbativity of the

possible fixed points α∗, BZ = − B
C and α∗, GY = − B

C′ , i.e.,
either by (i) making B small, or by (ii) making C or C′ large.
It is typically not possible to achieve the latter (as a function
of NC and NF for instance) without invalidating perturbation
theory at higher orders. The subsequent discussion of the U(1)
in section 3.2 will serve as an explicit example. On the contrary,
non-Abelian gauge groups can allow for perturbatively small B
without invalidating perturbation theory [22]. A dedicated 3-
loop analysis of a simple SU(N) gauge group with fermions in the
fundamental representation [38] provides strong indications that
perturbative yet interacting gauge-Yukawa fixed points are only
possible for NC > 5. However, this does not necessarily imply
that the same conclusions hold for arbitrary representations. For
extensions of the SM, this has been tested by an explicit grid
search for a single type of BSM representation in [40]. Before
extending such a grid search to multiple different types of BSM
representation, we discuss each of the simple SM subgroups on
its own. This provides a good intuition of why certain phases,
cf. Figure 1, are possible and others are not.

3.1. The Non-Abelian Subgroups of the SM
Which of the gauge-Yukawa phases is accessible in perturbation
theory depends on the sign of C′ in the region close to a sign-
change of B, cf. Figure 1. Note that the sign of C is always fixed
close to a sign change of B, cf. [73]. The sign of C′, in turn,
depends on the specific gauge group and matter representations.
In particular, additional fermionic representations without (or
with negligibly small) Yukawa couplings result in additional
screening contributions to B and C, while they do not
contribute to (C′ − C) since they do not participate in Yukawa
interactions. Hence, charged fermions without Yukawa couplings
will influence which phases are available.

The latter also occurs in the SM where there are 32 light Weyl
degrees of freedom with negligibly small Yukawa couplings6. We
explicitly visualize their significance for the existence of gauge-
Yukawa fixed points in the case of SU(2) and SU(3) in Figure 2.
Without the SM fermions, there exist BSM representations [such
as the d2 = 3 dimensional for SU(2) and the d3 = 8 dimensional
for SU(3)] for which, with growing number NF of BSM fermions,
B changes sign before C′ does. As a function of NF one moves
from complete asymptotic freedom to the Banks-Zaks phase and
into the Litim-Sannino phase, i.e., through the chain CAF →
BZ → LS, cf. first and third panel in Figure 2. In particular,
one enters the LS phase via a sign change in B, i.e., in the

5Either of the latter group-theoretic invariants can be traded for the Dynkin index

SRF ≡
dRF

dadj
CRF
2 (9)

but note that the latter is defined only up to a constant and varying conventions

are used in the literature. Here, we use the dimension and the second Casimir.
6This counting excludes the top quark since its Yukawa coupling is not negligibly

small. It also excludes potential right-handed neutrinos which are SM singlets

anyway.

region in which the interacting fixed points can be perturbatively
controlled. Inclusion of the SM fermions prohibits the realization
of this chain, i.e., there is no possible BSM representation for
which B changes sign before C′ does. When adding additional
BSM representations one therefore always follows a different
chain with growing NF : starting from complete asymptotic
freedom and moving through the Banks-Zaks phase, one instead
enters the gauge-Yukawa and ends up in the completely trivial
phase, i.e., this realizes the chain CAF → BZ → GY → CT.
For most BSM representations which can be added to the SM
case, the BZ and GY phase only occur at non-integer values of
NF such that this formal chain is effectively reduced to CAF →
GY → CT or CAF → CT, cf. Figure 2. Formally, this chain can
be prolonged and the LS phase can still be entered from the CT
phase, cf. upper-right area of the second panel in Figure 2. The
minimal (but quite large) number of BSM fermions identified in
[37] realizes this formal window of the LS phase. While this can
occur at small values of the couplings if C′ ≫ B ≫ 1, the latter
invalidates perturbation theory and such fixed points are lost at
NNLO, cf. also [40].

Regarding extensions of the SM, we can conclude that
the SM fermions with negligibly small Yukawa couplings
prohibit from entering the LS phase, i.e., no perturbatively
controlled, interacting fixed points with UV-attractive directions
are possible. On the contrary, fully IR-attractive interacting
gauge-Yukawa fixed points in the GY phase remain possible for
special dimension and number of BSM representations, cf. red
upward triangles in Figure 2. As we shall see in section 6,
both conclusions persist for the full SM gauge group. The GY
phase realizes effective asymptotic safety if the theory space is
extended to include mass terms or scalar vacuum expectation
values. In this case, the theory departs from (close to) the
otherwise fully IR-attractive fixed point at RG scales below this
mass threshold.

3.2. Persistence of Abelian Triviality
Despite the complete asymptotic freedom of both non-Abelian
subgroups, the SM is not UV-complete, i.e., it eventually breaks
down at a transplanckian but finite energy scale. Due to the
lack of antiscreening self-interactions in the U(1) gauge group,
matter fluctuations dominate and screen the associated Abelian
gauge coupling. At ∼ 1041 GeV, the latter grows beyond
perturbative control and eventually results in a perturbative
divergence—the Landau pole [113]. Beyond perturbation theory,
the U(1) triviality problem has been confirmed by different non-
perturbative methods [114–116], but so far only in the absence of
Yukawa couplings.

Indeed, the presence of a Yukawa coupling formally places an
Abelian gauge group in the Litim-Sannino phase, cf. section 2.
Unfortunately, the corresponding interacting pseudo-fixed-point
cannot occur within the perturbatively controlled regime. Since
we found no explicit discussion of the latter statement in the
literature, we will provide it in the following.

In principle, every U(1) gauge group with NF fermions of
charge Y and associated scalars to facilitate Yukawa couplings
is in the LS phase which would indicate the presence of an
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FIGURE 2 | Different phases, i.e., LS (H), GY (N), BZ ( ), CAF (⊕), and CT (⊖), of SU(2) and SU(3) gauge groups depending on the number NF and dimension dRF

(cf. Equations 30–31) of the included BSM representations and on whether the SM matter fields are included or not. The thick red curve highlights where the 1-loop

contribution vanishes, i.e., B = 0. Interacting fixed points can only be controlled perturbatively if they lie in the vicinity of this line. The LS phase recedes from the

perturbatively accessible region whenever the SM fields, i.e., charged matter without or with neglibily small, Yukawa couplings are included.

interacting UV fixed point for the gauge coupling at

αU(1) ∗ =
1

15Y2
, αy ∗ =

2

5NF
. (10)

The explicit NLO and NNLO β-functions are presented in
Appendix C. It would seem as if this fixed point becomes
more perturbative for large Y2 and large NF but this ignores
the accompanying growth of higher-loop contributions and
the resulting breakdown of perturbation theory. To properly
analyze the above fixed point, one has to introduce a t’Hooft-like
rescaling of the couplings.More specifically, one has to rescale the
couplings αg and αy such that all higher-loop contributions either
vanish or at least converge to finite values at large NF and large
Y2. In the present case, the minimal rescaling that suppresses all
higher-loop contributions with growing NF and Y2 is given by

αU(1) =
α̃U(1)

NF Y2
, αy =

α̃y

NF
. (11)

The correspondingly rescaled β-functions reveal that (in contrast
to the non-Abelian case in [22]) only the trivial fixed point
persists in the perturbative large-charge–large-NF limit. We have
explicitly confirmed that for any combination of integer NF > 0
and arbitrary Y2, the absolute value of the NNLO contributions
is larger than that of the NLO contributions when evaluated
at the fiducial fixed point in Equation (10)—a clear sign that
perturbation theory is not valid anymore.

The physical mechanism through which the Litim-Sannino
fixed point arises, i.e., the balance of screening contributions
from fermionic fluctuations against antiscreening contributions
fromYukawa couplings, is present nevertheless. Thus, it might be
worthwhile to conduct a non-perturbative analysis of this fixed-
point mechanism in Abelian theories with Yukawa couplings in
the future. However, for the present perturbative analysis, we
conclude that the Abelian gauge group of the SM will always
remain trivial.

4. A QUANTITATIVE MEASURE OF
PREDICTIVITY

For a given gauge-Yukawa theory with fixed gauge group and
matter content, we define the perturbative range of coupling
values αi by the condition that all NNLO contributions remain
smaller than the respective NLO contributions, i.e.,

perturbativity ⇔ |β(NNLO)| <
1

2
|β(NLO)| . (12)

The factor 1
2 is included such as to avoid the regime of novel

fiducial fixed points arising at NNLO. Another reason for
the inclusion of this factor is the U(1) Landau pole, as will
become clear below. This perturbativity condition is rather non-
conservative, meaning that perturbation theory may break down
earlier. The resulting set of perturbative EFTs encloses a finite
volume V in the (truncated) theory space of all couplings7. More
explicitly, we use the volume of the convex hull obtained from a
Delauney-triangulation of a large enough random set of points in
theory space which fulfill the perturbativity criterion8. We ensure
convergence of this discrete volume measure by averaging over
several individual random sets of perturbative EFTs and making
sure that the statistical error is subleading.

The theory-space volume V depends on the definition of
couplings: for instance, a simple rescaling of couplings will also
rescale V. It is thus certainly a scheme-dependent statement.

7Since we work in the perturbative regime, all higher-order couplings will

necessarily remain irrelevant. Hence, the UV-complete region does not extend in

any of these directions and its volume, if finite in truncated theory space, remains

finite in full theory space. Technically, this is not necessarily true for the overall

EFT volume in the theory-space volume which permits an extension in any higher-

order direction of the full theory space. We restrict to truncated theory space in the

following.
8One can easily see that the convex hull is not always a good approximation

to the theory-space volume enclosed by the separatrices between fixed points,

cf. upper right-hand panel in Figure 1. However, it is (to our knowledge) the only

mathematically well-defined discrete notion of such a volume. It certainly suffices

to quantify the statements of this study.

Frontiers in Physics | www.frontiersin.org 7 September 2020 | Volume 8 | Article 341

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Held Effective Asymptotic Safey

However, ratios of such volumes at different scales measure
something like an overall critical exponent and should, therefore,
capture scheme-independent effects9. Taking such ratios allows
us to define a quantitative measure of predictivity. The theory-
space volume V can be evolved by following the RG flow to the
IR. Given the initial volume V3 at the cutoff scale 3, and its
evolution following the RG flow, i.e., Vk, at RG scale k, we define
predictivity P(k) by

P(k) =
Vk

V3
. (13)

We call EFTs predictive (non-predictive), whenever their theory-
space volume decreases (increases) along the flow. Non-
predictive EFTs tend to formally result in P(k) → ∞ at
finite k < 3 which signals that they have diverged beyond
perturbative control. In the predictive case, however, P(k)
provides a quantitative measure of how predictive the EFT is.
We caution that, at present, we are not able to provide proof
that the predictivity measure constitutes a scheme-independent
statement. We hope to sharpen the scheme-independence of this
definition in future work.

It will also prove useful to exclude specific couplings, e.g.,
the measured SM couplings, from the predictivity measure and
instead match them to their experimentally known values at
a specified low-energy scale, e.g., at 3ew < 3. The resulting
P̃(k) can measure partial predictivity, even if the overall EFT is
classified as non-predictive.

Both, the predictivity and the partial predictivity measure
do not necessarily rely on perturbation theory and can be
applied to (sufficiently converged) non-perturbative truncations
of theory space as well. However, they do require to define an
initial volume in theory space in which the present truncation
is sufficiently converged, i.e., a non-perturbative analog of
Equation (12). Whenever such an initial volume in theory
space can be defined, its evolution under the RG flow allows
us to quantify the predictivity of effective asymptotic safety via
the measure in Equation (13). In particular, this applies to
truncations of the Reuter universality class [66], see [67–69] for
introductory texts and [65, 70–72] for previous discussions in the
effective asymptotic safety context. We leave such an analysis for
future work.

To exemplify the above definitions, we will discuss the heavy
gauge-Yukawa sector of the SM in section 5 before adding new
matter degrees of freedom in section 6.

5. THE HEAVY-TOP LIMIT OF THE
STANDARD MODEL

We focus on the heavy gauge-Yukawa sector of the SM, i.e., on
the three gauge couplings α1, 2, 3 and the top-Yukawa coupling
αt . It is a very good approximation to assume all other fermions
as being massless, i.e., to set their Yukawa couplings to zero.
Similarly, we neglect contributions from the quartic coupling λ4

9In case of a single fixed point and a purely linear flow, the ratio of theory-space

volumes V is indeed directly related to the critical exponents.

which is also negligible with regards to the gauge-Yukawa sector,
as long as all couplings remain within the perturbative regime
because it only arises at 2-loop and 3-loop order for Yukawa and
gauge couplings, respectively. Supplementary conditions implied
by stability conditions of the Higgs potential [24, 38] are deferred
to future studies.

5.1. Partial Predictivity Within the Standard
Model
The heavy SM is non-predictive, i.e., P(k) quickly diverges below
the cutoff scale. This is a result of the antiscreening nature
of the non-Abelian gauge couplings realizing the CAF phase,
cf. section 2 in the SM. Coupling values at the cutoff scale that lie
close to the edge of the perturbative regime will quickly be driven
to values beyond perturbative control toward the IR.

On the other hand, if one excludes the non-Abelian gauge
couplings from the predictivity measure and instead fixes them
to their known experimental values at the electroweak scale, the
SM is partially predictive in the remaining theory space. This is a
consequence of the screening nature of both the top-Yukawa and
the U(1) gauge coupling. When excluding also the U(1) gauge
coupling from the predictivity measure, the resulting partial
predictivity P̃(k) reflects the pre-Tevatron situation in which all
the gauge couplings had already been experimentally measured,
while the top-Yukawa coupling αt remained unknown. Figure 3
shows the evolution of P̃(k) along the RG flow. In this simple one-
dimensional slice of theory space, the predictivity measure simply
amounts to the normalized evolution of the full perturbative
range of top-Yukawa values below 3Planck. Hence, enforcing a
perturbative origin at 3Planck bounds the top quark to be lighter
than Mt . 210GeV. The underlying reason is the associated
partial IR fixed point for Yukawa couplings in gauge-Yukawa
theories previously uncovered in [109–111], cf. also Equation (3).

5.2. The Landau Pole Remains
Transplanckian
As discussed in section 3.2, the triviality of the U(1) hypercharge
cannot be cured within perturbation theory. On the other hand,
the associated Landau pole remains above the Planck scale as long
as the other SM couplings remain within the perturbative regime
(and no BSM representations with hypercharges are added).

Even in the absence of any new states with hypercharge, NLO
and NNLO contributions from the non-Abelian gauge and top-
Yukawa couplings in a modified BSM RG flow can potentially
further screen the U(1) gauge coupling and therefore result in a
lowered Landau pole, cf. also [37]. However, for any perturbative
extension of the SM that still matches the measured electroweak-
scale value for α1, the Landau pole remains at transplanckian
energies. One can numerically determine that α3 . 0.15, α2 .

0.09, and αt . 0.53 is required to conform to the perturbativity
criterion in Equation (12), i.e., to |β(NNLO)| < 1

2 |β
(NLO)|. These

maximal values have been determined by a grid search at random
α1. We then fix the non-Abelian gauge couplings and the top
Yukawa coupling to these maximal values. By definition, any
RG flow within the perturbative regime cannot outgrow these
values. Numerical integration of the resulting RG flow of the U(1)
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FIGURE 3 | (Left) RG flow of the SM gauge-Yukawa theory. The shaded region indicates values for αt which can originate from a perturbative EFT at the cutoff scale

3Planck. The focusing of this region toward the lower scales exemplifies the partial predictive power of the SM as an EFT. The dashed trajectories indicate the RG flow

of α3, α2, α1, and αt, matching observed values at the electroweak scale. (Right) Evolution of the partial predictivity measure with the RG flow.

coupling shows that the U(1)-Landau pole remains safely beyond
the Planck scale.

The left panel in Figure 4 shows the RG-flow of the Abelian
gauge coupling matching to the observed electroweak-scale value
for a random set of fixed values of the other heavy-SM couplings
satisfying the perturbativity criterion. Subplanckian Landau
poles are not present. Loosening the perturbativity criterion in
Equation (12) to |β(NNLO)| < |β(NLO)| allows for rare cases at the
edge of the redefined perturbative regime for which the Landau
pole is shifted slightly below the Planck scale, cf. right panel
in Figure 4. In any case, all the perturbative BSM fixed points
discussed in section 6 are much more perturbative than any of
the above bounds.

We conclude that the persistence of a U(1)-Landau pole—
at least in any of the subsequently important BSM scenarios in
which the BSM representations do not carry hypercharge—is no
meaningful criterion in the search for physically interesting fixed
points in the framework of perturbative EFTs below the Planck
scale. Instead, one should merely verify that the Landau pole
remains transplanckian. In this aspect, we advocate a different
point of view, than, e.g., [40].

6. NEW MATTER DEGREES OF FREEDOM

In the following, we allow for additional fermionic matter in
arbitrary representations (as well as for the associated uncharged
scalars to facilitate Yukawa couplings). We have seen that,
within perturbation theory, any U(1) factor will remain trivial.
Therefore, we do not attempt to modify the RG flow of the
U(1) gauge coupling and thus only add BSM fermions which
are uncharged under the U(1). We allow for an arbitrary

number of different representations of BSM fermions, i.e., N
Ra
F

fermions in the (d
Ra
2 , d

Ra
3 )-dimensional representation of SU(2)

and SU(3), respectively. The Lagrangian (see Equation 25) and
the β-functions for the three gauge couplings, the top-Yukawa

coupling, as well as additional BSM Yukawa couplings, i.e., for

α1 =
g21

(4π)2
, α2 =

g22
(4π)2

, α3 =
g23

(4π)2
,

αyt =
y2t

(4π)2
, αRay =

y2Ra
(4π)2

, (14)

are generalized from [40] and collected in Appendix B. We
emphasize that while the BSM scalars are uncharged, fluctuations
of the charged SM Higgs scalar are always included.

With the intuition from the results in section 2 for simple non-
Abelian gauge groups, we anticipate that, also in the semi-simple
case, the non-Abelian subgroups cannot admit perturbatively
controllable Litim-Sannino fixed points with an IR-repulsive
(UV-attractive) direction. We confirm this expectation in the
following explicit analysis. Fully IR-attractive gauge-Yukawa
fixed points, on the other hand, can exist. From the viewpoint
of effective asymptotic safety, these are the most predictive and
in that sense most interesting fixed points, anyhow.

The larger the dimension of the BSM representations, the
greater their screening effect on the 1-loop coefficient of the
associated non-Abelian gauge coupling. Thus, there exists an

upper dimension d
Ra
2, crit = 4 and d

Ra
3, crit = 10 beyond which

even a single additional BSM representation will always push
the associated non-Abelian SM gauge group into the completely
trivial phase. Hence, the set of possible BSM representations for
which perturbative non-vanishing gauge-Yukawa fixed points
might exist is limited and easily tractable. With the help of
computer algebra [117], we simply scan through all possibilities
and identify those for which the NLO beta-functions exhibit a
fixed point with

α2 ∗ > 0 , α3 ∗ > 0 , αt ∗ > 0 , and αRay ∗ > 0 ∀ a .

(15)

We subsequently test the perturbativity of each of the resulting
fixed points by initializing a numerical root search in the
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FIGURE 4 | RG-flow of the U(1) gauge coupling matched to the observed electroweak value for arbitrary non-Abelian gauge and top-Yukawa couplings within the

perturbative regime. (Left) perturbativity defined by |β (NNLO)| < 1
2 |β

(NLO)|, cf. Equation (12). (Right) Perturbativity defined by |β (NNLO)| < 1
2 |β

(NLO)|.

NNLO beta-functions at the NLO fixed-point values. If the
latter converges, we compare whether the signs of the critical
exponents of the NLO and NNLO fixed points match. (If the
root search does not converge, we discard the NLO fixed point).
Thereby we can identify perturbative fixed points for which
NNLO corrections are subleading10.

Irrespective of the specific representation (dR12 , dR13 ) and the

number of copies NR1
F , we find that a single type of BSM

representation R1 is insufficient to generate a fixed point at which
both α2 ∗ 6= 0 and α3 ∗ 6= 0. IR-attractive gauge-Yukawa fixed
points at which only one of the non-Abelian gauge couplings is
non-vanishing are available in perturbation theory and have been
identified in [40].

Proceeding to two different types of representations, i.e., R1
and R2, we are able to identify a single combination of BSM
representations for which a fixed point as in Equation (15) is
possible, i.e.,

NR1 = 1 copy of the (dR12 , dR13 ) = (3, 1) and

NR2 = 2 copies of the (dR22 , dR23 ) = (1, 6) . (16)

Having specified the above representations, the respective BSM
Lagrangian follows from Equation (25 in Appendix B). For
this specific combination of BSM representations, both non-
Abelian gauge groups are in the GY phase. Hence, all possible
combinations of gauge-Yukawa fixed points exist. In particular,
this includes a fully IR-attractive fixed point at

α1 ∗ = 0 , α2 ∗ ≈ 0.0131 , α3 ∗ ≈ 0.0033 , αt ∗ ≈ 0.0124 ,

αR1y ∗ ≈ 0.0082 , αR2y ∗ ≈ 0.0394 . (17)

The fixed point persists at NNLO order.
To summarize, we find that by adding suitable matter content

to the SM, the non-Abelian gauge-Yukawa sector of the SM can

10One might be able to construct more elaborate search algorithms and thereby

potentially identify additional gauge-Yukawa BSM theories with perturbatively

controlled interacting fixed points and we do not claim completeness.

transition from the CAF-phase to the GY-phase, and of course
to the CT-phase. The explicit study supports that neither the
BZ-phase nor the LS-phase is possible, cf. section 3. Within
perturbation theory, the U(1) always remains in the CT-phase.

6.1. Predictivity Below the Planck Scale
For simple gauge-Yukawa theories in the CAF phase (BZ phase),
the IR-complete region is reduced to the free theory (one-
dimensional conformal window for vanishing Yukawa coupling),
cf. Figure 1. Hence, these phases develop IR divergences for
initial conditions that lie close to the edge of perturbativity at the
cutoff scale. Put differently, they are non-predictive (as defined
in section 4). On the contrary, the IR-complete region of theories
in the GY or CT phase (and the LS) phase is two dimensional
and covers all (or most) of the perturbative regime. Hence, these
phases are predictive.

In Equation (16), we have identified a combination of BSM
representations to push the non-Abelian SM subgroups into the
predictive GY but not yet trivial phase. The two right-hand panels
in Figure 5 depict the associated decreasing volume in theory
space as a function of the RG-flow toward the IR in two slices
of the overall 6-dimensional theory space. The left-hand panel
shows the corresponding evolution of the predictivity measure
P(k). Specifying to 3NP = 105 GeV, the theory-space volume is
reduced by a factor of P(k = 3NP) ∼ 10−9 between 3Planck and
3NP.

Despite fixed-point values that depart significantly, i.e., by
several 100%, from the measured SM values, predictivity is
insufficient to exclude the BSM extension from matching to the
SM electroweak scale. Put differently, the observed SM-coupling
values lie within the “conformal” region of UV- and IR-complete
theories (apart from the non-vanishing value of the Abelian
gauge coupling, cf. section 3.2).

6.2. Partial Predictivity Below the Planck
Scale
A phenomenologically more relevant question is that of partial
predictivity under the condition of matching all the observed
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FIGURE 5 | In the left panel we show the predictivity of the BSM model identified in Equation (16), averaged over 10 sets of perturbative but otherwise random initial

EFTs. The gray-dashed region indicates the statistical error. The other two panels show projections of the evolving theory-space volume [onto the α3-αt-plane (middle)

and onto the α
R1
y -α

R2
y -plane (right)]. We plot its convex hull at each order of magnitude below 3Planck with increasingly darker-red shading toward the IR.

FIGURE 6 | Partial predictivity for the BSM theory identified in Equation (16). The plots show RG trajectories that match the observed values of SM couplings in the

heavy-top limit, i.e., α1, α2, α3 (dashed), and αt (continuous). At energies below (above) 3NP, the BSM degrees of freedom decouple (are active). The BSM RG flow

focuses arbitrary perturbative initial conditions for the BSM Yukawa couplings αy1 (left) and αy2 (right) at the Planck scale to the gray-shaded regions at lower scales.

We also indicate (thin lines) several trajectories to exemplify the behavior of different RG trajectories within the conformal region.

SM couplings, i.e., α1, α2, α3, and αt , to their measured
electroweak-scale values. The resulting partial predictivity for
the BSM Yukawa couplings—especially in αy1—is quite strong.
Figure 6 shows how the RG flow strongly focuses the BSM
Yukawa couplings toward the IR, all the while enforcing that the
SM couplings match to their electro-weak scale values. The full
range of perturbative EFT values at 3Planck is mapped to values
below the partial fixed point, i.e., αy1 (k = 3ew) . 0.0165 and
αy2 (k = 3ew) . 0.0083. These values do not precisely match
with the fixed-point values in Equation (17) because the SM
couplings are matched to their electro-weak scale values, instead.

In general, any RG trajectory for the BSM Yukawa couplings
in the gray region of Figure 6 is possible. However, typical initial
conditions, i.e., those which are not fine-tuned to values very
close to zero, are all mapped to values very close to the partial
fixed-point value, cf. thin lines in Figure 6. This is a result
of the power-law scaling toward the interacting fixed point in
Equation (17) (more specifically, toward its partial counterpart).

Quantitatively, the RG flow maps initial conditions within the
perturbative but “natural” range of coupling values at the Planck
scale αy1 (k = 3Planck) ∈ [10−4, 0.5] to a very narrow window
at the electroweak scale, i.e., to αy1 (k = 3ew) ∈ [1.646 ×
10−2, 1.649 × 10−2]. Assuming that the BSM Yukawa couplings
should take such “natural,” i.e., O(1), values at the Planck scale,
therefore predicts αy1 (k = 3ew) ≈ 1.65×10−2. We caution that a
correct matching to the SM values of αt requires the latter to have
an “unnatural” Planck scale value ∼ 10−5, thereby questioning
the use of the above naturalness assumption. Similar arguments
also apply to αy2 , although partial predictivity is less pronounced,
cf. Figure 6.

The above partial predictivity does not rely on the existence of
a gauge-Yukawa fixed point like the one found in Equation (17).
It is merely a consequence of the partial IR fixed-point for
the BSM Yukawa couplings, cf. Equation (3). We list some
explicit examples of BSM matter content to realize the CAF,
GY, and CT phase (for both non-Abelian gauge groups) along

Frontiers in Physics | www.frontiersin.org 11 September 2020 | Volume 8 | Article 341

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Held Effective Asymptotic Safey

TABLE 2 | Preditictivity P(3NP ) and partial predictivity P̃(3NP ) at a new-physics scale 3NP = 105 GeV for some selected BSM models in the three available phases

characterized by their BSM matter content in the first two columns, see main text for further discussion.

(N
R1
F
, d

R1
2 , d

R1
3 ) (N

R2
F
, d

R2
2 , d

R2
3 ) Predictivity Partial predictivity Non-Abelian phase

(1, 2, 1) (1, 1, 3) P(3NP ) = ∞ P̃(3NP ) ≈ 2× 10−4 CAF

(1, 3, 1) (2, 1, 6) P(3NP ) ≈ 10−9 P̃(3NP ) ≈ 3× 10−4 GY

(1, 4, 1) (11, 1, 3) P(3NP ) ≈ 10−11 P̃(3NP ) ≈ 9× 10−4 CT

(1, 4, 1) (1, 1, 10) P(3NP ) ≈ 10−12 Not viable CT

The predictivity for the BSM model content in the last line is already high enough to exclude its validity when matched to SM values of couplings, i.e., by a sub-Planckian Landau pole

in α3. (We refrain from listing further examples in mixed phases).

with predictivity and partial predictivity in Table 2. It can be
concluded that while only theories in the GY and the CT
phase are predictive, partial predictivity persists in all models.
In particular, the partial predictivity in the absence of a gauge-
Yukawa fixed point can outgrow the partial predictivity in the
presence of one.

7. DISCUSSION

We have analyzed the fixed points of gauge-Yukawa theories and,
in particular, the SM gauge group in the context of EFTs below
the Planck scale. For the SM gauge groups, we have clarified why
gauge-Yukawa fixed points with UV-attractive directions cannot
occur within the perturbatively controlled regime. However,
additional matter fields can result in a perturbative and fully
IR-attractive gauge-Yukawa fixed point which realizes effective
asymptotic safety. We have introduced a novel quantitative
measure for the predictivity of general EFTs and have applied
it to gauge-Yukawa BSM extensions. Concerning concrete
BSM phenomenology, this allows us to make the following
conclusions:

• The results highlight that the presence of an (Abelian)
Landau pole, as long as it occurs at trans-Planckian scales,
does not pose a strict no-go criterion in the search of
perturbative interacting fixed points in non-gravitational and
hence necessarily effective theories with a Planckian cutoff.

• We have identified a fully IR-attractive and (apart from the
Abelian gauge coupling) fully interacting fixed point if suitable
vector-like fermions without hypercharge, i.e., one SU(3)
singlet in the three-dimensional representation of SU(2) and
two SU(2) singlets in the six-dimensional representation of
SU(3), are added to the SM, cf. Equations (16) and (25 in
Appendix B) for the corresponding BSM Lagrangian. This
particular theory is predictive along the RG flow toward the
IR. We have quantified its predictive power and compared it
to other BSM models without interacting fixed points. For all
thesemodels, partial predictivity restricts the range of coupling
values of the BSM Yukawa couplings in dependence on the
ratio between the BSM scale and the cutoff scale.

• In general, the predictive power of subplanckian effective
asymptotic safety of gauge-Yukawa theories can be estimated
by a simple argument: Let ǫ≪1 be the perturbative parameter.
For simple gauge-Yukawa theories, ǫ . 0.1 has been
found in [22] as the indicated regime of perturbative control.
Perturbative fixed points that come about by the balance

of loop orders will necessarily result in critical exponents θ
proportional to some power of ǫ, i.e., θ . ǫ. Extrapolating
the linearized regime around the fixed point, one therefore
expects (α(3IR) − α∗)/(α(3UV) − α∗) = ǫ log(3IR/3UV)
for the associated coupling α. For the phenomenologically
important case of 3NP/3Planck < 3ew/3Planck ∼ 1017,
predictivity is thus expected to be limited to shrinking the
allowed region of all perturbative coupling values by one
or two orders of magnitude. This simple argument also
motivates that predictivity can be further increased (i) for non-
perturbative fixed points—as e.g., tentatively suggested in a
toy model in [118]—because θ need not be small and (ii) for
potential fixed points including gravitational fluctuations, see
e.g., [119–122] since 3UV can be extended beyond the Planck
scale.

More generally, the example of gauge-Yukawa theories suggests
that the boundaries of all UV-complete and/or IR-complete
theories constitute special hypersurfaces in the theory space. In
particular, we have made the following observations.

• The boundary hypersurfaces separate theories on both sides.
Whenever one is confident that such a boundary exists and
one knows that experimentally observed values lie either inside
or outside, one can exclude that the observed IR physics
originates from UV physics on the other side of the boundary.

• Moreover, the boundary surfaces can inherit the IR-attractive
properties of their delimiting fixed point. In such cases, generic
EFTs at the cutoff scale—both UV complete and not UV
complete—will converge to realize coupling values closer to
the boundary surface toward the IR. This is a first step
to generalize the local notion of fixed points to global IR-
attractors in theory space.

These two points highlight that knowledge about such boundary
surfaces can be of great value whenever one tries to relate theories
at different scales. Of course, having all the information to
exactly reconstruct the boundary surface amounts to knowing
about all RG flows in its vicinity. One might, therefore, object
that with this information one could directly evolve a theory
between different scales and obtain its counterpart at other
scales. However, this is true only if one knows about all the
coupling values at a given scale which is typically not the case
in the search for new physics. The constraints on BSM Yukawa
couplings, that partial predictivity and perturbativity up to the
Planck scale entail, provide for an example to emphasize this
more general point.
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