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The discrete element method is adopted to investigate the failure process in

punch-through shear tests. The numerical tests agree well with the laboratory tests on

crack propagation sequence and the influence of confining stress on effective shear

fracture toughness. More importantly, the numerical tests indicate that the increase in

axial force first causes stress concentrations. When the stresses reach critical values,

cracks initiate and the concentrated stresses dissipate. With further increase in axial

displacement, the axial force may fluctuate, accompanied with crack development. In

addition, the increase in confining stress promotes the critical values of the concentrated

stresses before crack propagation. Thus, the numerical tests show that the increase

in confining stress promotes the effective shear fracture toughness and restrains the

propagation of tensile cracks.
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INTRODUCTION

Rockmasses containingmany initial defects may be in complex geological conditions and subjected
to various external loads [1–3]. Then, loads frequently cause stress concentrations and may further
result in the opening (Mode I) and sliding (Mode II) displacements of the crack surfaces. In rock
engineering, sliding (Mode II) is the commonest mode of failure [4]. Thus, many researchers have
performed laboratory and numerical studies to investigate the shear fracture toughness (KIIC), a
critical index for shear (sliding) failure. For example, Rao et al. [4] conducted shear-box tests to
determine theMode II crack toughness and proposed that effective KIIC decreases with the increase
of both the specimen thickness. Timothy and Don [5] applied double-edge notched compression
specimens to determine the Mode II fracture toughness and found that the ratio of KIIC to KIC

(tensile fracture toughness) is∼1.6. In addition, their study showed that shear force fluctuates near
the peak points, and residual shear occurs. Similar fluctuations and residual shear were observed in
the laboratory study, by applying punch-through shear tests [6]. Based on the calculation model by
Watkins [7] and Golewski and Sadowski [8] proposed that the content of the fly-ash influences the
KIIC by performing electronic scanning tests and shear tests on concrete specimens. They further
proposed an equation describing the critical force (corresponding to the shear crack initiation) and
the shear fracture toughness. By performing compression tests on the cracked chevron-notched
Brazilian Disc specimens, Ghanbari et al. [9] stated that the effective shear fracture toughness first
increases and then decreases with the increase in temperature. Dehestani et al. [10, 11] applied
crack Brazilian disc specimens to investigate the influence of wetting–drying cycles on the effective
shear fracture toughness in neutral and acidic environments. They found that the increase in the
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wetting–drying cycles decreases the effective shear fracture
toughness. By conducting numerical and laboratory tests on the
fine-grained marble specimens, Xu et al. [12] proposed that the
optimal height–diameter ratio is 2. The above studies clearly
show that many methods can measure the shear fracture tests. In
addition, many factors, including confinement, geometric sizes,
and test temperature, can influence the measured results. Besides
the above methods, the punch-through shear test is the suggested
method of the ISRM (International Society for Rock Mechanics)
[13, 14]. By performing extensive laboratory tests, Backers et al.
[6] and Backers and Stephansson [13] found that tensile crack
may first form, and then shear planes initiate from the bottom
tip of the notches. In addition, they proposed that the shear
crack propagates in a stable way, and the effective shear fracture
toughness closely relates to the peak axial compression force and
the confinement. The conclusion on shear crack propagation
agrees well with the laboratory tests by Golewski and Sadowski
[8] and Wu et al. [15].

Roux et al. [16] and Patinet et al. [17] stated that the effective
toughness is the average of the local toughness in the weak
pinning regime, characterized by regular propagation. However,
in the strong pinning regime, a much higher effective toughness,
accompanied with unstable propagation, is observed. The shear
fracture in the specimen gradually propagates [6, 13]. However,
the stress evolution in the rock bridge, remaining unclear, may
successfully explain the above phenomena. However, the stress
measurement in the laboratory test is approximately impossible
[6]. The numerical method may shed some light on how to
correlate fractures to stress evolution. For example, Liu et al.
[18] measured the shear fracture toughness using the rock failure
process analysis. Moon et al. [19] and Moon and Oh [20]
successfully applied discrete element method to measure the
tensile fracture toughness. Recent, by applying finite element
method, Aminzadeh [21] et al. and Ma et al. [22] investigated
the shear behavior of the rock specimens. Especially, among
these methods, the discrete element method can record the crack
development [23–25]. Thus, with the recent studies, using the
measure circle logic to study stress evolution characteristics [15,
26–28], we applied Particle Flow Code 2D (PFC 2D) to relate the
stress evolution to crack development in the punch-through tests.

NUMERICAL PREPARATION

Calibration
In the present article, the laboratory dates reported by Backers
were referred [29] (Table 1). The uniaxial compression strength

TABLE 1 | Mechanical parameters.

Elastic

modulus

(GPa)

UCS TS Effective KIIC

(confining stress

is 5 MPa)

Carrara

marble

49 95–107 MPa 7 MPa 3.8–4.1 (MPa * m1/2 )

Simulated

results

48.5 106.7 MPa 6.7 MPa 4.37 (MPa * m1/2)

Error (%) −1 −0.2 to 12.3 4.2 6.5–15

(UCS)/tensile strength (TS) ratio is higher than 14. To obtain
this realistic ratio, the flat-joint model instead of the parallel
bond model was adopted [30, 31]. This model mainly consists
of particles and the flat-joint contacts. In this model, two groups
of springs can provide the normal and the shear stiffness.
The first group includes the normal stiffness of the particles
(Kn) and the flat-joint contact (Kn

′), respectively (Figure 1A).
Correspondingly, the other group consists of the shear stiffness,
Ks and Ks

′ (Figure 1B). When the normal stress between
particles exceeds the TS, σb, the bond breaks in a tensile manner,
and the bond fails (Figure 1C). The shear strength first follows
the Coulomb criterion when the shear stress is relatively low:

τc = cb −
−
σ tanφb (1)

where cb and φb are the bond cohesion and the local
friction angle.

When the shear stress increases to a critical value, the bond
fails in a shear manner. However, residual shear stress remains
because of the friction:

τr = −
−
σ tanφr (2)

where τr and φr are the residual friction strength and the residual
friction angle. Thus, the flat-joint model can successfully simulate
the post-peak behavior.

UCS and TS are two important parameters for rock fracture
[30, 31]. Thus, by modifying bond cohesion, particle contact
modulus, and bond modulus (Table 2), the elastic modulus and
UCS were first calibrated according to the disciplines of trial
and error tests [31]. Then, the TS was subsequently calibrated
by modifying bond normal strength (Table 2). Figure 2 shows
the calibration results, using the uniaxial compression tests and
the Brazil tensile tests. Clearly, a shear failure plane and a tensile
plane form in the uniaxial compression test and Brazil tension
test, respectively. The UCS and the TS are close to the laboratory
results (Table 1).

Numerical Model and Test Scheme
According to the suggested sizes of ISRM and the previous
studies [13, 15, 32], the numerical model containing 16,865
particles and 45,632 flat-joint bonds was established (Figure 3A).
Before loading, the lateral walls were servo-controlled to
ensure the specified confinement. Then, the middle-upper wall
was displacement-controlled to compress the specimen with
a constant rate of 0.05 m/s. The studies by Goldhirsch and
Goldenberg [33] and Goldenberg et al. [34] indicated that force
chains appear in granular materials, and continuum theories may
be valid for granular materials. In the PFC model (consisting
of particles), contact forces that can form force chains can be
computed. However, they cannot be directly transferred to a
continuum model. Averaging procedures are necessary to make
the step from the microscale to a continuum [35]. Thus, PFC 2D
calculates the average stress in a measurement region using the
following equation:

σ = −
1

V

∑

Nc

F(c) ⊗ L(c) (3)
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FIGURE 1 | Deformability and strength of a flat-joint contact. (A) normal stiffness, (B) shear stiffness, and (C) strength criterion.

TABLE 2 | Microparameters.

Particle radius

(mm)

Particle contact

modulus (GPa)

Particle

normal/shear

stiffness

Bond modulus

(GPa)

Bond

normal/shear

stiffness

Bond normal

strength (MPa)

Bond cohesion

(MPa)

Value 0.14–0.24 41 1.8 41 1.8 44 43

where σ̄ , V,Nc, F
(c),⊗, and L(c) are the average stress, the volume

in 3D (area in 2D), the number of contacts in the measurement
region or on its boundary, the contact force vector in the circle
region, the outer product, and the branch vector joining the
centroids of the two bodies in contact, respectively. In the loading
process, overlapping measure circles with a radius of 1mm
(Figure 3B), covering more than six particles, were installed to
record the horizontal (σh), vertical (σv), and shear stresses (τxy) in
the specimen. Thus, the shear stress and the maximum principal

stress, being equal to σv+σh
2 +

√

( σv−σh
2 )

2
+ τ 2, can be recorded

in the loading process.

NUMERICAL RESULTS AND DISCUSSIONS

Comparison Between Numerical and
Laboratory Results
Figure 4 shows the axial force–displacement curves in the
laboratory tests [6] and the present numerical study with the

confining stress of 5 MPa. In PFC 2D, the default thickness of

the specimen is 1m. Thus, the shear area in the model was

0.03 m2. In the laboratory tests by Backers [32], the shear area

was 0.00118 m2. Thus, according to Equation 4 obtained by

fitting the laboratory results [13, 32], for the same shear area, the
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FIGURE 2 | Calibration results: (A) and (B) correspond to UCS and TS, respectively.

FIGURE 3 | Details of the numerical model: (A) is the geometry and the loading schematic of numerical model, and (B) is the magnified picture of the blue rectangle.

calculated effective shear fracture toughness is 4.37 MPa ∗ m1/2.
This simulated effective shear fracture toughness is close to the
laboratory results (Table 1). The above descriptions indicate that
the laboratory axial force–displacement curve agrees well with
the numerical axial force–displacement curve in the peak value.
However, the axial force–displacement curve for the laboratory
test is concave, which is different from the numerical curve.
In the laboratory tests, the micropores are responsible for the
concave curve in the early compression process of rock materials.
However, in the PFC simulation, the intact bonds between
particles before cracking may prevent the pore compaction [24].
Interestingly, similar to the previous studies [5, 6, 15], the axial

compression force fluctuates near the peak. These fluctuations
may relate to the shear crack propagation and the stress evolution
in the shear process and deserve further investigation.

KIIC = 0.0774Fmax − 0.0018Pc (4)

where Fmax and Pc are the peak axial force (kN) and the
confinement (MPa), respectively.

The laboratory tests indicate that two tensile cracks, denoted
in red lines in Figure 5A, first initiated from the inner tips
of the lower notches. Subsequently, shear cracks, numbered 1
and denoted in pink lines, initiated from the outer tips of the
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FIGURE 4 | Numerical and laboratory [6] axial compression forces and the monitor points on the numerical curve.

FIGURE 5 | Fractures in punch-through tests: (A) and (B) are the laboratory [29] and numerical fractures, respectively.

lower notches. In addition, Backers [32] stated that these shear
crack show some opening from this junction to the notch. In
other words, these cracks may be shear–tensile cracks. With the
increase in axial displacement, shear cracks, numbered 2 and
3, sequentially connected the rock bridges between the upper
and the lower notches [29]. Interestingly, at Mode II loading
conditions, the macroscopic fracture follows the direction of
Mode II. Besides, tensile cracks appear in the specimen. This

phenomenon may be reasonable because fracturing in rock
material always involves a mixed mode on the microscale [13].
Clearly, the numerical failure pattern is similar to the laboratory
result (Figure 5B). However, the crack propagation sequence is
still unclear. The previous studies [26–28] show that the stress
evolution relates to the crack development. According to the
comparisons on the axial compression force and the fracture
pattern between laboratory and numerical results, we may infer
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FIGURE 6 | Continued
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FIGURE 6 | Fracture development and stress distributions in the shear process: (A1–G1) are the fracture developments, (A2–G2) are the shear stress distributions,

and (A3–G3) are the maximum principal stress distributions at the typical monitor points (A–G).

that the stress evolution may relate to the crack development and
the fluctuations in axial compression force. Thus, in the following
section, we are trying to investigate the stress evolution in the
shear process.

Stress Evolution in the Shear Process
The concentrated stresses may be responsible for the crack
development. Thus, to investigate the typical crack (shear and
tensile cracks) developments, Figure 6 shows the numerical
crack propagation and stress evolution in the shear process at
typical monitor points (A–G) on the axial force–displacement

curve in Figure 4. At Point A, two shear concentration zones
(SCZ), named SCZ 1 and SCZ 2, form at the outer tips of
the bottom notches (Figure 6A2). Simultaneously, in PFC 2D,
tensile stress is positive; thus, Figure 6A3 clearly shows that two
tensile concentration zones (TCZs) form at the inner tips of the
bottom notches. However, shear and tensile cracks fail to form
(Figure 6A1).When the axial displacement increases to 0.21mm,
the first peak axial force at point B appears (Figure 4). Two
tensile cracks, accompanied with minor fluctuations on the axial
compression force, TC 1 and TC 2, form during this loading
period (Figure 6B1). These tensile cracks also formed at previous
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FIGURE 7 | Numerical fractures: (A–D) are the fractures when the confining stresses are 0, 5, 10, and 15 MPa, respectively.

FIGURE 8 | The axial force–displacement curves for various confinements.
FIGURE 9 | The numerical and laboratory effective shear fracture toughness

for various confinements.
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laboratory tests [6, 32]. Interestingly, the initiation points locate
at the TCZ 1 and TCZ 2, and the tensile stress concentrations
at these crack tips significantly dissipate (Figure 6B3). Thus,
we can infer that the concentrated tensile stresses at the inner
tips of the bottom notches first form tensile cracks. In addition,
TCZ 3 and TCZ 4 form at the rock bridges between the upper
and the bottom notches (Figure 6B3). At the peak point, the
shear stresses at SCZ 1 and SCZ 2 highly concentrate, and four
shear concentration zones (SCZ 3–SCZ 6) form at the inner tips
of the upper notches and the rock bridges (Figure 6B2). With
further increase in axial displacement, the axial force sharply
drops. At the first bottom point C, a shear crack (SC 1) initiates
from the outer tip of the right-bottom notch, and the initiation
point overlaps with the SCZ 2 (Figures 6C1,C2). The shear
stress concentration at SCZ 2 dissipates, and the tensile stress
concentration at TCZ 3 significantly dissipates. Thus, we can
infer that the shear and tensile concentration at SCZ 2 and TCZ
3 are responsible for SC 1. This inference can properly verify
the referred laboratory results that the shear crack shows some

opening from this junction to the notch [32]. In addition, another
shear crack (SC 2) initiates from the right-upper notch. With
further increase in axial displacement, the axial force reaches the
second peak at Point D. Clearly, the cracks fail to further generate
(Figures 6C1,D1). However, the shear stresses at SCZ 5 and SCZ
6 further concentrate. Additionally, TCZ 5 forms at the tip of SC 2
(Figure 6D1). Subsequently, the second drop at Point E appears,
accompanied with the formation of SC 3 (Figures 4, 6E1). After
the formation of SC 3, the area of SCZ 5 slightly decreases;
however, the compression at the right rock bridge greatly
concentrates. In addition, the tensile stress further concentrates
at TCZ 5. Then, when the axial displacement further increases
to 0.23mm, the third peak appears at point F (Figure 4). The
development of the cracks is minor. However, the shear stresses
further concentrate at the shear concentration zones (except SCZ
2), and the tensile stress simultaneously concentrates at TZ 4.
Finally, with further increase in axial displacement, the axial
force significantly drops, and the third bottom point (G) forms.
Between Points F and G, similar fluctuations generate (shown

FIGURE 10 | The maximum principal stresses before tensile crack initiations: (A–D) are for the confining stresses of 0, 5, 10, and 15 MPa, respectively.
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by the magnified area in Figure 4). In addition, SC 5, SC 6,
and SC 7 sequentially connected the bottom and upper notches
(Figure 6G1). Interestingly, the shear concentrations at SCZ 1
and SCZ 2 slightly move upward (Figure 6G2) and the tensile
stress at TCZ 4 dissipates.

The above descriptions indicate that the tensile concentrations
at TCZ 1 and TCZ 2 are responsible for the TC 1 and TC 2,
reported in previous studies [6, 32]. In addition, shear stress
concentrations at the outer tips of the bottom tips first form
shear cracks, and then, with the tensile concentration at the

rock bridge, shear–tensile cracks form. With further increase

in axial displacement, the shear cracks, driven by the shear
concentrations at the inner tip of the upper notches, finally

coalesce the rock bridge. The reported laboratory tests and the
numerical simulation agree well on crack propagation sequence.
More interestingly, we find that the drop of the axial force
frequently accompanies crack propagation and stress dissipation,
whereas the increase in the axial displacement usually causes
stress concentrations instead of obvious crack propagation.

The Influence of Confining Stress on the
Failure Characteristics
The laboratory tests by Backers et al. [6] and Backers [32]
indicated that the increase in confining stress frequently
promotes the tested effective shear fracture toughness and
restrains the development of tensile cracks. Thus, to verify the
above conclusions, three simulations with the confining stresses
of 0, 10, and 15 MPa were performed.

Similar to the laboratory tests [6, 32], the increase in confining
stress restrains the tensile crack propagation (Figure 7). In
addition, the width of the shear band between the upper and
bottom notches increases with the increase in confining stress.
Moreover, for the relatively low confining stresses, the axial
force significantly fluctuates after the peak points (Figure 8).
However, with the increase in confining stress, the fluctuations
of the axial force are minor. This phenomenon agrees well with
the laboratory results [6, 32]. More importantly, the increase in
confining stress promotes the peak axial force. Thus, according
to Equation 4 proposed by Backers and Stephansson [13] and

FIGURE 11 | Shear stresses before shear crack propagation: (A–D) are for the confining stresses of 0, 5, 10, and 15 MPa, respectively.
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FIGURE 12 | The tensile and shear crack initiation stresses.

Backers [32], the calculated effective shear fracture toughness
simultaneously increases (Figure 9), and the numerical values
of the effective shear fracture toughness are close to the
laboratory ones.

The above descriptions indicate that the numerical results
agree well with the laboratory results on the effects of confining
stress on fracture development and effective shear fracture
toughness. To explain the above phenomena, we will further
discuss the stress evolution for various confining stresses.

Figure 10 shows the maximum principal stresses before
tensile crack initiation. Clearly, tensile stress concentration
zones form at the inner tips of the bottom notches. These
concentrated tensile stresses are responsible for the tensile crack
propagation in Figure 7. Interestingly, the increase in confining
stress elevates the corresponding maximum principal stresses
(Figure 12). Thus, we can infer that the increase in confining
stress may increase the effective tensile fracture toughness.
Simultaneously, the absolute value of the maximum principal
stress (negative) significantly increases between the upper and
bottom notches. In other words, the compression at the rock
between the upper and bottom notches intensifies with the
increase in confining stress. The increased compression will
restrain the tensile crack propagation between the upper and
bottom notches. Thus, according to the above description, we
may infer that the promoted effective tensile fracture toughness
and the compression between the upper and bottom are
responsible for the restrained tensile crack propagation when the
confining stress increases.

The peak axial force, usually corresponding to the shear crack
initiation from the outer tip of the bottom notches, can be used to
calculate the effective shear fracture toughness. Thus, Figure 11
depicts the shear stress contours at the first peak point of the
axial force. With the initiation shear stresses in Figure 12, we can
obtain that the increase in confining stress promotes the shear
initiation stresses. The geometries of the notches are the same;

thus, these promoted shear initiation stresses can properly verify
that the increase in confining stress promotes the effective shear
fracture toughness [6, 32].

CONCLUSIONS

The numerical simulation agrees well with the previous
laboratory result that tensile cracks first initiate from the inner
tips of the bottom notches. Then, shear–tensile cracks initiate
from the outer tips of the bottom notches. Subsequently, the
cracks at the middle of the rock bridge and the shear cracks
initiating from the upper notches connect the rock bridge. More
importantly, near the peak point of the axial compression force
curve, the numerical tests indicate that the drops of the axial
compression force frequently accompany with crack propagation
and stress dissipation, whereas the increases in the axial force
concentrate the stresses with hardly crack propagation. Then, the
numerical tests indicate the increase in confining stress promotes
the effective tensile fracture toughness and the compression
between the upper and bottom notches. Thus, the increasing
confining stress restrains tensile crack propagation and promotes
the effective shear fracture toughness.
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