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We experimentally demonstrated that the stable dissipative solitons can be generated

from the Yb-doped fiber laser with the interaction of mechanically exfoliated NbSe2
and the evanescent field of the D-shaped fiber. The modulation depth of the saturable

absorber with exfoliated layered NbSe2 is 17.26% and the saturation intensity is 34.8

kW/cm2, respectively. With the proposed saturable absorber, the Yb-doped fiber laser

can deliver stable dissipative soliton with pulse duration 174 ps, repetition rate 14.7 MHz

and signal-to-noise ratio 59.8 dB at the pump power 300 mW. The experimental results

provide an insight for the ultrafast non-linear optical response of layered transition metal

dichalcogenide, which may provide strategies for developing high-performance ultrafast

non-linear optical devices.

Keywords: fiber lasers, non-linear optics, non-linear optical devices, laser mode locking, transition metal

dichalcogenide (TMD)

INTRODUCTION

The high-power picosecond Yb-doped fiber lasers have emerged not only as an alternative for
industrial and scientific applications, but also as a research platform for soliton dynamics [1–4].
With the excellent features of high efficiency, broad gain bandwidth, and compact configuration,
Yb-doped fiber lasers are currently the laser system of choice for the laser processing of materials,
such as welding, drilling and precision cutting [5]. In addition, the energy scaling of fiber laser
depends strongly on the non-linearity and cavity dispersion management, and thus the Yb-doped
fiber laser usually operating in the normal dispersion regime can provide a platform to investigate
the generation of the dissipative soliton and its dynamics [1, 3, 6]. In view of the compact
structure, stable performance and other excellent properties, passively mode-locked Yb-doped fiber
lasers modulated by saturable absorber (SA) have aroused extensive attention. With the evolution
of the non-linear optical materials, such as graphene [7–9], transition metal dichalcogenides
(TMDs) [10–13], topological insulators [14–16], black phosphorus [17, 18], carbon nanotubes
[19–21], MXenes [22–24], pulsed lasers are being investigated more extensively to meet versatile
requirements. However, the preparation and transfer processes inevitably lead to poor repeatability
and reliability, and it has been challenging to tune the intrinsic non-linear optical response of the
low-dimensional materials [6]. Therefore, finding the suitable materials remain an important step
toward developing high-performance ultrafast lasers. Particularly, among the layered materials, the
TMDs have been investigated most actively for its excellent non-linear optical performance and
versatile material options.

Niobium Diselenide (NbSe2), one kind of TMDs, is known as a prototypical charge-density
wave (CDW) material [25–30] with superconducting performance [27, 31–35], which involves
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separate fundamental physical research and applications. NbSe2
can also be in contact with other semiconductor materials to
form lateral or vertical heterojunctions, which can improve
the mobility of the device and thus be used to prepare high-
efficient field effect transistors [36, 37]. Moreover, NbSe2 exhibit
a remarkable optical response under different wavelengths
and intensity excitations [38, 39]. When it comes to the
non-linear optics regime with increasing incident intensity,
the non-linear optical response of NbSe2 quantum dots and
nanoparticles have been investigated via the mode-locked Yb-
doped, Er-doped fiber lasers [40], and Tm-doped fiber laser
generation [41]. However, the non-linear optical response and
applications of the few-layer NbSe2 have not been explored,
which can broaden the understanding of NbSe2 in reduced
dimensionality and the application in non-linear optics and
ultrafast photonics.

Here, we prepared the few-layer NbSe2 by mechanical
exfoliation method, and investigated its non-linear optical
absorption characteristics at a wavelength around 1µm.
Due to the interaction between few-layer NbSe2 and the
evanescent field of the D-shaped fiber, the stable mode-
locked picosecond Yb-doped fiber laser has been delivered
successfully with a signal-to-noise ratio of 59.8 dB at wavelength
of 1036 nm.

FIGURE 1 | The characterizations of the few-layer NbSe2. (A) Raman spectroscopy. (B) Linear absorption spectrum. (C) SEM image. (D) SAED image. (E) EDS

energy spectrum (the atomic percentages of Nb and Se are illustrated in the upper right corner). (F) AFM image.

MATERIAL CHARACTERIZATIONS

The few-layer NbSe2 was prepared by mechanical exfoliation
method from its bulk counterpart. The Raman spectroscopy was
used to characterize the NbSe2 sample, as shown in Figure 1A,
and the peaks locate at 217.1 and 234.2 cm−1, the same
as previously reported results [42, 43]. A spectrophotometer
(Shimadzu UV-3600Plus) was used to measure the linear
absorption curve of layered NbSe2, as shown in Figure 1B. From
visible to near-infrared, the few-layer NbSe2 shows a decreasing
absorption, and the absorption becomes weak beyond 1,200 nm.
The scanning electron microscope (SEM) picture in Figure 1C

shows that the exfoliated NbSe2 exhibits a layered structure
and relatively large area. Figure 1D shows the characterization
results of selective area electron diffraction (SAED), which
shows that the sample has good crystallinity. The energy
dispersive spectrometer (EDS) characterization of the sample
is shown in Figure 1E, where only Nb and Se atoms are
present, with Cu atoms indicates the metal screen. Furthermore,
the atomic ratio of Nb/Se is 0.56 (≈1/2), indicating that the
sample is NbSe2. Figure 1F shows the atomic force microscope
(AFM) characterization of the nanosheets, which shows that the
thickness of the nanosheets is about 13 nm. The NbSe2 is about
9–10 layers considering that the thickness of the monolayer of
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FIGURE 2 | (A) Nonlinear saturable absorption properties of few-layer NbSe2. (B) Transmittance plotted as a function of input intensity.

FIGURE 3 | Experimental setup of the few-layer NbSe2-based mode-locked

Yb-doped fiber laser.

NbSe2 is about 1.1 nm [44], showing the few-layer nature of
the NbSe2.

The non-linear optical measurements of NbSe2 have
been realized using open aperture Z-scan technique [45].
The wavelength, pulse duration, repetition rate of the light
source used in the experiments are 1,064 nm, 4 ns, 100 kHz,
respectively. Figure 2A shows the measured Z-scan result of
the layered NbSe2, which exhibits the saturable absorption
behavior with an upward peak at the beam focus. The
experimental results have been fitted using a non-linear
transmission function, as shown in Figure 2B. The relationship
between light transmittance T and incident light intensity
I is

T = 1−

(

αs

1+ I
Isa

+ αns

)

where αs is the modulation depth, αns is the non-
saturable components, and Isa is the saturation

intensity [46]. Fitting the results, the modulation
depth is 17.26% and the saturation intensity is
34.8 kW/cm2, respectively. The low saturation
intensity resulting from the metallic layered NbSe2
is favorable for the generation of low-threshold laser
pulses [47, 48].

EXPERIMENTAL RESULTS AND
DISCUSSIONS

A ring cavity has been designed to achieve the dissipative
soliton output from the mode-locked Yb-doped fiber laser
based on layered NbSe2 SA, as shown in Figure 3. The
length of the entire ring cavity is about 13.6m long, which
contains an ytterbium-doped fiber (LIEKKI Yb1200–4/125)
with a length of 0.7m (group velocity dispersion of 24.22
ps2/km) and a 12.9m HI-1060 single mode fiber (group velocity
dispersion of 21.91 ps2/km). The pump is a 980 nm laser
diode that can deliver pump laser up to 500 mW. Then,
a 980/1,060 nm wavelength division multiplexer (WDM) is
used to couple the pump into the ring fiber cavity. The
isolator (ISO) is used to maintain the unidirectionality of light
and the polarization controller (PC) is used to regulate the
birefringence of the cavity. A fiber coupler is used to output
1% of the light. Then, the spectrometer (Ando AQ-6317B)
and 4 GHz oscilloscope (DS09404A) are used to monitor the
output light.

Initially, there was no sample coverage on the D-shaped
optical fiber. As the pump power increased, the mode-locking
phenomenon could not be observed on the oscilloscope by
adjusting the PCs. After the sample was transferred on the D-
shaped fiber, we could observe the mode-locking phenomenon
by carefully adjusting the PCs. Figure 4A shows a typical
oscilloscope pulse sequence at an input power of 300 mW.
The spectral curve is shown in Figure 4B, which shows that
the center wavelength is 1036 nm and the 3 dB bandwidth
is about 3.4 nm. The time bandwidth product (TBP) is
161.6, which indicates that the fiber laser is highly chirped.
At an input power of 300 mW, Figure 4C shows a single
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FIGURE 4 | Experimental results of the mode-locked fiber. (A) Oscilloscope trace. (B) Optical spectrum. (C) Single pulse trace measured by oscilloscope. (D) RF

spectrum.

FIGURE 5 | Long-term spectrum measurement results.

pulse with a full width at half maximum (FWHM) of 174
ps by Gaussian fitting. As shown in Figure 4D, the radio
frequency (RF) spectrum shows a distinct peak at 14.7 MHz,
which matches the repetition rate of the mode-locked fiber
laser. The signal-to-noise ratio (SNR) of the RF spectrum is
59.8 dB, indicating that the output mode-locked pulse has
excellent stability.

To verify the long-term stability of the output pulse, we
record the spectral line of the output pulse every 10min
under the same test conditions, as shown in Figure 5. The
plot shows that neither the intensity nor the peak position
of the spectrum has shifted or changed after a long-time
measurement, and the bandwidth of the spectrum has not
changed. Moreover, there are no additional peaks in the
spectrum. Similarly, after 3 weeks, we re-examined the
nanosheets for stability and found no significant change in
spectrum or peak position, which proves that the output pulse
is very stable.

To illustrate the advantages of mechanically exfoliated NbSe2
as SA, we compared the performance of lasers modulated
with NbSe2 quantum dots and NbSe2 nanoparticles, as shown
in Table 1. Moreover, Table 1 also lists the ultrafast mode-
locked fiber lasers based on low-dimensional material saturable
absorbers that have been studied in recent years. From the
table, we can see that compared to the fiber lasers based
on saturable absorbers of low-dimensional materials, NbSe2
exhibits the larger modulation depth, which can help the
formation of narrower pulses [49, 50]. Compared to NbSe2
quantum dots SA as well as NbSe2 nanoparticles SA in the
Table 1, we can see that mode-locked fiber laser modulated
by mechanically exfoliated few-layer NbSe2 has the highest
signal-to-noise ratio, indicating that the modulation of NbSe2
can help to achieve more stable mode-locking operation. With
the high modulation depth and optimized cavity configuration,
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TABLE 1 | Ultrafast mode-locked fiber laser performance for low-dimensional

materials.

SA type Wave

length

(nm)

Repetition

rate (MHz)

Pulse

width

S/N

ratio

(dB)

Modulation

depth

References

BP 1085.58 13.5 7.54 ps 45 8% [51]

Graphene 1069.8 0.9 580 ps 70 8% [52]

Bi2Se3 1031.7 44.6 46 fs 58 5.2% [53]

Bi2Te3 1052.5 19.8 317 ps / 10% [54]

Sb2Te3 1047.1 19.28 5.9 ps 69 3.1% [55]

WS2 1030.3 2.84 2.5 ns 48 2.06% [56]

MoS2 1054.3 7 800 ps / 4.6% [12]

SnS 1560 8.37 656 fs 60 12.5% [57, 58]

MXene 1051 11.2 164 ps 57.1 23.1% [46]

Se 1555.67 13.68 3.1 ps 65 2.13% [59]

NbSe2
quantum dots

1556 7.7 0.756 ps 50 3.72% [40]

1033 12.3 380 ps 43 /

NbSe2
nanoparticles

1910.8 50.66 1480 ps / 6.5% [41]

Few-layer

NbSe2

1036 14.7 174 ps 59.8 17.26% This work

the Yb-doped fiber laser based on layered NbSe2 can deliver
stable and narrower pulse. In view of the simple preparation
method of mechanical exfoliation and almost no damage to
the material, the mechanical exfoliated NbSe2 can provide
a solution for ultrafast photonics applications combined
with the optimized evanescent field coupling method and
cavity design.

CONCLUSIONS

In summary, we have achieved a stable dissipative soliton output
from the all-fiberized passively mode-locked Yb-doped fiber laser
based on the few-layer NbSe2 prepared by mechanical exfoliated
method. We have verified the non-linear optical performance
of the few-layer NbSe2 via Z-scan technique, and obtained
stable dissipative soliton generation with pulse duration 174 ps,
repetition rate 14.7 MHz and signal-to-noise ratio 59.8 dB at
the pump power 300 mW. The experimental results provide an
insight for the ultrafast non-linear optical response of layered
transition metal dichalcogenide, which may provide design
guidelines for developing high-performance ultrafast non-linear
optical devices.
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