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This paper uses census municipal population data for the United States, Italy, and Spain

to analyze the statistical properties of their 10-year growth (short-term property). As

a result, it was confirmed that the smaller the initial urban population is, the greater

the probability that the urban population will decrease and that the probability that the

urban population will increase does not depend on the initial urban population. We also

observed the statistical properties of long-term growth of urban populations in each

country over 100 years. Specifically, we identified the following properties by observing

the geometric mean of logarithmically equal sized bins of the oldest urban population in

the data used in the analysis. (1) The average urban population increases or decreases

exponentially with time. (2) The smaller the initial average urban population, the smaller

the exponent, which can be negative in Italy and Spain. (3) When the average urban

population is large, exponential growth may stop. We showed that these long-term

properties are derived from the short-term property by random sampling simulations

from real data.

Keywords: urban population, city size distribution, growth-rate distribution, Gibrat’s law, non-Gibrat’s property,

short-term growth, long-term growth

1. INTRODUCTION

There are various universal structures in nature. In physics, various universal structures have been
extracted from nature and described logically and mathematically, such as Newtonian mechanics
in the seventeenth century, electromagnetism, relativity, and thermodynamics in the nineteenth
century, and quantum mechanics in the twentieth century. We have deepened our understanding
of nature by combining these. Interestingly, society also has a universal structure. Economics, of
which we were able to collect data at a relatively early stage, paved the way for research in this area.
The study of economics using methodology in physics (now called econophysics [1]) started with
Pareto’s discovery that the income distribution in the UK follows a power law [2–4]. The power-
law distribution is also called Pareto distribution (so named after the discoverer). Later, as the
accumulation of data progressed, it was found that power laws were observed for various economic
sizes [5, 6]. Typical examples are sales, profits, the number of employees (they are referred as firm
sizes), and the size of cities. Here, the city sizemainly refers to the population of the city. In addition,
the word city means all units, including municipalities.
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A number of studies have shown that the size of these firms
and cities also has a power law and that the distribution is
restricted to the large-scale range. It is commonly recognized that
the mid-scale range of firms and cities follows the lognormal
(LN) distribution. Furthermore, it has been reported that a
small-scale range of firm size distribution is described by
Weibull distribution [7, 8]. For urban size distribution, various
functions have been studied using statistical indicators such
as LN, the double Pareto-lognormal distribution (dPLN), log-
logistic, the threshold double Pareto Singh-Maddala, lognormal-
upper Pareto, Pareto tails - lognormal, three log-normal (3LN),
Pareto tails log-normal (PTLN), and threshold double Pareto
Generalized Beta of second kind (tdPGB2). Relevant references
to this research includes [9–24].

At the same time, studies on the growth rate of firms and
cities have been carried out, and various data have confirmed
that Gibrat’s law is valid in large-scale ranges. Gibrat’s law states
that the size growth rate for two consecutive years is independent
of the initial value [25, 26]. In [27], a simple unified model is
proposed to explain the growth dynamics of cities and scaling
laws, where the model predicts that the size of cities grows
linearly regardless of its current size.

In a previous study, Ishikawa et al. found that the size growth-
rate distribution of firms in a mid-scale range changes regularly
depending on the initial value, and they called this non-Gibrat’s
property [28]. Specifically, in the case of firm sales, for example,
the negative growth rate does not depend on the initial value, as
in the case of Gibrat’s law, but the positive growth rate increases
as the initial value decreases [29]. Our previous studies have
also shown that short-term properties of firm size lead to the
long-term properties. In particular, we show that the size of
newly established firms grows rapidly over time, according to
the non-Gibrat property, and then shifts to a gradual exponential
growth according to the Gibrat law using numerical simulations.
Furthermore, this was confirmed by the observation of geometric
mean of firm sales and number of employees [30, 31].

As mentioned earlier, there are many similarities between
the study of firm size distribution and the study of urban
size distribution. In this paper, we discuss the relationship
between the short- and long-term properties of urban size
based on our previous research on the short- and long-term
properties of firm size.

The structure of this paper is as follows. First, in section 2,
we describe the urban population data of the United States,
Italy, and Spain that we analyzed in this paper. We also describe
the firms’ data that we used to review our previous work in
section 3. In section 3, we briefly review the properties that we
previously found regarding the initial dependence of a firm’s
sales growth rate and the long-term growth properties derived
from them. In section 4, employing the data described in
section 2, we describe the initial dependence of growth rate
distributions on urban populations in the United States, Italy,
and Spain and the properties observed in long-term growth. In
section 5, the process of growth of cities with different population
sizes is simulated using the growth rate distribution of urban
populations sampled from real data, and it is confirmed that
the properties observed in the long-term growth observed in

section 4 are reproduced. Finally, section 6 summarizes this study
through the interpretation of the simulation results in section 5
and describes the future prospects.

2. DATA

This paper uses census data for the United States, Italy, and
Spain. Data for the United States are population data for cities,
towns, villages, and Census-designed Places (CDP) from 1900
to 2010 at 10-year intervals. The number of cities, the number
of people living in them, and the proportion of the population
included in the data to the total population of the United States
are shown in Table 1. In this paper, we will collectively refer
to municipalities and the CDP as cities. The data for Italy
are municipal population data from 1901 to 2011 at intervals
of approximately 10 years (Table 2). The data for Spain are
population data of municipalities from 1900 to 2010 at intervals
of approximately 10 years (Table 3). Census data for Italy and
Spain include nearly all citizens. Census data in the United States,
on the other hand, have gradually increased in coverage from
47.0% in 1900 to 71.6% in 2010. In addition, the population
of Italy and Spain is classified into one of the administrative
divisions, while that of the United States is classified into CDP
in addition to the municipality. There is therefore a significant
difference in the completeness of data aggregation between
Italy/Spain and the United States, which may be attributed to the
fact that the United States is a relatively young country.

In addition, in order to compare the initial value dependence
of the growth rate distribution of the urban population, which
is the main focus of this paper, we introduce the initial value
dependence of the growth rate distribution of firms’ sales, which
is our previous study, in section 3. The analysis will use data from
the Orbis 2016 edition, the world’s largest corporate information
database, provided by Bureau van Dijk. Specifically, we use the
sales and establishment year data of 944,116 Japanese firms for

TABLE 1 | Summary of U.S. population data.

Year Number of cities Urban population Rate

1900 10,597 35,811,876 47.0%

1910 14,130 50,631,562 54.9%

1920 15,530 62,153,225 58.6%

1930 16,721 77,233,423 62.3%

1940 17,313 84,252,429 63.8%

1950 18,921 101,062,173 66.8%

1960 20,002 125,867,952 70.2%

1970 20,948 144,768,910 71.2%

1980 22,262 164,029,093 72.4%

1990 23,434 182,532,293 73.4%

2000 25,375 208,735,266 74.2%

2010 24,685 221,886,645 71.6%

Cities includes municipalities and Census-designed Place (CDP). Number of Cities is the

number. Urban Population is the number of people living there. Rate is the ratio of the

population in the data to the total U.S. population at the time.
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which both 2013 and 2014 sales data exist. The most recent
data in the 2016 edition of Orbis is from 2015, but since the
database was in the process of being collected at the time it was
available, and so was scarce (343, 473 firms), we used the largest
data pair, 2014 (1, 029, 179 firms) and 2013 (1, 133, 993 firms),
for our analysis. There were approximately 3.82 million firms in
Japan in 2014, of which approximately 11, 000 were reported to
be large firms, approximately 557, 000 to be medium-sized firms,
and approximately 3, 252, 000 to be small-sized firms, according
to the Small and Medium Business Administration of Japan. In
Japan, small firms are defined by the number of employees under
the Small and Medium-sized Enterprise Basic Law, which refers
to firms with five employees or fewer in the retail, service, and
wholesale industries and 20 or fewer in the manufacturing and
other industries. Orbis is a comprehensive database of large and

TABLE 2 | Summary of population data for Italy.

Year Number of cities Urban population Rate

1901 8,100 32,963,316 100.0%

1911 8,100 35,841,563 100.0%

1921 8,100 39,396,757 100.0%

1931 8,100 41,043,489 100.0%

1936 8,100 42,398,489 100.0%

1951 8,100 47,515,537 100.0%

1961 8,100 50,623,569 100.0%

1971 8,100 54,136,547 100.0%

1981 8,100 56,556,911 100.0%

1991 8,100 56,778,031 100.0%

2001 8,100 56,871,757 100.0%

2011 8,081 60,429,103 100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the

number of people living there. Rate is the ratio of the population in the data to the total

population of Italy at the time.

TABLE 3 | Summary of population data for Spain.

Year Number of cities Urban population Rate

1900 8,077 17,802,721 95.7%

1910 8,077 19,140,404 96.1%

1920 8,077 20,482,448 96.1%

1930 8,077 22,775,879 96.6%

1940 8,077 25,114,397 97.0%

1950 8,077 27,494,367 97.9%

1960 8,077 30,071,527 98.9%

1970 8,077 33,741,276 99.8%

1981 8,077 37,771,008 99.4%

1991 8,077 39,434,102 100.0%

2001 8,077 40,703,018 99.8%

2010 8,074 46,853,613 100.0%

Cities includes municipalities. Number of Cities is the number. Urban Population is the

number of people living there. Rate is the ratio of the population in the data to the total

population of Spain at the time.

medium-sized Japanese firms, including small-sized firms whose
sales are identifiable.

3. SHORT- AND LONG-TERM PROPERTIES
OF FIRMS

In this section, we briefly review our previous study of the initial
dependence of the firms’ sales growth rate distribution [29] and
its long-term growth properties [30, 31] using new data we have.
As mentioned in the previous section, our database contains
sales data for 2013 and 2014 for 944, 116 Japanese firms. The
minimum sales for 2013 was 1, 000 USD, and the maximum was
249, 799, 825 USD. To observe the initial value dependence of the
growth rate (R = x2014/x2013) from 2013 sales (x2013) to 2014
sales (x2014), the initial values are divided into logarithmically
equally sized bins as follows x2013 ∈ [100.5(n−1), 100.5n) (n =

1, 2, · · · , 10). The number of firms in these 10 bins (n =

1, 2, · · · , 10) is 4, 355, 6, 426, 18, 354, 65, 866, 163, 052, 266, 023,
221, 607, 114, 967, 50, 459, and 20, 498, respectively. The number
of firms greater than n = 10 is 12, 509. Although there are
arbitrary ways to divide these bins, if a somewhat smooth growth-
rate distribution is observed, the data are divided as finely as
possible. When the bin is divided more finely than this way,
a smooth growth-rate distribution is not observed, and when
the bin is divided more roughly, the properties described below
are hardly observed. However, it is confirmed by considering
the case where the division of the bins is slightly changed from
that described above, that the properties described below do not
depend on the manner in which the bins are divided.

Figures 1, 2 are their conditional probability density
functions. The horizontal axis represents the logarithmic
growth rate r = log10 R, and the vertical axis represents the
probability density function (PDF) q(r|n). Figure 1 shows that
the smaller the initial value x2013 (the smaller n) is, the larger

FIGURE 1 | Distributions of sales growth rate of Japanese firms. The

horizontal axis shows the logarithmic growth rate: r = log10
x2014
x2013

. The vertical

axis shows its conditional probability density function: q(r|n) . The initial sales

value of x2013 for 2013 is divided into logarithmically equal sized bins:

x2013 ∈ [100.5(n−1), 100.5n) (n = 1, 2, · · · , 5).
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the positive growth rate, and that the negative growth rate is
almost independent of the initial value. Figure 2 also shows
that when the initial value x2013 is 102.5 thousand dollars or
more (n is greater than or equal to 6), both the positive and
negative growth-rate distributions are almost independent of
the initial value. This property is called Gibrat’s law [25, 26]
and is observed in the large-scale range (Now x2013 is over 102.5

thousand dollars). On the other hand, our previous studies have
shown that the non-Gibrat’s property in Figure 1 is observed in
the mid-scale range [28, 32, 33].

In our previous study, we also reported that there is a long-
term growth property in the dependence of the geometric mean
of firms’ sales regarding their age [30, 31]. Figure 3 depicts the
firm age (t) dependency of the geometric mean sales (〈xt〉) in
2014. Here, the firm age is defined as the year of establishment

FIGURE 2 | Distributions of sales growth rate of Japanese firms. The

horizontal axis shows the logarithmic growth rate: r = log10
x2014
x2013

. The vertical

axis shows its conditional probability density function: q(r|n) . The initial sales

value of x2013 for 2013 is divided into logarithmically equal sized bins:

x2013 ∈ [100.5(n−1), 100.5n) (n = 6, 7, · · · , 10).

FIGURE 3 | Dependence of geometric mean of Japanese firms’ sales 〈xt〉 in

2014 on firm age t.

of the firm, e.g., t =1. Figure 3, drawn on a semilogarithmic axis,
shows that for the first 10 years, 〈xt〉 rapidly grows following a
power-law function:

〈xt〉 ∝ tαsalest (1)

with αsales = 0.53 ± 0.02 (the dotted line). Then, 〈xt〉 gradually
grows following an exponential function:

〈xt〉 ∝ eβsalest (2)

with βsales = 0.014 ± 0.001 (the solid line). These values are
measured by applying t = 1, 2, · · · , 10 for power-law growth (1)
and t = 11, 12, · · · , 60 for exponential growth (2).

Similar properties were confirmed not only in sales of Japanese
firms but also in the number of employees of Japanese firms
and sales and number of employees of French firms in previous
studies [31]. Furthermore, we show by numerical simulation that
these long-term growth properties are derived from the short-
term growth properties mentioned above. The initial fast growth
following the power-law function (1) is derived from the non-
Gibrat’s property, and the slow growth following the exponential
function (2) is derived from Gibrat’s law, using a stochastic
process with numerical samples from real data.

4. SHORT- AND LONG-TERM PROPERTIES
OF URBAN POPULATION

The purpose of this study is to confirm whether the properties of
short-term and long-term growth in firms’ sales and the number
of employees in our previous study are observed in an urban
population. Tables 1–3 show that the number of cities in the
United States is around 10, 000 to 25, 000, and those of Italy and
Spain number around 8, 000. As in the previous section, if these
initial values are placed in logarithmically equal-sized bins and
a somewhat smooth growth-rate distribution is to be observed,
there will be only a few bins, and it will be difficult to observe the
properties of the previous section. In the United States, we have
increased the number of pairs of data by overlaying all 11 pairs of
data, such as 1900 − 1910, 1910 − 1920, and · · · , 2000 − 2010,
and conducted the same analysis as in the previous section. This
approach ignores changes in history over 110 years but has the
advantage of being able to observe a macroscopic nature that is
not influenced by the flow of history.

Using this method, pairs of 187,378 cities are created, each
city’s initial population is expressed as xi, and the city’s population
10 years later is expressed as xi+10. The minimum value of xi
is 1 and the maximum value is 8, 008, 278. In the case of the
United States, this small figure is recorded because it includes
population data from Census-designed Places (CDP). To observe
the dependence of the urban growth rate (R = xi+10/xi) on the
initial value (xi), we divide the initial value into logarithmically
equidistant bins, as in the previous section, such as xi ∈

[100.5(n−1)+2, 100.5n+2) (n = 1, 2, · · · , 7). The 7 bins contain
the following cities: 34, 158 (n = 1), 56, 216 (n = 2), 41, 353
(n = 3), 22, 942 (n = 4), 10, 794 (n = 5), 3, 997 (n = 6),
and 950 (n = 7). Number of cities less than n = 1 is 6, 278,
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and number of cities greater than n = 7 is 361. The same
discussion as in the previous section applies to the arbitrariness
of division into bins. Figure 4 shows the conditional PDF. The
horizontal and vertical axes are the same as in the previous
section. Figure 4 shows that the smaller the initial value xi is
(The smaller n is), the larger the negative growth rate is, and the
positive growth rate is almost independent of the initial value.
Surprisingly, this property is symmetrical with that observed
in Figure 1. This property is explicitly confirmed in Figure 5,
which shows the n-dependence of positive standard deviation
(σ+ =

√

6r>0r2q(r|n)) and negative one (σ− =
√

6r<0r2q(r|n)).
Figure 5 shows that σ+ is almost n independent, but σ− decreases
depending on n, as approximated by

σ− ∝ e−γUSn (3)

FIGURE 4 | Distributions of urban population growth rates in the

United States. The horizontal axis shows the logarithmic growth rate:

r = log10
xi+10

xi
. The vertical axis shows its conditional probability density

function: q(r|n) . The initial population xi is divided into logarithmically equal

sized bins: xi ∈ [100.5(n−1)+2, 100.5n+2) (n = 1, 2, · · · , 7).

FIGURE 5 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in the United States (Figure 4).

with γUS = 0.25± 0.03 .
In the previous section, we observed the long-term

property of the growth of the geometric mean of firms’
sales depending on the firm age. With a slightly different
perspective on urban population data, we observe the long-term
property of the growth of the geometric mean of the urban
population over the observable years by size of the initial
population. Figure 6 shows the observed results for the urban
population in the United States. The horizontal axis represents
1900, 1910, · · · , 2010 expressed as T = 1, 2, · · · , 12, respectively,
and the vertical axis represents the geometric mean of the
urban population in each year (〈xT〉). In Figure 6, the original
population of x1 in 1900 (T = 1) is divided into logarithmically
equally sized bins: x1 ∈ [10m+1, 10m+2) (m = 1, 2, 3), x1 ≥ 105

(m = 4). The number of cities in each bin is 4, 593 (m = 1),
2, 482 (m = 2), 317 (m = 3), and 28 (m = 4). The number
of cities less than m = 1 is 46. These totals are fewer than the
10,597 cities in 1900 because of the high frequency of urban
renewal in the United States and the large number of cities that
existed in 1900 but did not exist 110 years later. In Figure 6,
which is the semilogarithmic axis, the optimum line is drawn
by the least squares method for T = 1, 2, 3, 4. Figure 6 shows
that for m = 1, 2 the whole period is approximated by an
exponential function:

〈xT〉 ∝ eβcity(m)T , (4)

where βcity(m) is the index of urban growth corresponding to
βsales in Equation (2). Here, βcity(m) has a factor m because
it varies depending on the bin containing the initial value x1.
On the other hand, at m = 3, 4, the exponential function is
followed up to T = 4, after which the growth is negligible.
Here, the exponents in U.S. βUS

city(m) of the four straight lines

(4) for m = 1, 2, 3, 4 in Figure 6 are evaluated as βUS
city(1) =

FIGURE 6 | Geometric mean growth of the urban population in the

United States from 1900 to 2010 (T = 1, 2, · · · , 12). The original population of

x1 in 1900 (T = 1) is divided into logarithmically equally sized bins:

x1 ∈ [10m+1, 10m+2) (m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and

Neach represent m = 1, 2, 3, and 4, respectively.
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0.098± 0.026, βUS
city(2) = 0.13± 0.01, βUS

city(3) = 0.20± 0.02, and

βUS
city(4) = 0.22±0.02, respectively. These values are measured by

applying T = 1, 2, 3, 4 for exponential growth (4). These indicate
that βUS

city(m) is an increasing function of m. In other words, the

geometric mean growth of the urban population will be faster as
the initial urban population size increases.

Similar analyses were conducted on urban population data
in Italy and Spain. As with the initial value dependence of the
urban population growth-rate distribution in the United States,
the negative growth rate increases as the initial value xi decreases,
and the positive growth rate hardly depends on the initial value.
These properties are expressed as positive and negative standard
deviations σ± in Figures 7, 8. In Figures 7, 8, as in the U.S., σ+ is
almost independent of n, and σ− has the same n dependency as
in Equation (3). The parameters for Italy and Spain are evaluated
as γ IT = 0.26 ± 0.01 and γ ES = 0.30 ± 0.06, respectively. In
Italy, the number of (xi, xi+10) pair is 88, 303, and the seven bins
contain the following cities: 2, 008 (n = 1), 14, 721 (n = 2),

FIGURE 7 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in Italy.

FIGURE 8 | The n dependence of the positive and negative standard

deviations σ± of the conditional PDFs in Spain.

36, 913 (n = 3), 26, 002 (n = 4), 6, 781 (n = 5), 1, 453 (n = 6),
and 241 (n = 7). Number of cities less than n = 1 is 948,
number of cities greater than n = 7 is 0. In Spain, the number of
(xi, xi+10) pair is 87, 141, and the seven bins contain the following
cities: 13, 979 (n = 1), 30, 333 (n = 2), 23, 407 (n = 3), 11, 980
(n = 4), 3, 496 (n = 5), 720 (n = 6), and 244 (n = 7).
Number of cities less than n = 1 is 2, 924, number of cities greater
than n = 7 is 302.

As in the United States, Figures 9, 10 shows the long-term
properties of the geometric mean of the urban population
growing with the passage of observable years by size of the

FIGURE 9 | Geometric mean growth of the urban population in Italy from

1901 to 2001 (T = 1, 2, · · · , 11). The original population of x1 in 1901 (T = 1)

is divided into logarithmically equally sized bins: x1 ∈ [10m+1, 10m+2)

(m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and Neach represent

m = 1, 2, 3, and 4, respectively.

FIGURE 10 | Geometric mean growth of the urban population in Spain from

1900 to 2001 (T = 1, 2, · · · , 11). The original population of x1 in 1900 (T = 1)

is divided into logarithmically equally sized bins: x1 ∈ [10m+1, 10m+2)

(m = 1, 2, 3), x1 ≥ 105 (m = 4). In the figure, ◦, •, △, and Neach represent

m = 1, 2, 3, and 4, respectively.
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original population in Italy and Spain. For Italy, each bin contains
1, 200 (m = 1), 6, 031 (m = 2), 467 (m = 3), and 11
(m = 4) cities. For Spain, each bin contains 4, 202 (m = 1),
3, 375 (m = 2), 211 (m = 3), and 6 (m = 4) cities. The
number of cities less than m = 1 is 2 in Italy and 6 in Spain.
In Figures 9, 10 on the semilogarithmic axis, the optimum line
is drawn by the least squares method for T = 1, 2, · · · , 8.
From these optimal straight lines, we confirm that the geometric
mean of urban population grows approximately exponentially
over almost all periods for the case of m = 1, 2, 3, and 4.
Here, the exponents in Italy βIT

city(m) of the four straight lines

(4) for m = 1, 2, 3, 4 in the Italian long-term growth Figure 9

are evaluated as βIT
city(1) = −0.0071 ± 0.0058, βIT

city(2) =

0.0055 ± 0.0071, βIT
city(3) = 0.055 ± 0.003, and βIT

city(4) =

0.14 ± 0.01, respectively. The exponents in Spain βES
city(m) of the

four straight lines (4) for m = 1, 2, 3, 4 in the Spanish long-
term growth Figure 10 are evaluated as βES

city(1) = −0.030 ±

0.017, βES
city(2) = 0.016 ± 0.009, βES

city(3) = 0.085 ± 0.003, and

βES
city(4) = 0.18 ± 0.01, respectively. These values are measured

by applying T = 1, 2, · · · , 8 for exponential growth (4). As in
the U.S., βIT

city(m) and βES
city(m) are also increasing functions of

m. Significantly different from the U.S. is that the index βcity(1)
for m = 1 becomes negative, i.e., for m = 1, the geometric
mean of the urban population 〈xT〉 decreases depending on T in
Italy and Spain.

5. SIMULATION OF LONG-TERM GROWTH
PROPERTY

In the previous section, we observed the dependence of the
short-term growth-rate distribution on the initial value and
observed the properties of long-term growth. With respect to
the initial value dependence of the short-term growth rate, it
was observed that the probability of a decrease in the urban
population increases as the initial population decreases, and that
the probability of an increase in the urban population does
not depend on the initial population in any of the countries in
which the urban population data were analyzed. As for long-term
growth, it was confirmed that the geometric mean of the urban
population 〈xT〉 grew exponentially eβcity(m)T as in Equation (4),
depending on the year T = (1, 2, · · · ). In Italy and Spain, an
exponential decline (βIT

city(1),β
ES
city(1) < 0) was also observed

for small (m = 1) original (T = 1) urban populations (x1 ∈

[102, 103)). Collectively, we observed that the larger the original
urban population x1 (the larger the m), the larger the exponent
of the exponential function βcity(m), which indicates the rate of
growth. It was also observed that as large cities grew, their growth
slowed and stopped.

This section uses simulations to show how these short- and
long-term growth properties are related. Specifically, we use
data sampled from the short-term growth-rate distribution to
grow cities with different initial values and confirm whether
the long-term growth has the properties observed in the
real data.

Since it is important to adopt a non-Gibrat’s property
that the growth-rate distribution differs depending on the
initial value, the simulation was designed as follows. First,
we divided the initial city population xT into eight bins:
xT ∈ [1, 102), xT ∈ [100.5(n−1)+2, 100.5n+2) (n =

1, 2, · · · , 6), and xT ∈ [105,∞). The first and last bins
differ from those in the previous section for the initial
dependence of the growth-rate distribution. The first bin is
needed if the city population is smaller than 102 in the
simulation. The last bin removes the upper limit 105.5 in
the empirical data analysis to increase the number of data
items in the bin. A bin corresponding to an initial value
xT is selected from these eight bins, and a growth rate
R is extracted at random from the bin, and each urban
population is grown by xT+1 = R xT to grow each urban
population. In the simulation, this step is repeated 10 times to
obtain x1, x2, · · · , x11.

We confirm that this growth depends on the original urban
population size x1 as follows. From the 1900 urban population,
for seven cases with different original values, we randomly
extracted the population of 10, 000 with repetition: x1 ∈

[100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). The 10-step growth
of the geometric mean of the urban population classified by
the seven different original values is depicted in Figure 11 for
the United States and Figure 12 for Italy. The results for Spain
are so similar to those for Italy that they have been omitted.
In Figures 11, 12, as in Equation (4), it is confirmed that the
geometric mean of the urban population 〈xT〉 grows as an
exponential function of step T: 〈xT〉 ∝ eβsim(m)T . In the following,
the exponent of exponential growth observed in the simulation
is expressed as βsim(m). The exponent βsim(m) increases with
increasingm initially but decreases with increasingm.

FIGURE 11 | Results of simulation of the growth of the geometric mean of the

urban population using values randomly sampled from real data in the

United States. Original (T = 1) populations x1 are divided into logarithmically

equally sized bins: x1 ∈ [100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). Points in the

figure indicate m = 1, 2, · · · , 7 in order from the bottom.
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FIGURE 12 | Results of simulation of the growth of the geometric mean of the

urban population using values randomly sampled from real data in Italy.

Original (T = 1) populations x1 are divided into logarithmically equally sized

bins: x1 ∈ [100.5(m−1)+2, 100.5m+2) (m = 1, 2, · · · , 7). Points in the figure indicate

m = 1, 2, · · · , 7 in order from the bottom.

FIGURE 13 | The m dependence of the exponent βUS(m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβUS (m)T in a US simulation (Figure 11). The errors are so small that

they do not appear in the figure, and they are therefore omitted.

Figures 13–15 show the correlation of this index βsim(m) and
m in the U.S., Italy, and Spain, respectively. In these countries,
βsim(m) initially increased linearly with m. The exponents are
approximated by βUS

sim(m) = 0.041m + 0.001 in the U.S.,
βIT
sim(m) = 0.033m−0.102 in Italy, and βES

sim(m) = 0.060m−0.201
in Spain. Here we consider the optimal line for the first 3 n in
Figure 13 and the first 5 n in Figures 14, 15. In Italy and Spain,
the intercept of these linear relationships is negative, so βsim(m)
becomes negative when m is small. The value of the index βsim

obtained from the simulation results is closer to the value of
βcity(m) measured from the actual city growth. However, they
are not exactly the same and do not have to be because they
are simulated over different time periods. Importantly, the m

FIGURE 14 | The m dependence of the exponent β IT (m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβ IT (m)T in a Italy simulation (Figure 12). The errors are so small that

they do not appear in the figure, and they are therefore omitted.

FIGURE 15 | The m dependence of the exponent βES (m) when the T

dependence of the geometric mean 〈xT 〉 is approximated by an exponential

function eβES (m)T in a Spain simulation. The errors are so small that they do not

appear in the figure, and they are therefore omitted.

dependency of β results from the non-Gibrat’s property. Because,
it can be confirmed that them dependency of βsim does not occur
by simulation without the procedure of selecting the growth rate
R from eight n bins divided by the initial value xT .

6. CONCLUSION

This paper uses census municipal population data (these
are collectively called urban populations in this paper) for
the United States, Italy, and Spain to analyze the statistical
properties of their 10-year growth (short-term growth). As
a result, it was confirmed that the smaller the initial urban
population is, the greater the probability that the urban
population will decrease, and that the probability that the
urban population will increase does not depend on the initial
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urban population. We call this the non-Gibrat’s property of the
urban population. We also observed the statistical properties of
long-term growth of urban populations in each country over
100 years. Specifically, we identified the following properties
by observing the geometric mean of logarithmically equal
sized bins of the oldest urban population in the data used
in the analysis.

1. The average urban population increases or decreases
exponentially with time.

2. The smaller the initial average urban population, the smaller
the exponent, which can be negative in Italy and Spain.

3. When the average urban population is large, exponential
growth may stop.

We conducted the following simulations to clarify the
relationship between these short- and long-term properties.
First, the original urban population was randomly extracted
from the oldest urban population in the analysis, and using
short-term growth data, they were grown by 10 steps. What is
important here is that the growth rate varies according to the
size of the initial urban population according to the non-Gibrat’s
property. As a result, it was confirmed that almost all of the
above properties observed in real data for 100 years were
reproduced. Specifically, the following long-term properties
were confirmed.

4. The geometric mean of the urban population grows or
declines exponentially over time.

5. The index increases with the size of the original
urban population.

6. However, when the original urban population is very large, the
index turns to decline.

The property 6. is considered to be the property 3.
smoothed by simulation.

Finally, we consider how the short-term properties leads to the
long-term properties 1. and 2. First, we assume that the definition
of the growth rate approximately holds for the geometric mean.
Furthermore, the growth rate does not change approximately
over a period of around 100 years. In this case, it is easy to
derive that the geometric mean of the urban population grows
exponentially, and that the index is the geometric mean of the
growth rate minus one. From the non-Gibrat’s property observed
in the short-term growth rate, it can be concluded that the
smaller the urban population size, the smaller the geometric
mean of the growth rate, and therefore the smaller the index
of exponential growth. In this way, the non-Gibrat’s property
of short-term growth can be interpreted as being linked to the
long-term growth property. In the case of firm sales, the non-
Gibrat’s property observed in the initial value dependence of
the distribution of short-term growth rates produced the firms’
initial rapid exponential growth. In the case of urban populations,
on the other hand, the non-Gibrat’s property controls the rate
of long-term slow exponential growth through the mechanisms
described above. It is very interesting that the different non-
Gibrat’s properties of firm sales and urban population lead to
different long-term growths.

It was predictable that the distribution of the short-term
growth rate in the mid-size range was dependent on the initial
value, because the power-law distribution in the large-size range
was collapsed in the mid-size range in both firm sales and
urban population. In this study, we found that the urban
population has a property that is completely opposite to the
initial value dependence of the distribution of the short-term
growth rate of firm sales, as described in 1. to 3. above. The
decline in the urban population will be a policy issue. In the
macro view of this paper, the solution is to merge cities with
smaller populations. In Italy and Spain, cities with populations
generally below tens of thousands tend to decline. This figure
may serve as an indicator for policymaking. However, it is
necessary to carefully examine the causal relationship between
such figures and the results of the merger policy. This is a
future issue.

In this paper, we derive these results from three data
analyses, the U.S., Italy, and Spain Census. The remaining
challenge is to clarify the relationship between the short-term
growth parameter γ and the long-term growth parameter β .
Since γ in the three countries matches within the margin of
error, this may be a universal nature. It is also possible that
γ is involved in the correlation between β and m. We are
looking to solve this problem in the near future by analyzing
the urban population data we are trying to obtain in France
and Germany.

This paper discusses the macro-statistical properties of urban
population. This discussion does not take into account the
microscopic nature of individuals at all, and it is thus not possible
to answer why the non-Gibrat’s property occurs. In order to
develop the results of this paper and better understand the
nature of urban population, we need to take into account the
microscopic perspective of human movement between cities. On
an individual level, it is a likely scenario that people tend to move
away from less populated cities because they are inconvenient
and difficult to live in. It is also conceivable that the population of
cities with too many people will not increase further because they
are difficult to live in. In order to construct a theory incorporating
such properties, a microscopic view of the network structure will
be important [34, 35]. This is an important issue that should be
addressed in the future.
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