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In this mini-review, we critically examine the recent work done on correlation-based

networks in financial systems. The structure of empirical correlation matrices constructed

from the financial market data changes as the individual stock prices fluctuate with time,

showing interesting evolutionary patterns, especially during critical events such asmarket

crashes, bubbles, etc. We show that the study of correlation-based networks and their

evolution with time is useful for extracting important information of the underlying market

dynamics. Also, we present our perspective on the use of recently-developed entropy

measures, such as structural entropy and eigen-entropy, for continuous monitoring of

correlation-based networks.
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1. INTRODUCTION

Network science [1–4] has emerged as an important tool for studying different complex
phenomena– spread of infectious diseases [5, 6], economic production [7], construction of robust
sustainable infrastructure and technological networks [8], processing human information [9],
innovation diffusion [10], detection of financial crashes [11–13], etc. In this mini-review, we
focus on the role of network science in understanding complex financial markets. Our aims are
two-fold: (i) To uncover the structure of the complex interactions among stocks at a particular
period of time (static picture) through correlation-based networks, where the nodes represent the
stocks in the financial market, and the links represent the interaction strengths of co-movements
of stocks (as measured by correlations). For this purpose, one starts with computing the cross-
correlations among stock price returns and then constructs any of the correlation-based networks–
Minimum Spanning Tree (MST) [14, 15], Threshold Network [16], Planar Maximally Filtered
Graph (PMFG) [17], etc. Using these networks, one can identify stocks (or sectors) that are in the
“core” or “periphery” [18], as well as study their hierarchy/importance of the different stocks driving
the market fluctuations. The correlations among stocks change with time, and the underlying
dynamics of the market produces very intriguing and correlation structures. Temporal networks
are those networks in which links are time dependent [19] and are useful for studying systems in
which connections change or evolve with time. Correlation-based networks in the stock market
are therefore temporal networks, because their links (constructed from correlation values) change
or evolve with time. The understanding of the stock market dynamics can be very important
for practical applications like portfolio optimization, risk management, etc. (ii) To continuously
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monitor (dynamic picture) the health and fragility of the financial
market. The market index, which is a weighted arithmetic
mean of the prices of selected stocks in the market, reflects
the performance of the market and assists agents in comparing
the current price levels relative to past prices. The daily index
return is the difference of the logarithmic values of the index (at
market closure) over a period of 1 day. Thus, for the purpose
of continuous monitoring of the financial market, we study the
temporal evolution of the market index returns along with two
entropy measures, structural entropy [20] and eigen-entropy [21].
This becomes very useful and necessary for measuring the
systemic risk, market regulation and predicting downturns or
crashes [22], since there often exist sizable fluctuations during
crashes and bubbles.

2. CORRELATION-BASED NETWORKS

Mantegna first studied the hierarchical structures of correlation-
based networks in financial markets [14, 15]. Later, similar
studies of correlation-based networks were made (see, e.g., [23–
25]). These correlation-based networks provided easy visual
representations of multivariate time series and extracted
meaningful information about the complex market dynamics.
The analysis of evolution of correlation-based networks provides
an understanding of the underlying market trends, especially
during periods of crisis [16]. For the construction of a
correlation-based network to represent N stocks in a financial
market in a time-epoch ending on date τ , one begins with the
correlationmatrix,C(τ ), and uses a transformation to construct a
distance matrix,D(τ ) = √

2(1− C(τ )) (for mathematical details,
see Supplementary Material).

2.1. Minimum Spanning Tree
MST is constructed by using the distances dij’s, which represent
the interaction strengths (correlations) between pairs of stocks
i, j = 1, . . . ,N in a market for a specific time window, such
that all N nodes (stocks) are connected with exactly N − 1
edges under the constraint that total distance is minimum [25–
27]. Algorithms due to Kruskal or Prim are generally utilized
to obtain MST from a distance matrix. For a non-degenerate
distance matrix, the MST is uniquely determined. Two of the
main advantages of MST are that: (i) it produces a network
structure without putting any arbitrary threshold, and (ii) it has
property of inherent hierarchical clustering. There have been
many papers with applications of MST in equity markets [16,
18], currency exchange rates [28], global foreign exchange
dynamics [29]. MST is useful for studying the taxonomy
or the sector classification [30], with potential applications
in portfolio optimization. Researchers have also carried out
analysis of dynamical correlations using MST [24]. Among
disadvantages, there is the fact that the order and classification
of nodes in a cluster of MST is not robust, and often sensitive
to minor changes in correlations or spurious correlations.
Therefore, for improvement of results, either noise suppression
techniques like Random Matrix Theory (RMT) [31] and power
mapping [13] have been used, or alternative algorithms such as
PMFG, Triangulated Maximally Filtered Graph, Average Linkage

Minimum Spanning Tree, Directed Bubble Hierarchical Tree [17,
32–35] have been proposed. Instead of using pair-wise Pearson
correlations, partial correlations and mutual information have
also been explored in some studies [36, 37].

2.2. Threshold Networks
In this approach, an adjacency matrix is constructed by applying
a threshold value in the correlation (Cij) or distance (dij) of
the network. It filters out the strongest correlations (or shortest
distances) by putting a certain value of threshold and discard
the remaining correlations/distances. A high threshold value
in the distance gives rise to a completely connected graph
(one extreme), while decreasing value of threshold makes the
connections less and less, until one gets a null network (at
the other extreme). Thus, one can tune the threshold in order
to get the desired strength of correlations. For a particular
value of threshold, as correlation matrices change with time, the
threshold networks also change (see Supplementary Material).
One drawback of the threshold networks is that we do not get a
spanning graph, and therefore, there is a “loss of information”;
when we put a threshold value we discard some nodes and edges.
Also, threshold networks are found to be very sensitive to the
noise (random fluctuations).

2.3. Planar Maximally Filtered Graph
PMFG is a network drawn in a plane, such that there are no
intersecting links [17, 38]. If N is total number of stocks, then
it contains 3(N − 2) links. The PMFG has the advantage that it
retains the structure of MST (which contains N − 1 links) and
provides additional information about the connections [17, 32].
However, PMFG has a disadvantage that there exists a certain
arbitrariness in its results, as there is an embedding of data from
higher dimension to lower dimension with a zero genus [39].
Recently, PMFG and threshold network have been combined
to produce PMFG-based threshold networks [40]. Threshold
networks of the financial market are constructed over multi-scale
and at multi-threshold [41].

3. ENTROPY MEASURES

As in other domains, entropy has also been used to understand
the financial hazards as well as to construct an early warning
indicator for predicting systematic risks [42, 43]. Maasoumi
and Racine examined the predictability of the market returns
using entropy measure and found that it is capable to detect
the non-linear dependence within the time series of market
returns as well as between returns and other prediction variables
obtained from other models [44]. Recently, Ricci curvature and
entropy have been used to construct an economic indicator for
market fragility and systemic risk [45]. Very recently, Almog
et al. presented a perspective on the use of entropy measures
such as structural entropy [20], which is computed from the
communities in correlation-based networks. Chakraborti et al.
computed the eigen-entropy from the eigen-vector centrality of
the stocks in the correlation-based network [21]. Below, we
discuss the structural entropy [20] and eigen-entropy [21], and
compare the two measures.
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3.1. Structural Entropy
The concept of structural entropy has resolved the problem
of choosing different period of crisis and extracting substantial
information from the large network of stock market. The
structural entropy measures the amount of heterogeneity of
the network nodes with an assumption that more connected
nodes share common attributes than others. The authors assume
the nature of clusters to be independent sub-units of the
network. The process of calculating the structural entropy
involves two steps: (i) Calculation of an optimal partition
function which places every node in a certain cluster using
a community detection algorithm. (ii) Analysing the partition
function and extracting the representative value of the diversity
level (for mathematical details and schematic diagram, see
Supplementary Material). The formula for Shannon’s entropy is
applied: S(EP) ≡ −∑M

i=1 Pi ln (Pi), in terms of probability vector
EP ≡

[

c1
N , c2N , . . . , cMN

]

, whereM is the number of communities and
ci is the size of community i (proportional size of the community
in the network).

Structural entropy S of the network provides a way to
continuously monitor the state of the network. However, it
is sensitive to the choice of community detection algorithm
employed in detecting communities. This arbitrariness makes the
calculation of entropy dependent on the choice of the user and
hence is not unique.

3.2. Eigen-Entropy
Very recently, the concept of eigen-entropy was used in
studying financial markets [21]. It is computed from eigen-
centrality of the network obtained from the short time
series correlation matrices [21, 46]. In order to capture the
global feature of the network, every node is ranked by its
eigen-centrality (for mathematical details and schematic
diagram, see Supplementary Material). The similarity of
the eigen-centralities (ranks) of the stocks is uniquely measured
by eigen-entropy, defined as H = −∑N

i=1 pi ln pi, where pi is the
eigen-centrality of the i-th node (stock). Higher the similarity of
the stock centralities, higher the eigen-entropy.

Empirical correlation matrix of the market may be
decomposed in multiple ways. In many papers, it was
decomposed into three separated modes, market mode CM ,
the group mode CG and the random mode CR. However,
it is difficult (and somewhat arbitrary) to choose the range
of eigenvalues corresponding to the group mode CG and
the random mode CR, as the boundary is not often distinct.
Another way to decompose is to consider the market mode CM

(corresponding to the maximum eigenvalue) and the group-
random modes CGR (rest of the eigenvalues), hence without
any arbitrariness. CM&CGR is the preferable decomposition and
corresponding eigen-entropyHM andHGR could be calculated as
AM = |CM|2 (matrix element-wise) and AGR = |CGR|2 (matrix
element-wise), respectively. The eigen-entropy computed using
above method gives a simple yet robust measure to quantify the
randomness of the financial market without using any arbitrary
thresholds. Further, Chakraborti et al. [21] used the variables
H − HM and H − HGR to construct a phase space, where
the market epochs show phase separation and order-disorder

transitions. These results are certainly of deep significance for
the understanding of financial market behavior and designing
strategies for risk management.

4. EMPIRICAL ANALYSES AND RESULTS

We have analyzed stock prices of the S&P500 USA market for
the period of 1985-2016 (for details of data and methodology, see
Supplementary Material), and made some plots of correlation-
based networks as well as entropy measures, as presented below
as well as in the Supplementary Material. In order to illustrate
the usage and concepts of correlation-based networks and
entropy measures, we have compared three correlation frames
chosen arbitrarily from crash, bubble and normal periods of
the market. It may be mentioned that during a market crash
there is a sharp fall in the index return and all the stocks start
behaving similarly; the whole market begins to act like a single
huge cluster or community. During a bubble period, a particular
sector gets overpriced or over-performs, causing accentuation of
disparities among the various sectors or communities. In both
the crash and bubble periods, there are sizable fluctuations (as
mentioned earlier in the introduction) and consequently market
volatility (see Supplementary Material for definition) is higher
than the normal period. In the normal or business-as-usual
period, there are several distinct sectors performing well, but the
market volatility is low.

Figure 1 shows the analysis for three time-epoch of 40
days ending at: (first column) 23/07/1985, (second column)
08/01/2007, and (third column) 17/06/2010. Figures 1A–C

show the heat-map of correlation matrices at three different
periods. It shows the amount of correlation between N =
194 stocks of S&P 500 at different time periods: (Figure 1A)
normal period (23/07/1985), whenmarket behaves normally with
low mean correlation between the stocks, (Figure 1B) bubble
period (08/01/2007), when market experienced an upward drift
in price in some sectors only and (Figure 1C) crash period
(17/06/2010), when the market experienced huge recession. The
corresponding MST’s are shown in Figures 1D–F, which have
been generated using the Prim’s algorithm. Different colors
in MST’s correspond to different sectors in the market. The
different market structures reflected in the correlation matrix
are also visible in the correlation based Threshold Networks
Figures 1G–I with threshold (dij ≤ 1) and PMFG’s Figures 1J–L.

During the normal phase (Figures 1A,D,G,J) the market
interactions are well-distributed across the stocks and the mean
market correlations are not very high and the volatility is
low (see Supplementary Material). During the bubble period
(Figures 1B,E,H,K) certain sectors of stocks are more correlated
with each other than the rest of stocks in the market. As visible in
Figure 1H, few of the stocks are bunched together. This property
is pronounced during times when a particular sector experiences
a surge, e.g., during the dot-com bubble period, where the IT
sector saw a boost but not the entire market. During the crashes
(for the list, see Supplementary Material), the entire S&Pmarket
react in a similar way, which made the stocks in the market
extremely correlated with each other (Figures 1C,F,I,L).
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FIGURE 1 | Static correlation-based networks: Analysis of S&P 500 market with 194 stocks (epoch of 40 days) for three different periods: first, second, and third

columns are corresponding to 23/07/1985 (normal period), 08/01/2007 (bubble period), and 17/06/2010 (crash period), respectively. (A–C) are heat maps of

correlation matrices of different periods. Minimum Spanning Trees are shown in (D–F). From (G–I), Threshold Networks at a particular value of threshold. Planar

Maximally Filtered Graphs (J–L) for three different periods.

Figure 2 shows how the entropy measures may be used for
continuous monitoring of the financial markets. Figures 2A–C
show the evolution of S&P 500 market over a period of

1985 − 2016 for index returns r(τ ), eigen-entropies H(τ ), and
structural entropy S(τ ), respectively. Three vertical dashed line
are corresponding to epochs ending at 23/07/1985, 08/01/2007,
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FIGURE 2 | Continuous monitoring of S&P 500 market with 194 stocks and for a rolling time-epoch of 40 days and shift of 20 days over a period of 1985− 2016:

The logarithmic returns of S&P 500 index is shown in (A). (B) Shows the temporal evolution of a new measurement “eigen-entropy” H(τ ), calculated from eigen-vector

centralities of correlation matrices. Evolution of structural entropy S(τ ) calculated by using community detection algorithm is shown in (C). The dashed vertical lines are

corresponding to different periods (normal, bubble, and crash) whose static results are shown in Figure 1.

and 17/06/2010. We find that the Pearson correlation among
the two measures S(τ ) and H(τ ) is −0.22, which indicates that
the two measures are anti-correlated. The two entropy measures
actually capture different aspects of the financial market.

The structural entropy is based on the idea of “structural
diversity” in a network, and it was proposed to utilize the number
of communities in a system and their corresponding sizes. In
a way, the structural entropy tries to capture the amount of
heterogeneity of the nodes in the network, with the assumption
that nodes which share common attributes belong to the same
community [39, 47]. The structural entropy reaches maximum
(lnN), when the community structure is heterogeneous– there
areN communities of equal size (unity), i.e., each node is assigned
to a different community; it reaches minimum (zero), when all
theN nodes are assigned to a single community. During a market
crash, the market is extremely correlated and all stocks behave
in a similar way as if belonging to a single community. Hence,
the structural entropy decreases significantly (see also figure in
Supplementary Material).

The eigen-entropy measures how similar the eigen-centrality
ranks of the stocks are. The eigen-entropy reaches its maximum
value (lnN), when all the centralities are of similar value, i.e., all
the individual nodes have similar rank/importance, such that the
variance of the eigen-centralities becomes low. From the return
time series point of view, this occurs when all of stock prices are
entirely uncorrelated such that the market is totally disordered
(or random)—indicative of the lack of any group or sectoral

structures, or when the market is extremely correlated such that
all the stocks behave in a similar way. During a market crash, the
market is extremely correlated and all stocks behave in a similar
way and so the eigen-entropy increases significantly.

5. DISCUSSIONS AND CONCLUDING
REMARKS

In this review, we have discussed different methods for analysis
of static and dynamic correlation-based networks of financial
markets, and also studied how entropy measures can be used to
identify normal, bubble, and crash periods. Specifically, we have
compared the recently developed concepts of structural entropy
and eigen-entropy.

It is noteworthy that financial networks are naturally
“weighted,” as each link bears a numeric value representing the
correlation between the nodes (stocks). In a recent paper [48],
it has been shown how real weighted network with large
link weights heterogeneity may lower robustness in case of
nodes/links failure. It would be interesting to see how these
methods could be used to increase the robustness in context of
financial networks.

We have also seen that many of the correlation-based
networks have shown clustering with communities of stocks.
Thus, community detection in network science serves as
an important technique for extraction of the clustering
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information from empirical correlation matrix of a multivariate
time series. Several community detection algorithms have
been proposed [39, 47, 49]. The problem is that different
community detection algorithms yield different results for
the same empirical correlation matrix. So, often domain
knowledge is required to determine what is a sensible or
meaningful community.

Further, we have seen that many of the networks are sensitive
to noise or spurious correlations. Properties of random matrices
[50] have turned out to be useful in reducing noise and
thus understanding dynamics of complex systems [51]. An
ensemble of random matrices, also known as stationary or
standard random (Gaussian) matrix ensemble [50], introduced
by Wigner [52, 53], have been applied to many studies in
physics, biology, finance, etc. (see [54] and references therein).
The probability distribution of eigenvalues ofWishart orthogonal
ensemble (WOE) followsMarc̆enko-Pastur distribution [55]. The
empirical correlation matrix of a complex system is normally
compared with WOE [24, 31, 56]. It has been observed from
eigenvalues statistics of empirical correlation matrices that
the few largest eigenvalues show deviations from the Wishart
ensemble. Note that Pearson cross-correlation assumes that the
time series are stationary, which are valid for shorter lengths
of time series. However, if the number of time series are
greater than the lengths of time series, then corresponding
empirical correlation matrices are noisy and highly singular.
For such short time series, there is a great need of noise
suppression in correlation matrix to extract actual correlations.
There are different techniques for suppressing the noise in
correlation matrix [57–59]. Notably, any empirical correlation
matrix of financial market can be decomposed into partial
correlations, consisting of market CM , group CG and random CR

modes, respectively [60]. It enables us to identify the dominant
stocks, sectors and inherent structures of the market. Recently,
detailed analyses of the empirical correlationmatrices using these
approaches have been carried out to understand the complexity

in dynamics of stock market [13, 51, 61]. It has been found
that during the crisis, the eigenvalue spectrum behaves very
differently from one corresponding to a normal period.

Finally, we must mention that the prediction of collapses of
financial markets using traditional economic theories has been
a disastrous failure. These new and alternate methods have the
potential use of continuous monitoring and understanding of the
complex structures and dynamics of financial markets. These are
a few of the attempts physicists have made for generation of early
warning signals for crisis, and these methods can be used for
timely intervention.
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