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The spatial distribution of a population is not homogeneous—some areas attract many

residents, while others do not. The spatial distribution of stores and facilities that

have been coevolving with that of the population is also heterogeneous. Previous

studies have shown that multifractality is a characteristic of the spatial distribution of

a population, as well as other quantities associated with the urban system. We found

that stores/facilities belonging to some categories also exhibit multifractality in spatial

distribution. We quantified the spatial distributions of the population and stores/facilities

in each category by multifractal analysis and compared their multifractal properties.

Multifractal measures that reflect the heterogeneity of the densities in each location were

able to capture additional features that cannot be seen when only the box-counting

dimension was observed. Further, high concentrations of stores/facilities in categories

relating to professional or commercial businesses were observed, consistent with

previous studies on the scaling law, another pattern observed in urban morphology. We

discuss the implications of the multifractal properties on the arrangement of locations

where stores/facilities are concentrated. We believe that multifractal analysis is a powerful

tool for the quantification of spatial distributions and expect that our interpretation of

multifractal measures will stimulate further investigations into urban morphology.

Keywords: multifractal analysis, spatial distribution, population, stores/facilities, agglomeration

1. INTRODUCTION

Fractality has been observed in various spatial distributions relating to the morphology of cities,
e.g., population, buildings, land price, and street networks [1–10]. Fractality is represented by the
nature where the mass (e.g., the population) in a region exhibits power law dependence on the size
of the region. The power-law exponent is called the fractal dimension [11]. The abovementioned
spatial distributions also exhibit heterogeneity in fractality in the sense that the locally measured
fractal dimension around each spot diverges in the structure, known as multifractality [4, 12, 13].

The location of stores/facilities should depend on and, in turn, affect the spatial distribution
of the population. People may choose the location of their settlement based on the availability
and variety of stores/facilities. On the other hand, companies may invest in the construction
of stores/facilities to secure employers and customers [14]. It is known that the nature of
agglomeration of stores/facilities depends on their type. For example, previous studies showed that
facilities relating to businesses offering professional services tend to concentrate in areas with a
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large population [14–16]. One of these studies evaluated the
concentration by investigating the scaling law between the
population and densities of facilities, showing that the number
of facilities in a city increases with a power of the population
in the city [16]. The scaling law is a universal pattern observed
in urban morphology, e.g., accessibility, road surface, and
crime [16–21]. It should be interesting to see whether the
agglomeration of stores/facilities exhibits multifractality, another
urban-related feature.

If the spatial distribution of stores/facilities exhibits
multifractality, multifractal analysis can be performed on
the structure and is a strong tool to quantify the feature of
it. In multifractal analysis, the resulted curve exhibits the
correspondence between the locally measured fractal dimension,
called singularity strength α, and the fractal dimension of the
arrangement of spots that exhibit the singularity strength α,
called spectrum f (α) [4, 13].

Besides multifractal analysis, various methods have been
applied to evaluate spatial distributions including that of
the population and stores/facilities. Average nearest neighbor
(ANN), which is the averaged distance to the nearest point, is
an indicator of the spatial clustering [22–24]. The distribution of
nearest neighbor distance is also used to evaluate the qualitative
feature of spatial structure [24, 25]. On the other hand, when grid
lines are drawn on the space, probability of finding neighboring
cells both of which are occupied is often calculated to assess
the degree of clustering [26, 27]. Regarding the industrial
coagglomeration between two industries, the extent to which
the facilities of these industries are in the same region is
evaluated [14, 28]. Compared to these methods, an advantage of
multifractal analysis should be that it can demonstrate both local
and global features of the spatial distribution [9]. By multifractal
analysis, the strength of local concentration can be captured by
the singularity strength. The global view of the arrangement of
spots with each level of concentration, on the other hand, is
incorporated into the spectrum.

In this study, we aim to (1) determine if the spatial
distributions of stores/facilities in various categories exhibit
multifractality, and if so, (2) determine the characteristics
captured by the multifractal properties of each spatial
distribution.

We chose the largest metropolitan area in Japan,
the Kantō area, as the object of our analysis. We
investigated the multifractal properties of the spatial
distributions of the population and stores/facilities in
Kantō. Our analysis showed that the spatial distribution of
stores/facilities in some categories exhibit multifractality,
as does that of the population. Though these spatial
distributions are on the same geographical substrate,
their multifractal properties are significantly different from
each other.

This paper is organized as follows. The principles of fractal
geometry, multifractality, and the generalized dimension, as
well as the methods of our analysis are presented in section 2.
We show the results of multifractal analysis of the spatial
distributions in section 3. We also compare the multifractal
properties of these spatial distributions and highlight the

information extractable from the multifractal measures of the
spatial distributions. We discuss the results in section 4.

2. MATERIALS AND METHODS

2.1. Data
Data for the spatial distributions of the population and
stores/facilities were extracted from the Japanese 100-Meter
Estimated Mesh Data of the 2015 National Censuses (Zenrin
Marketing Solutions Co., Ltd.) and the Corporate Telephone
Directory Database Telepoint with Coordinates (Telepoint Pack!
provided by ZENRIN Co., Ltd.) of 2017, respectively. The
former dataset contains data on the estimated population in
each mesh. The length of each side of a mesh is ∼100 m, while
the exact size is 3 s in the latitude direction and 4.5 s in the
longitude direction. The latter dataset contains the geospatial
information of each store/facility. Stores/facilities are categorized
hierarchically. In the largest classification, which we adopted,
there are 39 categories as shown in Table 1.

The analyzed area is a part of Kantō in Japan, that includes
the capital, Tokyo, and a major industrial area, the Keihin
industrial area. The range of the latitude is from 35◦29′54′′ to
35◦55′30′′ and that of the longitude is from 139◦16′52.5′′ to
139◦55′16.5′′ (Figure 1). There are 29 × 29 (= 262,144) meshes
inside this region.

Table 1 shows a summary of the data analyzed in this study.
The total population (the total number of stores/facilities) in
the analyzed area and the number of non-empty meshes are
shown in the third and fourth columns, respectively. Here, the
meshes/boxes with non-zero populations (stores/facilities) are
called support. The maximum and the mean population (number
of stores/facilities) in a mesh on the support are shown from the
fifth to the sixth columns.

Figure 2A shows the spatial distribution of the population
in the analyzed area. The logarithm of the proportion of the
population in each mesh to the total population is represented
by the heatmap. The other panels (B–L) show the spatial
distributions of stores/facilities in 11 categories.

2.2. Multifractality
We briefly introduce the concepts of fractal geometry and
multifractality. There are several ways of defining fractals and
multifractals; we present one of them here [9, 11–13, 29].
Additionally, we limit our explanation to structures embedded in
R
2, while higher dimensions of fractal and multifractal structures

can be generally defined.
When a mass (m(ε)) composing a structure within a region

of size ε increases with ε according to m(ε) ∼ εD, the structure
is regarded as having fractal characteristics. Here, the “size” is,
for example, the length of a side if the region is a square. The
exponent D is the fractal dimension of the structure. A more
precise definition of the fractal dimension of a structure X is the
one by the following box-counting method [11]. Let us assume
that a structure X is covered with boxes of size ε. Let N(ε) be the
minimum number of such boxes required to cover the structure.

Frontiers in Physics | www.frontiersin.org 2 August 2020 | Volume 8 | Article 291

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Ito and Ohnishi Multifractal Evaluation of Spatial Distributions

TABLE 1 | Data summary. For each category, the ID and the name of the category are shown in the first and second columns, respectively.

ID Category Total # Support Max Mean

0* Population (POP) 21,963,431 175,255 5,884 125.323

1 Fisheries, Agriculture, and Forestry 1,024 830 4 1.234

2 Mining 207 147 18 1.408

3* Construction and Civil (CC) 101,349 43,284 139 2.341

4 Foods 10,934 6,806 210 1.607

5 Textiles and Apparels 10,111 6,380 42 1.585

6 Pulp and Paper 3,559 2,654 16 1.341

7 Chemicals and Pharmaceutical 5,374 3,262 84 1.647

8 Oil and Coal Products 4,376 3,240 91 1.351

9 Rubber Products 1,970 1,573 28 1.252

10 Glass and Ceramics Products 3,124 2,032 28 1.537

11 Iron and Steel 2,362 1,757 135 1.344

12 Non-ferrous Metals 3,654 2,760 51 1.324

13* Metal Products (MP) 18,606 7,132 91 2.609

14 Machinery 24,745 15,694 60 1.577

15 Electric Appliances 8,806 6,250 27 1.409

16 Transportation Equipment 1,424 1,082 19 1.316

17 Precision Instruments 10,332 6,676 49 1.548

18 Other Products 27,707 15,107 55 1.834

19 Commercial Services 23,574 12,662 570 1.862

20* Financing Business (FIN) 12,684 7,116 76 1.782

21* Real Estate (RE) 38,051 17,850 64 2.132

22 Land Transportation 838 654 15 1.281

23 Marine Transportation 1,193 606 19 1.969

24 Air Transportation 438 223 29 1.964

25* Warehousing and Harbor Transportation (WH) 12,171 8,180 68 1.488

26 Information and Communication 22,311 9,408 92 2.371

27 Electric Power and Gas 2,401 1,883 16 1.275

28 Professional Services 30,734 13,707 64 2.242

29* Sports Facilities (SF) 5,863 4,326 18 1.355

30 Sporting-goods Stores 2,337 1,761 14 1.327

31* Amusement, Eating, and Drinking (AED) 103,993 30,891 213 3.366

32* Resort (RES) 13,401 8,709 24 1.539

33* Hospitals and Welfare (HW) 75,265 34,918 40 2.155

34 Supermarkets 13,699 7,641 232 1.793

35* Living-related services (LS) 185,824 53,808 215 3.453

36 Automobiles 24,422 13,824 49 1.767

37* School Education (SE) 35,977 20,200 87 1.781

38 Public Agencies 15,481 6,378 347 2.427

39 Others 14,815 7,953 61 1.863

The star beside the ID indicates that the spatial distribution of that category exhibits multifractality. The star-marked categories also have their abbreviation enclosed in brackets. The total

population (the total number of stores/facilities) in the analyzed area is shown in the third column. The number of meshes that is not empty is shown in the fourth column. These non-empty

areas are called support. The maximum and the mean population (number of stores/facilities) in a mesh on the support are shown in the fifth and the sixth columns, respectively.

Then the box-counting dimension D is defined as:

D = − lim
ε→0

logN(ε)

log ε
. (1)

We introduce multifractality. We again consider a set X and a
function µ on X that gives a quantity, such as the density, at each
point x ∈ X. Let us assume that X is divided by square boxes that

have the same size ε. For the i-th box of size ε, Ci,ε , the value Pi,ε
is called the probability measure on the box:

Pi,ε =

∫

Ci,ε
µ(x)dx

∫

X µ(x)dx
. (2)

If Pi,ε and ε have the following power-law relationship for any i:

Pi,ε ∼ εα , as ε → 0, (3)
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FIGURE 1 | Map of the analyzed area (1:1,000,000 INTERNATIONAL MAP, Geospatial Information Authority of Japan).

then fractality can be seen around each point of X. Here we
assume that the exponent α diverges in X and let N(ε,α) be the
number of boxes that satisfy Pi,ε ∼ εα̃ where α̃ ∈ [α,α + 1α]. If
N(ε,α) decreases with ε as

N(ε,α) ∼ ρ(α)ε−f (α)1α, (4)

the set X can be regarded as having a multifractal structure.
Exponent α, which can be regarded as the local fractal dimension,
is called the singularity strength. On the other hand, exponent
f (α) stands for the box-counting dimension of the set of points
with the singularity strength α. This dimension f (α) is called
the spectrum. In this paper, the curve of (α, f (α)) is called the
multifractal curve. Figure 3 is an example of the relationship
between α and f (α) in the spatial distribution of the population
(Figure 2A). Each panel in Figure 3 shows the units that exhibit
the singularity strength α within the range shown on each panel.
We derived the singularity strength of each unit by estimating
the exponent in the following relationship Pi,ε ∼ εα (see
Equation 3). The box-counting dimension of the arrangement
of units with the singularity strength α, f (α), was also derived
based on Equation (4) when the power-law relationship in the

equation holds. For example, units with the singularity strength
α within [1.85, 1.90) are rare. Also, the arrangement of such
units is curve-like (i.e., a one-dimensional shape) and exhibits a
low box-counting dimension f (α) ∼ 1.60. On the other hand,
the arrangement of units with the singularity strength α within
[2.05, 2.10) spans a two dimensional region and exhibits a high
box-counting dimension that is about 2.

2.3. Generalized Dimension
We introduce the generalized dimension and explain the
relationship between the singularity strength, the spectrum,
and the generalized dimension [29, 30]. The q-th generalized
dimension Dq is defined as follows. First, we define τq as

τq = lim
ε→0

log
∑

i P
q
i,ε

log ε
. (5)

Then the generalized dimension Dq for q 6= 1 is defined as

Dq =
1

q− 1
τq. (6)
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FIGURE 2 | Spatial distributions of the population and stores/facilities in the analyzed area. (A) The spatial distribution of the population. (B–L) The spatial distributions

of stores/facilities in 11 categories: (B) 3CC (Construction and Civil); (C) 13MP (Metal Products); (D) 20FIN (Financing Business); (E) 21RE (Real Estate); (F) 25WH

(Warehousing and Harbor Transportation); (G) 29SF (Sports Facilities); (H) 31AED (Amusement, Eating, and Drinking); (I) 32RES (Resort); (J) 33HW (Hospitals and

Welfare); (K) 35LS (Living-related Services); (L) 37SE (School Education). For the other categories, the spatial distributions are shown in Figures S1, S2. The color

stands for the value of log10
[(

the population in the mesh)/(the total population
)]

for each mesh in (A). The number of stores/facilities is used instead of the population

in (B–L). Each mesh is a 100-m mesh as described in section 2.

In the case of q = 1,

D1 = lim
ε→0

∑

i Pi,ε log Pi,ε
log ε

. (7)

In the summation on the right-hand side of each of Equations (5),
(7), let the i-th term be summed when the i-th box is not empty,
i.e., Pi,ε 6= 0. Here, the generalized dimension is equal to the
box-counting dimension of the support D when q is zero.

It is known that the following values of αq and f (αq) give the
approximation of the pair of α and f (α) for each q:

αq =
dτq

dq
, (8)

f (αq) = αqq− τq. (9)

2.4. Method of Analysis
In this study, we are concerned with finite morphologies that do
not contain infinitesimal structures as the smallest unit of our
data is a 100-m mesh. Therefore, we cannot rigorously calculate
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FIGURE 3 | Example of the singularity strength α and the spectrum f (α). In each panel, units that have the singularity strength α within the range mentioned at the top

of the panel are shown. Here the size of each unit is 23/29 on one side, and α is derived based on Equation (3). Also, the spectrum f (α) is derived based on

Equation (4), only when the power-law relationship in Equation (4) holds.

the generalized dimension, singularity strength, and spectrum.
Instead, we consider the range of q and ε in which the structure
can be regarded as exhibiting (multi)fractality, by evaluating the
range of q and ε in which the following relationship holds:

∑

i

P
q
i,ε ∼ εd. (10)

Thus, we examine the linearity of the relationship between
log

∑

i P
q
i,ε and log ε by the frequently usedmethod [3, 4, 7, 8, 31–

34]. Then we regard d as τq by Equation (5) when log
∑

i P
q
i,ε ∼

d log ε + (const.).
In our analysis, we assign the size of one side of a 100-m mesh

to ε = 1/29. Grid lines are drawn on the analyzed area so that it
is covered by non-overlapping boxes with the same size [3, 7].
As the size of boxes, we consider ε = 1/29, 2/29, 22/29, ..., 1.
We define the probability measure Pi,ε on the i-th box with
the size ε as the proportion of the population (the number of
stores/facilities) in the i-th box to the total population (the total
number of stores/facilities).

Subsequently, for the population, we evaluate the linearity of
the relationship between log

∑

i P
q
i,ε and log ε for various ranges

of ε and q as shown in Figure 4. Regarding the criterion for
this linearity, we examined whether or not the coefficient of
determination of the linear regression, R2, exceeds 0.99. A linear
relationship was not observed when q takes a negative value and
when the range of ε includes values < 23/29. Consequently, we
considered the range of ε from 23/29 to 29/29, and the range of
q from 0 to 20. We performed a multifractal analysis on these
ranges of ε and q for the spatial distribution of the population.
Furthermore, for the spatial distribution of stores/facilities in
each category, we examined multifractality on the same ranges of
ε and q as that for the population. Plots of log

∑

i P
q
i,ε against log ε

for all categories of stores/facilities are shown in Figures S3, S4.
The star marker was added beside the ID in the first column
of Table 1 if the category showed multifractality in the spatial
distribution. Also, the spatial distribution of such categories
are shown in Figures 2B–L. In this figure and in the following
discussion, abbreviations are used for these categories—the
abbreviation of each category is enclosed by brackets after the
name of the category in the second column of Table 1.

FIGURE 4 | log
∑

i P
q
i,ε vs. log ε for each q. The color of the plots correspond

to the value of q in the legend.

We obtained τq as the slope of the linear regression of

log
∑

i P
q
i,ε by log ε, and derived Dq from Equations (6, 7). To

derive the singularity strength αq and the spectrum f (αq), we
used the following formulae:

αq = lim
ε→0

∑

i µi,ε,q log Pi,ε
log ε

(11)

f (αq) = lim
ε→0

∑

i µi,ε,q logµi,ε,q

log ε
, (12)

where µi,ε,q = P
q
i,ε/

∑

j P
q
j,ε . These formulae can be directly

derived from Equation (5), (8), and (9) [12, 35, 36]. We
obtained αq by the linear regression between

∑

i µi,ε,q log Pi,ε
and log ε, and obtained f (αq) by the linear regression between
∑

i µi,ε,q logµi,ε,q and log ε.
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3. RESULTS

3.1. Density of Units and Multifractality
As we briefly mentioned in section 2.4, multifractality could
not be observed for the spatial distribution of the population
when the value of q is negative. Knowledge of the relationship
between the densities in a unit, the value of q, and the
multifractal measures is helpful for interpreting the results
of the multifractal analysis. In Equation (5) for τq, a larger
value of q corresponds to a greater contribution of the boxes
with large probability measures Pi,ε to the sum. Therefore, the
boxes with high densities are significantly incorporated into
the calculation of the q-th generalized dimension Dq when the
value of q is large, see Equation (6). Note that no differences in
density is considered when q = 0. The pair of the singularity
strength and the spectrum also has a relationship with q by
Equations (8), (9). Therefore, the multifractal measures of Dq,
αq, and f (αq) for a large q, significantly reflect those units with
high densities. The fact that multifractality was only observed in
the spatial distribution of the population with positive q values,
indicates that multifractality cannot be observed in sparsely
populated areas.

3.2. Generalized Dimension
Figure 5 shows the q-th generalized dimension vs. q for
the population and stores/facilities in four categories: 20FIN,
25WH, 31AED, and 33HW. The generalized dimension for
stores/facilities in the other categories is shown in Figure S5. As
mentioned before, the generalized dimension for q = 0, D0, is
equal to the box-counting dimension of the support. For each
category, the value of D0 is close to 2, which is the dimension
of R2 to which each spatial distribution is embedded. The rate
of decline in the generalized dimension with q significantly
varies between the categories. The generalized dimension for
20FIN drops dramatically with q, while that of the population
decreases minimally with q. In the cases of 25WH and 33HW,
the decline of the generalized dimension is milder than that
of 20FIN and 31AED. Considering the relationship between
the value of q and the densities in the boxes, |1D20| : =

|D20 − D0| can be one of the indicators for the strength of
the heterogeneity in spatial density distribution, and 20FIN
and 31AED can be regarded as having strong heterogeneity in
spatial distributions.

3.3. Multifractal Curve
The multifractal curves are shown in Figure 6A. Before we
investigate each multifractal curve, let us revisit the relationship
between the densities in a unit and the value of q, and the
singularity strength αq [9]. Recall that each point on the
multifractal curve can be derived for each q (Equations 11,
12). Generally speaking, in each multifractal curve, the greater
is the value of q, the lower is the value of αq, i.e., the plot
of a multifractal curve proceeds to the left as the value of q
increases. Therefore, by the relationship between the value of
q and the densities in the units, a unit with a high density
tends to have a small singularity strength—we can observe this
by comparing Figure 2A with Figure 3. An interpretation is

FIGURE 5 | q-th generalized dimension vs. q for the population and

stores/facilities in four categories: 20FIN, 25WH, 31AED, and 33HW. The

generalized dimension for stores/facilities in the other categories are shown in

Figure S5.

that around a unit with a density significantly higher than the
surroundings, the probability measure Pi,ε does not increase
rapidly by expanding the area, and vice versa (see Equation 3).
Figure 7 explains this interpretation. Let us assume that each
of the gray units has a constant density. Only the i-th unit
is filled in the case of panel (A), while all the units are
filled in the case of panel (B). The singularity strength of the
i-th unit in panel (A) is 0, since the probability measure of
the square boxes emphasized by the thick line, that expands
around the i-th unit, does not increase with the size ε of
the box and remains at the same value. On the other hand,
the probability measure on these boxes changes according to
the square of ε, and the singularity strength of the i-th unit
is 2, in panel (B). Though panels (A) and (B) are extreme
examples, these diagrams suggest that a unit with a density
significantly higher than the surrounding units can have a low
singularity strength.

Therefore, in Figure 6A, multifractal curves with a
significantly low singularity strength αq, such as 20FIN
and 31AED, indicate the existence of units with a density
much higher than the surroundings. Also, the spectrum
f (αq) is quite low for small singularity strengths αq in
the cases of 20FIN and 31AED. Recall that the spectrum
f (αq) represents the box-counting dimension of the
arrangement of units with the singularity strength αq.
The pair of small αq and f (αq), thus, is an indication
that there are a few isolated units, each with an extremely
high density.

Multifractal curves contain information not only at small
singularity strengths but also across the entire range. The
multifractal curve of 13MP has similar αq and f (αq) values with
that of 25WH, 29SF, 35LS, and 37SE when αq is quite small.
However, in the mid-range of αq, the value of f (αq) for 13MP
is significantly greater than that of the others. Therefore, in
the case of 13MP, units with a mid-range density (compared to
the surroundings) remain concentrated compared to the case
of the other categories. This may correspond to the yellowish
units gathered on the right of panel (C) in Figure 2. On
the other hand, a feature of the multifractal curve of the
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FIGURE 6 | (A) Multifractal curve. The pair of the singularity strength

(abscissa) and the spectrum (ordinate), (αq, f (αq)), for each q of the population

and stores/facilities. Each multifractal curve is also separately shown in

Figure S6. (B) 1f (αq) vs. αq, where 1f (αq) : = f (αq)− f (α0). (C) 1f (αq) vs. 1αq,

where 1αq : = αq − α0.

population is that neither αq nor f (αq) declines rapidly with
q. This corresponds to the following features of the spatial
distribution of the population: The densities in the units does
not widely diverge and the arrangement of the units with

FIGURE 7 | Schematic image of the singularity strength and the densities in a

unit. Each of the gray-colored units has the same density, i.e., has the same

probability measure ρ. (A) Only the i-th unit has non-zero density and the other

units are empty. The probability measure of the box remains ρ, even when the

size of the box ε increases as emphasized by the thick line. Therefore, the

singularity strength of the i-th unit is 0. (B) All units are filled. The probability

measure of the box is ρ, 9ρ, and 25ρ, for the smallest, the second smallest

and the largest boxes (emphasized by the thick line), respectively. Thus, the

singularity strength of the i-th unit is 2.

each density does not change dramatically with the density
(Figure 2A).

Figure 6B shows the plots of 1f (αq) : = f (αq) − f (α0)
against αq. Recall that f (α0) is the box-counting dimension
of the support. In the value of f (α0), the differences in the
densities in the units is not incorporated. Thus, the vertical
axis 1f (αq) represents the degree of decline in the spectrum
from the box-counting dimension of the support when the
differences in the densities in the units is gradually emphasized.
Another intuitive meaning of 1f (αq) is the nature of the
difference in arrangement between the panels in Figure 3. In
the case of 31AED, in which the pair of a small αq and
f (αq) exists, we observe that the value of 1f (αq) is also
small for small αq. This indicates that the arrangement of
units with small αq is quite sparse compared to the support.
Therefore, we can infer the following characteristics of the spatial
distribution of 31AED: There are a few isolated locations where
stores/facilities in 31AED are extremely concentrated, while
covering a vast region.

Figure 6C shows plots of 1f (αq) against 1αq : = αq − α0.
The horizontal axis shows that how the singularity strength
declines as q increases from the one calculated under the
situation where differences in the densities in the units
were not taken into account. The decline of both 1αq and
1f (αq) with q of 29SF is milder than the other categories
excepting the population, suggesting that the spatial distribution
of stores/facilities is homogeneous in 29SF. Specifically, by
comparing with Figure 6A, the value of αq is small across
the range of q including q = 0, in the case of 29SF. This
may represent the sparsely but relatively uniform scattering
of stores/facilities in 29SF (Figure 2G). Additionally, though
the difference in the multifractal curves of 21RE and 32RES
is ambiguous for large q in Figure 6A, we can observe that
the singularity strength of 21RE has a wider range than
32RES (Figure 6C). When we restrict our observation to the
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concentrated units, the arrangement of the units in 21RE has a
similar box-counting dimension to that of 32RES. On the other
hand, in 21RE, we should be able to observe local regions where
the density increases mildly with the size of the region, that may
not be observed in 32RES.

Finally, Figure 8 shows a summary of the multifractal
properties of the spatial distributions of the population and
stores/facilities for all categories that have multifractality in the
ranges of ε and q tested in this study. In both panels, the
horizontal axis shows f (α0), i.e., the box-counting dimension of
the support. In f (α0), the differences in the densities in the units
is not incorporated—only whether or not each unit is empty is
taken into account. The box-counting dimension of the support,
of course, can capture a feature of each spatial distribution. The
value of f (α0) for each category is near two, that is the dimension
of R2, but it diverges a little. We can see that f (α0) tends to be
small when the spatial distribution is sparse, e.g., 20FIN and 29SF,
in (Figures 2D,G, 8).

On the other hand, the vertical axes in Figure 8 show
the values that incorporate the differences in the densities in
the units. In Figure 8A, the vertical axis shows the difference
between the largest and the smallest singularity strength |1α20|.
The color of each marker represents the value of |1D20|, for
each category. The brighter marker color corresponds to the
larger value of |1D20|. In Figure 8B, the vertical axis shows
the difference between the largest and the smallest spectrum
|1f (α20)|. The color of each marker again represents the value
of 1 D20.

The values of |1α20| and |1f (α20)| for some categories
can diverge even when f (α0) takes almost the same value.
For example, |1α20| of 29SF is much smaller than that of
20FIN, while f (α0) of both of these categories are around
1.86. This result indicates that both 29SF and 20FIN have
sparse spatial distributions, but the heterogeneity of the densities
in the units for 20FIN is stronger than that of 29SF—
this can be observed in Figures 2D,G. In Figure 8A, the
plots of 3CC and 33HW are nearer that of the population
than the others. This suggests that the nature of the spatial
distribution in these categories is similar to that of the
population when we consider the large region covered by
stores/facilities and the small differences in the relative densities
in the units.

4. DISCUSSION

In this study, we evaluated whether the spatial distributions
of the population and stores/facilities exhibit multifractality.
Multifractality in the spatial distribution of the population
has been demonstrated in previous studies [3, 5, 10]; we
also demonstrated this result in the Kantō area, Japan.
However, we were not able to observe multifractality in the
population distribution for negative values of q. In the previous
studies that evaluated multifractality in city morphologies,
the authors carefully examined the range of q in which
multifractality was observed [4, 7, 8]. These studies showed

that multifractality can be observed at both positive and
negative values of q. As we mentioned above, positive (the
negative) values of q corresponds to boxes with high (low)
densities. Therefore, previous studies observed multifractality in
both densely and sparsely distributed regions. However, they
also showed asymmetry in the positive and negative ranges
of q and discussed the structural differences in dense/sparse
regions. In our case, the range of q for multifractality
suggests that the sparsely populated region does not have
a structure characterized by multifractals, attributable to the
geographical characteristics of the examined region in this
study. The examined region includes the mountainous areas
in the upper and left sides of each panel in Figure 2 as
it represents the general feature of the Japanese terrain. It
also contains Tokyo bay in the lower-right corner of each
panel (Figure 2). Along Tokyo bay, there are rich residential
areas as well as plenty of facilities in various industries and
numerous stores. This examined region should be an interesting
object to investigate considering these geographical features.
However, complex substrates may restrict the range in which
multifractality appears.

We also investigated which category of stores/facilities
shows multifractality for the same ranges of q and ε as
that for the population. Stores/facilities in some categories
also exhibit multifractality in the spatial distribution, but the
determined multifractal measures significantly depend on the
category. Diverging multifractal properties can reflect qualitative
differences in the spatial distributions—stores/facilities are
sparsely and uniformly scattered in some categories, while others
are centralized, e.g., the stations in some categories. Importantly,
our analysis showed that the box-counting dimension performs
poorly in capturing qualitative diversities in the spatial
distributions of these categories. The box-counting dimension
captures the arrangement of the units that are not empty.
On the other hand, multifractal measures can represent the
arrangement of units with a certain density. Multifractal curves
can indicate, for example, the existence of units with comparably
high densities by evaluating the range of the singularity
strength α, and the spatial distribution of such units by the
spectrum f (α).

The spatial distribution of the population can be characterized
by the high box-counting dimension of the support and the
homogeneity measured by the generalized dimension and the
multifractal curve. The population is distributed across all the
regions examined in this study, while the densities in a unit do not
vary significantly. In addition, we will observe a similar spatial
distribution, even when we change the filter on units according
to these densities. Considering its high box-counting dimension
and the homogeneity seen in the range of the singularity strength,
the spatial distribution of stores/facilities in 33HW exhibits
similar features with that of the population. These stores/facilities
cover a large area and the heterogeneity of the densities in the
units is low. On the other hand, in the cases of 20FIN and
31AED, the singularity strength and the spectrum sharply decline
with q. This shape of the multifractal curves indicates a strong
centralization of stores/facilities to a few locations. Some of these
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FIGURE 8 | Summary of multifractal properties. (A) The difference between the largest singularity strength α0 and the smallest one α20, |1α20|, against the

box-counting dimension of the support f (α0). (B) The difference between the largest spectrum f (α0) and the smallest one f (α20), |1f (α20)|, against the box-counting

dimension of the support f (α0). In both panels, the number beside each plot shows the category. The color of each plot represents the value of |1D20|. The brighter

color corresponds to the larger |1D20|.

concentrated locations presumably correspond to large stations
in the capital.

In addition to multifractality of the spatial distribution,
the scaling law is also a universal pattern observed in city
morphology [16–21, 37, 38]. For example, the population X
and a quantity Y related to the city morphology have the
relationship of Y ∼ Xβ . The large scaling exponent β in this
relationship, i.e., the super-linear increase of Y with X, indicates
a strong concentration of these urban-related objects to locations
with a large population. Previous studies also found the scaling
law in (industrial) agglomerations and showed that facilities,
outputs, and jobs concentrated stronger in cities with a large
population when these objects are in a category associated with
professional and complex skills or with commercial facilities than
when the type is relatively primitive or public-related [16, 19–
21]. Many of our results are consistent with these previous
studies. Our multifractal analysis indicates the centralization
of facilities in 20FIN, which is a category related to services
requiring professional skills and frequent communication with
customers [14]. Also, 31AED, a category related to commercial
activities, showed a strong concentration. The concentration of
objects related to construction and healthcare was shown to be
mild in previous studies, which is also consistent with the mild
decline of the singularity strength with q in our results (3CC and
33HW).

While consistency between multifractality and the scaling
law exists, an advantage of multifractal analysis should be the
richness of information in the result. As we discussed so far,
we can quantify the nature of the divergence of the densities
in each location and the spatial distribution of each density,
by multifractal analysis. For example, for the centralization of
stores/facilities in 20FIN and 31AED, multifractal properties
further explain the following difference. Considering the large
range in the singularity strength and the high box-counting
dimension, we can expect to see stores/facilities in 31AED
everywhere, with some centralized locations. On the other
hand, facilities in 20FIN are encountered only in concentrated

locations, which is represented by the overall small singularity
strength. Therefore, the results in our analysis exhibit not only
the existence of concentrated areas but also the various state
of concentration. In this study, we attempted to interpret the
multifractal curves that correspond to qualitatively diverging
spatial distributions. We hope that our discussion will contribute
to future investigations on spatial distributions by multifractal
analysis. Additionally, the characteristic of concentration of
stores/facilities in each category, which was revealed in this study,
should be considered in the actual urban design. For example,
the stores/facilities in 31AED is expected to have a tendency to
concentrate strongly. Such a tendency of agglomeration should
be taken into account in advance when it is required to avoid an
extreme concentration of buildings in a landscape.

The temporal development of various urban morphologies,
e.g., the spatial distributions of streets and buildings, have
been discussed in previous studies [2, 4, 7–9]. Some of them
revealed that the spatial distribution was developed to the
packed state and to exhibit features close to monofractals [2, 4].
We are also interested in how these developments depend on
the category in which the stores/facilities belong. As a future
perspective, the comparison of such developments is possible by
quantification with multifractal analysis. Furthermore, we expect
that the classification of cities is possible by comparing such
developments between cities.
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