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With the exception of purely empirical equations of state, the remaining equations can
bear the tag “molecular based.” Depending on their derivation, their molecular basis
varies from those having only some traits of ideas/results of molecular considerations
to equations obtained truly by application of statistical mechanics. Starting from
formulations of statistical mechanics of liquids, a general scheme for derivation of truly
perturbed equations is formulated. Two approaches, Bottom-Up and Top-Down, are
identified, and the individual steps are discussed in detail along with several rules that
reflect the essentials of the physics of fluids, which should be observed. Approximations
and simplifications used in the implementation of the scheme are then analyzed in light
of these rules, and a classification of equations of state is introduced. To exemplify
these approaches in detail, theoretical and SAFT routes toward an equation of state
are considered for water along with a potential way of merging these two approaches
to obtain a reliable equation with a potential to predict the behavior of real fluids and not
only to correlate them.

Keywords: perturbation theory, simple reference fluids, classification of equations of state, primitive models,

thermodynamic perturbation theory, SAFT equations

1. INTRODUCTION

In addition to experimental measurements, the thermodynamic properties of pure fluids and their
mixtures can be obtained by methods of statistical mechanics, both by theoretical calculations and
molecular simulations. Particularly important properties are those of pressure-volume-temperature
(PVT) relations, which are usually presented in the form of equations of state (EoS). They can be
obtained using different methods, and several points of view can be adopted to sort them out and
classify them. Undoubtedly, it is possible to distinguish two basic types of equations: empirical
and molecular based. The former are typically obtained by fitting the known experimental (but
also molecular simulation) data of the considered real/model system to what is usually an arbitrary
many-parameter function, and they should thus bemore appropriately called correlation functions.
Some examples we may mention include the IAPWS equation for water [1] or the equation for the
Lennard-Jones (LJ) fluid of Johnson et al. [2]. The latter equations are based, to various degrees, on
ideas and results of statistical mechanics.

The term “molecular based” itself, covering all non-empirical equations, is rather vague, and
equations falling into this category need to be further differentiated. Any statistical mechanical
treatment requires as input one indispensable ingredient: an intermolecular interaction model
whose choice depends on the goal of such computations. In studies aiming at the elucidation
of molecular mechanisms governing the behavior of fluids, idealized simple models (referred to
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further in the paper as primitive models) are used, whereas if
the goal is a prediction of behavior of real fluids, the model is
rather a complex function (referred to as a force field) defying
any exact treatment. In addition to their simplicity, an advantage
of the simple models is a possibility to obtain the final results in
a close analytic form, and these results may then be conveniently
used also in treatment of complex fluids. Examples are solutions
of the Percus-Yevick equation for the fluid of hard spheres (HS)
[3, 4], sticky hard spheres [5], square-well fluid [6, 7], the mean
spherical approximation result for dipolar hard spheres (DHS)
[8], Dahl-Andersen solution for the double square-well model
[9], or results of the thermodynamic perturbation theory (TPT)
for various primitive models of associating fluids [10–15].

Dealing with real fluids, the only method making it possible
to derive an EoS in an analytic form is a perturbation expansion.
There is one exception, however: theoretical results for various
Yukawa models. The Yukawa model is rather flexible, and,
because it is able to describe, with reasonable accuracy, properties
of simple fluids, it has attracted a lot of attention, and vast
amounts of literature dealing with the Yukawa model is available.
Analytic results for the model have been obtained by solving
the Ornstein-Zernike equation using different variants of the
mean spherical approximation, see, e.g., [16–18], or a variational
perturbation theory [19].

The perturbation expansions, and hence the resulting EoS,
differ in the way how the reference system is defined and the
correction terms treated. There are two different statistical-
mechanical approaches: Bottom-Up (BU), beginning at the
specific and moving to the general, and Top-Down (TD),
going from the general to the specific. The TD approach
starts from a complex realistic (preferably the best available)
interaction model, analyzes the effect of different interactions
on the properties of the considered fluid and discards its
less important parts, and it comes gradually via well-defined
approximations to a coarse grained model and, ultimately, to
a theoretically tractable (simple/primitive) model for the fluid
in hand. Such a model is/may thus be commonly used as a
reference in a perturbation theory. The BU approach is, in a
certain sense, a macroscopic (phenomenological) approach and
corresponds to a common classification of liquids according to
their increasing complexity (see the next chapter). It starts from
a simple intuitive/speculative model whose use is justified by
either previously or a posteriori obtained results of molecular
theories and simulations. It is (implicitly) assumed that themodel
captures the basic features of the studied class of considered fluids
and additional terms accounting for other interactions are then
added. The parameters appearing in the expressions are evaluated
by fitting to data of the considered fluid, either simulation or
experimental ones, and may not thus be directly linked to the
actual molecular characteristics.

Each of the above approaches has its advantages and
disadvantages. The BU approach makes it possible to treat
very complex systems (using a simplified intuitive modeling)
that otherwise defy any rigorous treatment. On the other
hand, it is virtually impossible, because of its intuitive basis,
to systematically improve its performance with respect to
the underlying molecular mechanisms, and further progress

toward better results has to go via empirical corrections only.
Furthermore, for the development of the parameters of the
proposed EoS a large number of experimental data is required,
and the use of the EoS outside the range of the data is
problematic. In general, BU equations enjoy great flexibility,
and if their performance is not acceptable, it can be improved
by adding additional terms, making their parameters state
dependent, etc. In the TD approach, everything is clearly defined
from the very beginning and performance of the developed
EoS can be gradually improved by accounting for the known
neglected effects. An advantage of this approach is that it also
provides a guidance for developing non-intuitive simple models
that, in turn, may serve as a theory-based reference in the BU
approach. Its disadvantage is that, when strictly adhering to
theory, it may be limited to fluids made up of relatively small
and medium-sized molecules. Furthermore, it is tied to a parent
interaction model and cannot thus perform better than the
model itself. Nonetheless, it is worth emphasizing that, although
conceptually completely different, both methods, TD and BU,
may formally end up with the same result. A typical example
is the vdW EoS, which was derived originally by an intuition
and belief in the existence of molecules as volume excluding
entities (hard bodies; BU approach) but which can also be derived
rigorously by starting from a realistic intermolecular potential
(TD approach) and applying then a perturbation expansion
about a suitable short-ranged repulsive reference model (see
section 2.3).

The two potential ways to develop a molecular-based EoS
outlined above are not usually distinguished, which may also
hinder further (faster) progress toward better equations, often
making the results more complex. Typically, instead of going to
the basics, (empirical) corrections of corrections of corrections
are introduced. As a typical example, we may again mention
the vdW EoS and dozens of its empirical modifications. When
derived by statistical mechanical tools, it is clear that the first
term represents an EoS of the fluid of hard spheres (excluded
volume) and the other term a mean field approximation. Using a
perturbation theory, both these terms are well-defined and can be
systematically improved reflecting the corresponding theoretical
development (e.g., better EoS of hard spheres). On the other
hand, using the original form of the equation, improvements
are made only by empirical adjustment of the parameters of
the equation (e.g., hundreds of cubic equations with their
temperature or/and density dependence of parameters).

An overwhelming majority of molecular-based EoS are of
the vdW-type, i.e., they were developed using the BU approach.
Within this group of equations belong also SAFT (Statistical
Association Fluid Theory) equations [20–23] (although this is not
usually acknowledged), which have gained great popularity in the
last two decades and which are the most versatile engineering
equations in use today. Although called “SAFT equations,” it
should be emphasized that (as stated by pioneers of the SAFT
approach) “. . . SAFT is not a rigid equation of state but a method
that allows for the incorporation of the effect of association”
[22]. This concept, referred to further as a van der Waals-type,
was introduced in the end of 1980s as an alternative to what
was exclusively used at that time: “perturbed hard body” EoS.
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Emerging in the early 1980s, instead of a hard body term for the
short-range reference, it employs simple (primitive) models that
capture the effect of association [24–26]. SAFT equations have
been quite successful in modeling/correlating thermodynamic
properties of fluids (over 100 phase equilibria data of pure fluids
[27] and 60 binary fluidmixtures [28] were correlated), and SAFT
is arguably considered the state-of-the-art engineering method
for this goal.

The success of SAFT equations stems directly from theoretical
and simulation results on the effect of the range of interactions.
However, because its construction is only intuitive and without
a reference to any actual interaction model, the potential
of the theoretical findings has not been yet fully explored,
and developments and improvements of SAFT equations have
followed an empirical path as documented, for example, by a
large number of different versions of SAFT and by dozens of
different equations for one and the same compound. The goal
of this paper it to review in detail the general theoretical basis of
the derivation of molecular-based equations, produce an analysis
of the individual steps and approximations, and identify/suggest
potential ways for their improvement. This program is then
exemplified for water for which more than 40 different SAFT
EoS have been developed [29] and which is likely the most
intensively investigated compound and a challenge for both
theorists and applied scientists to fully understand and describe
its complex behavior. The paper is organized as follows. In the
next section, we review the necessary theoretical background for
the derivation of EoS and present both intuitive and force-field-
associated simple (primitive) models as well as basic results of the
thermodynamic perturbation theory. Their general discussion
with respect to the TD and BU approaches and application to
water makes up section 3, which is followed by an outline of a
potential development toward more accurate equations of state
with firm molecular footing.

2. THEORETICAL BACKGROUND

2.1. Brief Historical Survey
Any theoretical consideration at the atomistic level must start
from an intermolecular interaction model. Nowadays, using
results of quantum chemical computations, molecules are
pictured as bodies made up of individual atoms, groups of atoms,
or, in general, simply of a set of certain interaction sites that are a
fountainhead of interactions. Assuming then pair-wise additivity,
the potential functions are written in a uniform way as a sum of
interactions between these sites:

u(q1, q2) ≡ u(R12,�1,�2) =
∑

i∈{1}

∑

j∈{2}

uss,ij(|r
(i)
1 − r

(j)
2 |)

≡
∑

i∈{1}

∑

j∈{2}

uss,ij(rij) , (1)

where qi are generalized coordinates of molecule i, R12 is the
separation between the reference sites within the molecules (not
necessarily their centers of mass), � stands for orientation,
and uss,ij is a spherically symmetric (!) simple interaction
acting between site i on molecule 1 and site j on molecule

2 with r
(i)
k

being their position vector. The individual site-
site interactions are non-electrostatic (referred to also as vdW
or dispersive interactions) and Coulombic between charges
localized within the molecules. It is also usually assumed that,
for the sake of simplicity, for relatively small molecules the
geometrical arrangement of the sites is fixed within the molecules
(rigid monomer).

The composite site-site interactions in Equation (1) produce
an electrostatic field that may be approximated by an interaction
between molecular electric multipoles. It has thus been common
to write, alternatively, the interaction potentials as

u(q1, q2) ≡ unon−el(q1, q2)+
∑

{multipoles}

umultipole−multipole(q1, q2)

(2)
where unon−el stands for non-electrostatic interactions and
umultipole−multipole for the interaction between the permanent
multipoles of the molecules. The multipole-multipole interaction
is usually considered up to the quadrupole-quadrupole level.
However, since this approximation of the (truncated) interaction
is not able to capture complex interactions in associating fluids
(i.e., the fluids exhibiting hydrogen bonding; HB; H-bonding),
at the BU level, an artificial term accounting for H-bonding is
formally added:

u(q1, q2) ≡ unon−el(q1, q2)+
∑

{multipoles}

umultipole−multipole(q1, q2)

+ uassoc(q1, q2) , (3)

It must, however, be emphasized that the inclusion of the last
term does not represent any real physical force but captures
a net effect of existing electrostatic interactions. Nonetheless,
in certain circumstances, its use may be justified. Finally,
following the original van der Waals way of thinking and
results of early molecular simulations it is further convenient
to consider separately repulsive and attractive parts of the vdW
interaction, i.e.,

u(q1, q2) = urep(q1, q2)+ uatt(q1, q2)+ uelstat(q1, q2)

+ uassoc(q1, q2) (4)

The form of Equation (4) forms the basis for a classification
of fluids based on the increasing complexity of the constituent
molecules and their properties [30]. It also offers itself intuitively
for development of molecular-based EoSs, starting with the
simplest class of real fluids, the so called normal fluids for which
uelstat ≈ 0 and uassoc ≈ 0, and proceeding then toward fluids with
increasing complexity.

An interpretation of early simulation results, namely that the
strong short-range repulsive interactions have a predominant
effect on the properties of fluids (this unfortunate interpretation
will be discussed further in the text), suggested that the fluid ofHS
is a suitable reference (vdW way of thinking). Further extension
of the HS model to general hard non-spherical bodies of an
arbitrary shape (for a review see [31]) subsequently provided
an EoS that served then as a suitable reference system model
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for describing the properties of simple non-polar fluids, e.g.,
lower hydrocarbons.

To move beyond normal fluids, the next class of fluids
in the complexity hierarchy are polar fluids. First attempts
followed the (mis)interpretation of simulation results of the
structure of fluids being determined, in general, by the
strong purely repulsive interactions and treated the long-range
multipole-multipole interactions as a perturbation. However,
despite all the effort invested, the obtained results using this
approach did not fullfil the expectations (see, for example,
[32]) for simple physical reasons that will become clear in
the following section. It became evident that a more complex
yet simple model, preferable from the same class of fluids,
is needed as a reference system. The simplest and most
logically suitable reference model for polar fluids appears
to be that of dipolar HS. The analytic result (required
in the perturbation theory) for its properties was obtained
by Wertheim [8] using the mean-spherical approximation,
and this result made it possible to consider the reference
dipolar HS model for developing a theory for polar fluids.
However, this route did not work satisfactorily either [32].
It is therefore not surprising that a similar approach applied
to the third class of fluids in complexity, associating ones,
failed as well. As an example, Muller and Gubbins [33]
used the interaction model in the form of an extended
Stockmayer potential,

u = uLJ + uDD + uHB = uref + uHB , (5)

where uLJ is the Lennard-Jones (LJ) potential, uDD stands
for the dipole-dipole interaction, and the additional
H-bonding term, uHB, was treated as a perturbation.
Comparison with simulations gave rather disappointing
result [33, 34].

To summarize, it turned out that building an EoS on the basis
of an available EoS of a preceding simpler fluid is a blind alley
and that another approach should be applied. A breakthrough in
this field is associated with (i) the development of simple suitable
models, (ii) development of theory for such models, and (iii)
simulation results that pursued a different classification of fluids
[35], see section 2.4.

Several simple models that aimed at capturing the main
features of H-bonding (strong and strongly directional short-
range attractive interaction) appeared, approximately, at the
same time: the model of Bol [24], double-square well model of
Dahl and Andersen [25], and the model of Smith and Nezbeda
(SN) [26]. The gist of both the Bol’s and SN models was that
their formulation allowed formation of not only dimers [36] but
also chains and rings. After focusing first on water and methanol
[37, 38], this idea was later extended to capture properties of
other associating and polar fluids [39, 40] and also to model
colloids (colloids with patchy sites [41, 42]). As it will be shown in
section 2.4, it is fully justified to use these models, either directly
or indirectly, as a suitable reference system for developing an
EoS following both the TD and BU approach. This application is
facilitated by availability of analytic EoS’s obtained from the TPT.
An example of this approach is the family of SAFT equations.

2.2. Perturbation Expansion and Equation
of State
The assumption inherent to all applications of perturbation
methods is a possibility to split the considered function
(property) into two: reference and perturbation parts. In the case
of the classical many particle systems, such a function is the pair
interaction potential,

u(q1, q2) = uref(q1, q2)+ upert(q1, q2) (6)

Since the expansion is then carried out in powers of upert,
from the formal mathematical point of view, it is required that
the perturbation term be much smaller in comparison to the
reference term. However, as it will become clear later, this is
not the case of the considered physical systems and a different
constraint is imposed on split (6). Any general perturbation
expansion of fluid systems (system of many interacting particles)
involves an expansion of the exponential exp[−βU] [43–45],

exp[−βU] = exp[−βUref](1− βUpert +
β

2
U2
pert + . . . ) (7)

where U is the system’s internal energy, U =
∑

i<j u(qi, qj).
The Helmholtz free energy is usually considered as the pivot
function to be expanded from which then any thermodynamic
property may be evaluated using the standard thermodynamic
relations. Alternatively, since the pair correlation function,
g = g(q1, q2) [46], provides the complete information on
the properties of fluids [43, 44], it is also possible to compute
thermodynamic properties from the expansion of the pair
correlation function [6],

g = gref + βǫg(1) + . . . (8)

where ǫ scales energy. It is easy to show that results of the first-
order expansion of the Helmholtz free energy are equivalent
to the result obtained from the zero-order expansion of the
correlation function.

For the purpose of the discussion of the relation between
the perturbation expansion and various EoSs and to make
all subsequent steps in the perturbation expansion (further
introduced approximations) clear, it is more convenient to
use the expansion of the correlation function. We thus start
directly with the expression for pressure (compressibility factor,
z) in terms of the interaction potential and the pair correlation
function [43, 44]:

z ≡
PV

NkBT
= 1−

βρ

6V

∫

(V)

du(q1, q2)

dR12
g(q1, q2)dq1dq2 (9)

Here, P is the pressure, T is the temperature, ρ is the number
density, ρ = N/V , and g(q1, q2) is the pair correlation function
of the fluid at hand.

The above separation of the potential, Equation (6), implies
that the corresponding thermodynamic functions also split into
two terms, i.e.,

z = 1−
βρ

6V

∫

(V)

[

duref(q1, q2)

dR12
+

dupert(q1, q2)

dR12

]

g(q1, q2)dq1dq2

(10)
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Now, using the zero order approximation for g, i.e., g ≈ gref,
we get

z ∼= 1−
βρ

6V

∫

(V)

[

duref(q1, q2)

dR12
+

dupert(q1, q2)

dR12

]

gref(q1, q2)dq1dq2 (11)

= zref −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gref(q1, q2)dq1dq2 (12)

= zref + zpert{uref} (13)

where the curly braces indicate that zpert is a functional of the
reference interaction potential, i.e., zpert is evaluated with respect
to the chosen reference system. Equation (13) is the fundamental
equation which makes it possible to differentiate between
different approaches used to “derive” molecular-based EoS.

Interpretation of Equation (13) is evident: provided that the
structure of the reference and original systems is nearly identical
(in other words, if the perturbation interaction has only a
marginal effect on the structure of the entire system), then it is
possible to estimate the properties of the studied system bymeans
of those of the reference fluid with some added corrections.

As a next step we must therefore find a way to determine
the properties of the reference fluid (which, however, may not
be a simpler problem either), and this may involve another
approximation (expansion). For simplicity, we are going to
exemplify this step by considering the simple LJ fluid

uLJ(r) = 4ǫ
[

(
σ

r
)12 − (

σ

r
)6

]

(14)

Considering the Barker-Henderson theory [43, 44], the split of
uLJ reads as

uLJ(r) = 4ǫH(σ − r)
[

(
σ

r
)12 − (

σ

r
)6

]

+ 4ǫH(r − σ )
[

(
σ

r
)12 − (

σ

r
)6

]

(15)

= uref(r)+ upert(r) ≡ uref,rep + upert(r) (16)

with the soft repulsive fluid as a reference whose properties
must be now determined. Unfortunately, no accurate analytic
results for this fluid are available, and we thus have to resort
to another approximation, and it is only at this point where
the HS fluid enters the game. Results of molecular simulations
tell us that the structure of the soft repulsive reference can be
very well-approximated by that of a fluid of hard spheres. The
pair correlation function of the HS fluid is known and may
thus be conveniently used to evaluate the perturbation integrals
with the thermodynamic properties of the repulsive reference
being mapped onto those of a certain HS fluid of an unknown
diameter σHS:

z = zref,rep −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gref,rep(q1, q2)dq1dq2 (17)

∼= zHS −
βρ

6V

∫

(V)

dupert(q1, q2)

dR12
gHS(q1, q2)dq1dq2 (18)

It is necessary now to bear in mind that while Equation (13)
results from the perturbation expansion used to determine the
properties of the original simple fluid, Equation (18) results
from a further approximation applied to the reference system to
determine its properties. In other words, Equation (18) cannot
be interpreted as a perturbation expansion about the hard sphere
reference fluid to deal with realistic simple fluids although it may
look so!

To summarize, the perturbation expansion for realisticmodels
is a two-step process, first to find a suitable reference model that
guarantees convergence of the expansion and then to devise a
method for the description of its properties.

2.3. Equations of State Classification
In the light of the results of the preceding subsection wemay now
clearly categorize molecular-based equations of state.

2.3.1. Theoretical (Perturbed) Equations
The derivation starts with an explicit expression of the interaction
model. Using then the equations derived in the preceding
subsection, the resulting EoS possesses the form

z = zref + 1z (19)

where 1z is evaluated with respect to the chosen reference
system and represents a perturbed correction over the reference
system. To accomplish all the calculations, the pair correlation
function of the reference system is required, which imposes, to
a considerable extent, severe limits on this approach. A typical
example of such theoretical equations are the results of the
TPT applied to various primitive models [39, 40]. Considering
realisticmodels, truly theoretical EoS’s obtained by a perturbation
expansion are also available, e.g., for the square-well fluid
[6, 7] or Yukawa fluid [16, 47, 48]. For further discussion,
see section 3.1.

2.3.2. van-der-Waals-Type Equations
This is a mixed molecular-macroscopic BU approach and
overwhelming majority of available equations belong to this
category. Without considering an explicit form of the interaction
potential u, it is assumed that a potential can be split into several
terms (in principle of the equal weight)

u = u0 + u1 + u2 + . . . (20)

and that, accordingly, the Helmholtz free energy can be written
as a sum of the corresponding terms,

A = A0 + A1 + A2 + . . . (21)

and hence also the EoS,

z = z0 + z1 + z2 + . . . (22)

This approach then starts from Equation (21) with the goal
to find/choose appropriate expressions for the individual terms
Ai corresponding to ui in (20). The key difference between
Equations (19) and (22) is that the individual terms in (22) are
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mutually independent, and there are thus no constraints impose
on them. Although the leading term A0 is usually predominant,
the remaining terms, 1z, are just certain corrections and should
be properly called “correction terms.” These EoSs are sometimes
used also for an interpretation of molecular mechanisms
governing the behavior of the fluid systems of interest, but such
an interpretation is not justified because there is no guarantee
that real fluids do follow such mechanisms, and some of their
conclusions may thus be misleading.

A typical example of this approach is the original vdW
equation, and it is worth comparing now the above two
ways toward an EoS to elucidate the difference although both
approaches will end up with the same equation. Let us consider
a simple realistic fluid, e.g., the Lennard-Jonesium. Applying
the Barker-Henderson method for the description of the soft
repulsive reference system, the theoretical route yields [43]

zth = zHS(σ (T))+
∫ +∞

σ

gHS(r)upert(r)r
2dr (23)

where σ is the well-defined reference HS diameter obtained from
the original uLJ potential. Using now a crude approximation of
a uniform distribution of molecules outside the effective hard
spheres, we get

zth = zHS(σ (T))+ const× βρ (24)

We get the same equation following the vdW way of thinking.
Molecules are objects excluding certain volume (hard spheres)
and they are further subject to an attractive interaction due
to the presence of other molecules in the system. By waving
hands (using certain intuitive physical arguments), he set 1z =

const×βρ, which is the same result as in Equation (24). However,
whereas the perturbation term in Equation (24) is clearly defined
and can be improved by using better approximations for gref, in
the vdW approach, there are no clues how to improve it, and any
arbitrary correction can be made.

2.3.3. Semi-theoretical Equations
There are two main obstacles in the theoretical approach:

• A lack of availability of results for the pair correlation function
of the reference fluid that would make the evaluation of the
perturbation integral possible

• A reliance on the chosen force field (interaction model)

The latter problem can be bypassed by lifting the link of the
equation to the chosen force field and considering its interaction
parameters as adjustable ones and evaluating them by fitting
real experimental data. The former problem is more severe. The
reference model must account for the structure of the molecules
comprising the considered fluid and cannot thus be fully general
and applicable for other liquids. It is, however, worth reminding
that neither these models are unique, and, for one and the
same compound, the structure of its molecule may vary from
model to model. For example, for water alone, there are several
geometrical arrangements of the interaction sites upon which the
corresponding force fields have been developed. It is therefore

necessary again to lift some of the theoretical constraints and the
direct link to a specific force field. To describe the structure is a
problem for itself. In this respect, the equations derived in this
way may converge to equations obtained by the BU approach.

2.4. Choice of the Reference System
The choice of the reference system is a crucial step in any
perturbation expansion. The choice is dictated by both physical
and mathematical considerations. From the physical point of
view, one would like to ensure the reference be as close as possible
to the original system. However, in such a case, handling the
reference may be as difficult as handling the original system. On
the other hand, mathematical considerations tend to as simple as
possible reference to make it mathematically tractable.

Perturbation theories of fluids came to existence only after it
had been shown that the structure of the HS fluid is practically
identical to that of the LJ fluid, which estimates the properties
of noble gases quite well. The interpretation of this result claimed
(and this misinterpretation is one that can still be seen today [49])
that the structure of liquids is determined primarily by strong
short-ranged repulsive interactions, but, as already discussed
in section 1, this approach however failed when applied, for
instance, to polar fluids.

Besides the classification of fluids according to the increasing
complexity of their molecules, another view was offered by
Andersen [35]. He classified fluids according to the range
of intermolecular interactions. The underlying idea of this
classification is that it is not the type of interaction (repulsive,
attractive, etc.) but its range that matters. Consequently, the
interpretation of the early simulation results was correct but only
due to sheer coincidence: in the case of normal (non-associating
and non-polar) fluids, the short range part of the interaction
coincides with its repulsive part, but this is not the case for
strongly polar and associating fluids. A systematic investigation
of the effect of the range of interactions on the properties of fluids
was undertaken by Nezbeda and coworkers using a trial potential
that maintains the total interaction at close separations intact and
switches off the long-range Coulombic interactions at separations
beyond a certain threshold [50],

uT(q1, q2) = u(q1, q2) for R12 ≤ R0

= unon−el(q1, q2) for R12 > Rrange . (25)

where it is only a purely technical matter how to actually
construct such a uT within the narrow transition range R0 <

R12 < Rrange. First studies focused on water [51–53], and,
later on, other associating and polar fluids were also considered
[54–56]. Considering a series of values of the cutoff parameter,
Rrange, the effect of its changes on both the spatial and
orientational structure on these fluids was examined. All the
results indicated that the influence of the switching range is
nearly lost when the short-rangemodel uT covers, approximately,
the first coordination shell. It means that the structure of the
systems defined by u and uT is very similar (nearly identical).
In other words, the long-range part of the Coulombic interactions
has only a marginal effect on the structure of pure fluids [50, 57].
In addition to the structural properties, the bulk thermodynamic
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FIGURE 1 | Site-site correlation functions of TIP4P water at ambient conditions in dependence on the switching range, see Equation (25). Curves correspond to
different switching ranges, and the circles are simulation results for the full potential.

behavior and vapor-liquid and selected kinetic properties were
also examined. Selected results are shown in Figures 1–3 and in
Table 1.

It has therefore been necessary to correct the original
interpretation of early simulation results, which has been
misleading. The properties of fluids are determined primarily by
the short-ranged interactions, which may, however, be not only
repulsive (which is the case of simple fluids) but also attractive. In
addition to its utilization for equations of state development, this
result forms also, for example, the basis for the local molecular
field theory of Rodgers et al. [58] who explore a possibility to use
a spherical cutoff of the long-range Coulombic interactions. It is
also worth mentioning in passing that this conclusion may apply
also even to electrolyte solutions as witnessed, for example, by the
success of the use of simple short-range models to estimate their
properties; see, for example [59–62].

The above findings thus (i) fully justify the use of simple
short-range models at all thermodynamic conditions to estimate
properties of fluids and (ii) thus explain why equations of
state based on simple short-range models (BU approach)
may yield reasonably good results. Such models, if properly
constructed, should provide an accurate estimate of the structure
of both polar and associating fluids but not necessarily of all
their thermodynamic properties. In Figure 3, we compare the
orthobaric pressure of the full models and their short-range
versions for several fluids, and in Table 1 the same comparison
is presented for the internal energy and pressure. Whereas the
internal energy is also captured quite accurately by the short-
range model, this is not the case of pressure, particularly at
the dense liquid phase. It means that the contribution of the
neglected long-range Coulombic interactions should be the main
correction to pressure of the short-range models.

2.5. Primitive Models
We are going to use the term “primitive model” (PM) to refer to
simple short-rangemodels (toy models) that capture qualitatively
the key physical properties of a given class of fluids but that

cannot (should not) be used to estimate quantitatively their
thermodynamic properties. For non-polar fluids, the simplest
models serving this purpose are purely repulsive hard spheres,
various hard bodies, or flexible chains of hard spheres.

To reproduce the structure of polar or associating fluids, the
Coulomb interaction at short intermolecular separations has to
be incorporated as well. It is assumed that molecules contain
charges corresponding to lone electrons and hydrogen atoms
(protons). Coulombic-type sites of two kinds (to mimic plus and
minus charges and their interaction) are therefore embedded
to the hard core of molecules (see Figures 5 and 6). A general
primitive model thus assumes the form

uPM(1, 2) = urep,core(1, 2)+
∑

i∈{1},j∈{2}

urep(rij)+
∑

i∈{1},j∈{2}

uattr(rij)

(26)
where the summation in the second term runs over the pairs of
the like sites and in the third term runs over the pairs of the unlike
sites. This is a general definition of the primitive model that
captures the physical reality, namely that, simultaneously with
the attractive interaction between the unlike charges, there is also
an inextricable repulsive interaction of the same strength between
the like charges. Only these two types of interactions together
give rise to H-bonding in real fluids. This corresponds to the TD
approach in which the models are not constructed arbitrarily but
descend from a realistic parent model. For general rules for the
construction of such models see [63, 64]. Two remarks seem here
appropriate. First, although the actual choice for the repulsive
and attractive site-site interactions seem obvious, a hard sphere
interaction for the repulsion and a square-well interaction for
the attractive interaction, there are at least two possibilities of
defining the attraction between the unlike sites, see Figure 4: (i)
Bol [24] defines the attractive interaction between sites i and j
with respect to the vector R12 connecting the reference sites

u
(Bol)
HB (R12, r

(1)
i , r(2)j ) = −ǫSW for R12 < rc; θ1, θ2 < θc

= 0 otherwise , (27)
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FIGURE 2 | Site-site correlation functions of methanol at density ρ = 761.9 kg/m3 and temperature T = 298 K in dependence on the switching range: dashed line
(4,6) [Å]; dotted line (4.7,6.7) [Å]; full line (5.7,7.7) [Å]. Reprinted with permission from J. Phys. Chem. B (2002) 106:7537.

(ii) whereas Smith and Nezbeda [26] defined this interaction
directly by the separation between the interaction sites

u
(SN)
HB (r12) ≡ uSW(|r1 − r2|; λ) = −ǫSW for r12 ≡ |r1 − r2| < λσ

= 0 for r12 > 0 . (28)

A consequence of these different definitions is that the
orientational part of the configurational space over which an
H-bond can be established is constant in Bol’s formulation,
whereas it is tapered with increasing separation between the
reference sites in the SN formulation. Second, the inclusion
of the repulsive interaction between the like sites means that

when all the attractive interactions are switched off, we do not
get a common hard body but the so called pseudohard hard
body (PHB) [65], the body that captures the actual excluded
volume [66, 67], an important concept in molecular physics
of fluids; albeit purely repulsive, it can also yield, to a milder
extent, preferred orientations similar to H-bonding [68]. The
PHB is not a simple hard body, however; it possesses a flavor
of non-additivity, and there is currently no theory for the PHB
fluids available.

In general, there are no a priori constraints imposed
on model’s parameters. Such constraints may be imposed,
for example, in connection with the application of a
specific theory. For example, to make the application
of the TPT possible, it is required that the conditions
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FIGURE 3 | Orthobaric pressures of the full (filled symbols) and short-range versions (open symbols).

TABLE 1 | Comparison of the internal energy and pressure of the parent and their
associated short-range models.

Parent Short-range

ρ U P U P

[kg/m3] [kJ/mol] [MPa] [kJ/mol] [MPa]

Water; T = 298K

1,000 −41.42 (23) 29.20 (4,016) −41.98 (28) −36.23 (3,747)

1,120 −42.02 (28) 358.9 (510) −42.69 (28) 286.8 (439)

Water; T = 353K

1,000 −38.57 (28) 112.3 (425) −38.91 (29) 64.44 (3,757)

1,120 −39.56 (21) 462.9 (431) −39.98 (23) 421.9 (411)

Acetonitrile; T = 298K

800 −34.48 (8) 283.4 (4) −31.53 (3) 107.1 (19)

Hydrogen fluoride; T = 350K

1,200 −25.94 (04) 2,634 (103) −26.26 (06) 2,379 (119)

Numbers in parentheses denote the error of last digits.

of the so-called steric incompatibilities be satisfied, see
section 2.5.

The above procedures of constructing the primitive models
make it possible to examine their structure and, consequently,
verify their suitability for the reference fluid. Although the
structure is an important physical property, its main use is in
theoretical considerations only; in applications with primary
focus on the thermodynamic properties, the structure plays only
a marginal role. This is the case of the BU approach which
focusses on the final net effect of the Coulombic interactions, i.e.,
on the establishing of H-bonds only, but not on the interactions
themselves. It means that in the BU methodology, the second
term in (26) is omitted.

Another way for constructing primitive models has thus
been followed. Chapman and coworkers, while developing SAFT,
utilized the idea of hard bodies with embedded interaction sites
and constructed a caricature of molecules also as bodies made

FIGURE 4 | Schematic representation of the H-bonding: Bol’s notation
(upper) and Smith-Nezbeda’s notation (lower).

up of segments with certain interaction sites [21]. However,
bearing in mind the TPT to be used for the evaluation of the
thermodynamic behavior of the models, no site location was
specified because the TPT of the first order is independent of
the site’s location. Furthermore, to make the models as simple as
possible, and thus (i) easily tractable by theory and (ii) readily
applicable to a variety of different fluids, smaller molecules
are simply pictured as hard spheres, and larger non-spherical
molecules are pictured as chains of hard spheres, see Figure 7.
These models (i.e., SAFT models) consequently do not have
any relation to real molecules and any realistic intermolecular
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FIGURE 5 | Schematic representation of the site-site interaction in the primitive model (A) and the associated pseudohard body (B). Symbols N and P denote the
negatively and positively charged sites, resp. Reprinted with permission from Pure Appl. Chem. (2013) 85:201.

FIGURE 6 | Primitive models descending from realistic force fields.

FIGURE 7 | Intuitive primitive models used in SAFT modeling. Shaded circles denote Coulombic interaction sites.

interaction model, and their actual form is therefore rather
arbitrary with all its parameters treated as adjustable.

2.6. Thermodynamic Perturbation Theory
The TPT was developed by Wertheim in a series of papers [69–
72] to deal with systems exhibiting association or polymerization,
i.e., the systems with strongly orientation-dependent and short-
ranged attractive interactions with the general interaction in
the form of Equation (26). He presented a concise scheme that
produces also integral equations (solved analytically, for example,

for the one-site SN model [10]). It is not a general theory in
the sense that (i) it requires a special form of the interaction
function and (ii) explicit results are not universal functions but
have to be developed specifically for the model at hand (e.g.,
number of the interaction sites per molecule). There are two
important constraints imposed on the interaction model for
the TPT to be applicable, the so-called steric incompatibilities:
(1) one interaction site can be engaged in establishing one
bond only, and (2) only one bond can be established between
two molecules. Provided that these two constraints are not
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satisfied, the results rapidly start to deteriorate (when compared
to simulation data), and when the constraints are ignored, any
application of the TPT is only a formal use of certain formulas
with unpredictable results. Here we provide only the basic
relations of the theory referring the reader to original papers
and to a detailed pedagogical review by Zmpitas and Gross [73]
for details. For the demonstration of the model dependence
and discussion, we present here explicit results for the four-site
model, which is a typical model of water (ST2-type models with
tetrahedral geometry [74]); explicit expressions of the EoS for
different compounds/models can be found in [13] (Equations
22–24 therein).

The TPT theory assumes the interaction function in the
form of Equation (26) and starts from its decomposition
into a repulsive reference part and a highly directional
perturbation part:

u = uWref + uWpert (29)

where uWref = uhardcore, i.e., the fluid with all attractive
interactions switched off, and subscripts “W...” are used to
distinguish these potentials from those used in a general
perturbation expansion. The quantity addressed by the theory is
the excess Helmholtz free energy,AWref, which is expanded about
a reference, and, using the diagrammatic technique, it tries to
evaluate the contribution due to the association given by uWpert

by rearranging the graphs and neglecting certain classes thereof.
The key function of the TPT are integrals I, which involve the

Mayer function of the HB bond interaction and (in the first-order
theory) the reference (hard body) fluid pair correlation function:

I =

∫

gWref(q1, q2)fHB(q1, q2)dR12d�1d�2 (30)

where fHB is the H-bonding Mayer function, fHB =

exp(−βuHB) − 1. For a four-site model with two (P)-sites
and two (N)-site embedded to a hard sphere, the final result
for the residual free energy in the first order expansion is
given by [75]

βA = AWref +
2c

1+ c
− 4 ln(1+ c) (31)

where c is obtained as the solution of a simple equation involving
the integral I as a parameter,

c =
1

2
[
√

(1+ 8Iρ)− 1] (32)

As mentioned in the preceding subsection, simple models may
have also odd number of Coulombic sites. In this case, one site
has to establish two bonds that may cause problems with the
application of the TPT—the condition of steric incompatibility is
not satisfied. Using the TPT as is in the first order for suchmodels
is definitely not correct, but this problem may be bypassed, at
least partially, by considering the theory in the second order.

TPT is an approximate theory, and its accuracy is therefore
an important issue. Surprisingly, only little attention has been

paid to it. Nezbeda et al. [75] examined TPT for a four-
site primitive model of water within the context of other
theories for primitive models and reported rather disappointing
results. A more thorough examination was carried out by
Slovak and Nezbeda [76] considering both the site-site and
angular interaction formalism. Physical properties examined
were the internal energy, pressure (equation of state), and the
heat capacity, CP. A general conclusion they drew from the
comparison of the theory with the simulation results was that
the theory is only fairly accurate at liquid densities and low
temperatures and becomes reasonably accurate only at higher
temperatures and low densities. They attributed the found
discrepancy to only an approximate resummation of graphs at
the level of the first order expansion when only one pair of H-
bonded molecules is considered in the reference hard body fluid.
Better results may be/are obtained from higher order theories.
Application of the TPT to water represents a very stringent test.
Although no similar examination for simpler models (fluids) has
been carried out, it may be assumed that the theory will perform
better for other fluids.

Vlček et al. [15] implemented the TPT of the second order
and carried out molecular simulations again. Besides a model of
water, they also considered a primitive model of methanol that
has only one pair of the Coulombic sites. In this latter case, the
TPT was in perfect agreement with simulations over the entire
range of thermodynamic conditions. The model of water was in
perfect agreement with simulations at higher temperatures and
at low and intermediate densities; yet the agreement was at least
semi-quantitative at very low temperature and high density.

3. TOWARD AN EQUATION OF STATE

3.1. Perturbed Theoretical Equation of
State
As mentioned in section 2.2, to implement the perturbation
expansion, a reference fluid has to be determined first, and,
according to Equation (13), its correlation function is then
required for the correction terms to be evaluated. This step
is accomplished by approximating the reference fluid by an
appropriate primitive model. In the case of simple fluids, this
does not bring about any problem because such a primitive
model is the fluid of hard spheres. For other fluids, the primitive
model contains both a hard core and an orientation dependent
attractive interaction. There are theoretical tools available how to
estimate its thermodynamic properties, but this is not the case
of correlation functions. Immediately available is the correlation
function for the SN model [11], but for other PM models we
have to resort to an additional approximation. Integral equations
are, with the exception of the Yukawa fluid, out of the question
because they yield only numerical results. There thus seems
to be only one general tool that may offer an analytic result
for g(q1, q2): the RAM (Reference-Average-Mayer function)
perturbation theory [77]. Accuracy of this theory was examined
by its application to a PM of water [75] with the results found
of medium accuracy only. Since it is required that the result
be in an analytic form, this would further require additional
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approximations. Accounting for the fact that the TPT itself may
not be sufficiently accurate, it is then questionable whether such
an effort is worth trying at all because it is very likely that only a
low-quality result can be expected. Nonetheless, the RAM theory
can be used for other purposes, see, for example, section 3.3.

It can thus be concluded that there is no theoretical method
able to provide a reliable and good description of the structure of
the PMs in an analytic form. As it thus stands, it seems that the
truly pure theoretical TD approach to develop an analytic EoS has
reached its limits.

3.2. van der Waals-Type Approach: SAFT
A typical example of modern vdW-type EoS is the family of
SAFT equations. SAFT methodology views molecules as objects
built from spherical segments (atoms, molecules, or functional
groups) that interact through isotropic interaction forces.
It does not consider any explicit intermolecular interaction
model but implicitly assumes that there are three major
contributions to the total intermolecular interaction energy [22]:
(1) the repulsion-attraction contribution between the individual
segments (monomers), (2) a contribution due to the formation
of chains, and (3) a contribution due to formation of association
complex between different segments. The Helmholtz free energy
is then written as a sum of three mutually independent
contributions, each of them corresponding to the above type of
interaction. In terms of the corresponding compressibility factor,
it reads as [22]

zSAFT = zsegment + zchain + zassoc (33)

Decomposition (33) does not have any a priori justification and
was based only on intuitive physical considerations in the same
way as the original vdW equation. Only later studies on the
effect of the range of interactions discussed in section 2.4 have
provided a support for it. Specifically, it is the explicit inclusion
of the association term because it is the short-range Coulombic
interaction, which plays the predominant role. In this respect,
Equation (33) should be more appropriately, at least formally,
written in another order with zassoc as the leading term.

The monomer-monomer interaction is the subject of choice.
The most common choice used to be the LJ potential for which
several analytic equations of state are available [2, 78, 79].
The hard-core Yukawa can also be a potential choice for the
same reason [47, 48]. It is also used for the description of
screed Coulombic interactions while the Sutherland potential is
useful for systems with multipolar interactions. The exponents
of the LJ potential, (m, n) = (12, 6), were originally chosen for
convenience without deeper physical justification. Lafitte et al.
[80] let the (m,n) exponents be free adjustable parameters (Mie
potential) gaining greater flexibility (two more parameters for
fitting) for the description of the softness/hardness of repulsions
and also for the range of the attractive interaction. The specific
choice of the monomer-monomer interaction also affects the
evaluation of the corresponding contribution to the EoS and a lot
of effort has also been invested into its development. This activity
brings researchers back to the period when perturbation theories
of simple fluids were in their focus.

An open question remains whether to directly incorporate
also the long-range Coulombic interactions into Equation (33).
In their paper [33], Muller and Gubbins conclude that these
interactions are more important than it was previously thought
and this would also fully agree with the results shown in Table 1.
An extension of Equation (33) by including explicitly the dipole-
dipole contribution was considered by Karakatsani et al. [81] to
deal with strongly dipolar fluids and recently also by Ahem et al.
[82]. An extension along the same path wasmade by Liu et al. [83]
who, in addition to incorporating the dipole-dipole interaction,
employed the hard-core Yukawa for the monomer-monomer
interaction instead of the LJ. On the other hand, Clark et al. [84]
argue that this contribution is not necessary and can be captured
in an average fashion by short-range primitive models. Although
this may be acceptable from the point of final numerical results,
this attitude contradicts the primary finding of section 2.4 and
takes SAFT farther away from physical reality.

The incorporation of the dipole-dipole interaction
contribution to Equation (33) deserves a further discussion. The
intermolecular interactions have their origin in the electrostatic
interactions whose contribution can be expressed as a sum of
multipole-multipole interaction contributions:

u = u0 + uDD + · · · + uoct−oct +
∑

uhighermultipoles (34)

This interaction gives rise to the H-bonding phenomenon at
short intermolecular separations. It means that it is thus possible
to rewrite Equation (34) into the form

u = uHB for R12 ≤ Rcut

= u0 + uDD + · · · + uoct−oct

+
∑

uhighermultipoles for R12 > Rcut (35)

where Rcut is a certain cutoff. It becomes now clear that
the simultaneous inclusion of the dipole-dipole contribution
and the H-bonding contribution means that the dipole-dipole
contribution from short intermolecular distances is counted
twice: its contribution from the short separations is already
accounted for by the H-bonding term. This should be evidently
avoided but the question to what extent this double counting
affects the results needs to be examined.

To obtain an EoS in an analytic form, the key integrals of type
I, Equation (30), have to be evaluated. The integrals contain the
correlation function of the reference fluid which, with exception
of the fluid of HS, is not available. Since the integration range
should be quite narrow, which is required by the conditions
of steric incompatibilities, an obvious approximation is to use
the rectangular rule for the evaluation of the integral and
approximate gHS by its contact value, g∗HS. Nezbeda and Iglesias-
Silva [85] approximated g close to contact by a straight line
defined by the contact value of gHS and its first derivative, whereas
Jackson et al. [86] used the approximation r2g∗HS ≈ const.
Nonetheless, comparison of simulation results with those based
on these approximations showed that the results were nearly
identical and that inaccuracies in I had only marginal effect [76].
This finding may thus make evaluation of I easier in cases when
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the reference fluid is not that of HS because the use of rather
crude approximations may be justified.

As is obvious from the above discussion, there is nearly an
unlimited number of possibilities to modify or extend SAFT
equations. This is in fact the property inherent to any EoS
developed using the BU approach and reflects the fact that SAFT
is a methodology and not a rigid EoS [22]. It is not the goal of this
paper to review SAFT equations, and let us mention therefore at
least their main types. Besides the original SAFTwith hard sphere
monomers, SAFT-HS, two other main versions are SAFT-VR
(variable range) [87, 88] and PC-SAFT (perturbed chain) [49].
Furthermore, there is also a group contribution version, SAFT-γ
[89], SAFT-RPM [90–92] dealing with electrolytes, and SAFT-
VR-D [81, 93] for dipolar and dipolar and associating fluids.
The most recent development includes SAFT-µ [80, 94] whose
monomer units interact via a Mie-type potential with adjustable
exponents. Furthermore, here is a number of modifications and
applications of all these versions and we refer the reader to
available review articles for further reading [22, 23, 95, 96].

3.3. Equations of State for Water
3.3.1. SAFT Equations
Number of SAFT equations developed for water is enormous.
In their recent review from 2016 on SAFT for water, Vega
and Llovell [29] list altogether 47 SAFT equations belonging
to 9 different versions of SAFT. Yet, many other equations
(typically of the same type of equation but with different sets
of parameters) are missing. The molecular size and energy
parameters of the listed versions vary within the range 1.91–
3.59[Å] for σ and 839–2,932[K] for ǫ/kB pointing again to the
fact that these parameters may hardly have anything common
with physical reality and are pure numbers. As an interesting
example we may mention conclusions of the very recent paper
by Ahmed et al. [82]. They report excellent results for the VLE
of water and other compounds with one interesting feature: to
obtain these results, the size of the monomer unit has to swell
with increasing temperature, which contradicts both common
sense and the observed (and obtained by theory) behavior; with
increasing temperature, the molecules attain kinetic energy and
get closer to each other which means that, effectively, their
excluded volume shrinks.

The primary question concerns which model of the water
molecule to use and all three possibilities, models with two,
three, and four Coulombic sites were considered. It is also
argued that the number of sites may not be fixed and should
be conveniently changed, particularly in aqueous solutions
according to solutes. Two-site geometries have therefore also
been used. For arguments and discussion of these choices
see [29].

There are many papers which include, among other
compounds also water but not many papers with the focus on
water. An exception are two papers by Jackson et al. [84] and
Dufal et al. [94]. The above problem was subject to a thorough
research of Clark et al. [84] not from the point of the relation
of the water model to reality but which model suits best SAFT.
They considered all three possibilities, two, three, and four
Coulombic site models. Since the four-site model turned out to

yield superior results they furthermore considered four different
sets of parameters for this model. They concluded that the model
with four Coulombic sites with the W2 set of parameters is the
most appropriate in describing the H-bonding in water, yielding
the largest ratio of the H-bonding and dispersion energies, and
also more realistic degree of association. This could, however,
be anticipated, as the four-site arrangement does not give to
molecules too many chances to adopt other arrangement but
tetrahedral. Despite all the effort invested and careful analysis and
discussion in that paper, the recommended parameters are just
numbers because the model ignores completely all long-range
Coulombic interactions, which is compensated by adjusted values
of the parameters.

The other paper [94] discusses in detail an application of
the TPT to the model u = uMie + uassoc and it deserves a
comment. Although, in general, SAFT assumes some form of
the interaction model, we are not aware of any paper where the
structure corresponding to the model is examined. The excellent
agreement of thermodynamic data may hide deficiencies in the
structure which would debase the equation. For example, as
a step beyond the hard core with interaction sites, a more
“realistic” model, the LJ particle decorated with H-bonding sites
was proposed [97]. Nezbeda and Slovak simulated this model
[98] with the following result: (i) when the H-bonding energy
parameter found in [97] was used, the resulting structure was
typically argon-type; (ii) to obtain a water-type structure, it was
necessary to increase the energy parameter to a very high value,
and the model then behaved like HS with bonding sites. It may
be expected that a similar result will be obtained also with the
uMie + uassoc model. It would be therefore interesting to examine
which structure it will actually produce.

Water is known to exhibit a number of anomalies that seem to
be ignored in most applications of SAFT. This is quite surprising
because the anomalies are fingerprints of water and their (at
least qualitative) reproduction is therefore very important if the
equation is to describe the behavior of real water. However,
behavior of pure water outside the region of phase equilibria is
only rarely addressed. An exception is paper [94] in which some
response functions are reported, albeit only at high pressures.

To summarize, there is no doubt that SAFT equations are able
to do great job concerning the correlation of experimental data
but their contribution to better understanding of the behavior of
water has so far been minimal.

3.3.2. Semitheoretical Equations
In their first application of PMs to water, Nezbeda and Pavliček
[99] constructed the full EoS similarly as in SAFT fashion with
the ST2 geometry of the PM, considering also the dipole-dipole
term. The EoS was thus in the form

z = zPM + zdisp + zDD (36)

The dispersion term was considered in its simplest form as the
mean field contribution, and the DD term, to avoid double
counting of electrostatic contributions at close separation, was
assumed as a dipolar hard sphere of a diameter larger than the H-
bonding radius. Parameters of the EoS were evaluated, as usual,
by fitting the VLE data, and the results were found satisfactory.
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A more sophisticated equation along this line was developed
by Nezbeda and Weingerl [100] using a four-site parent model
and the first-order TPT. The EoS had the same form as above
and the parameters were evaluated so as to obtain the best
representation of the vapor pressure and coexistence liquid
densities from the triple point up to 643.15 K. The equation
remains reliable also for various thermodynamic properties
outside the coexistence region. It reproduces the anomaly in the
isothermal compressibility locating its minimum at T = 38◦C
(vs. the experimental value T = 46oC) at P = 1 bar. Its overall
performance is of the same quality as that of the SAFT-YDD
(Yukawa-dipole-dipole) [83] one.

An attempt to derive an equation following the theoretical
route was made by Jirsak and Nezbeda [101]. Within the spirit
of perturbation theory, we considered modeling water not as
a whole but only by its short-range part, and its description
by a PM was considered. The parent model was the best non-
polarizable model of water, TIP4P/2005 [74]. The short range
reference was obtained by deducting its long range Coulombic
interaction and the associated PM was then obtained by making
use of the RAM [77] and Barker-Henderson theories [6]. The
PM thus contained only one parameter, the H-bonding energy
ǫ/kB, the parameter which does not exist in the parent model.
To keep contact with it (and hence also with real water), they
set the value of ǫ/kB to 4440K to obtain, approximately, the
experimental temperature of the density maximum and applied
the 2nd order TPT developed in [15]. Having in mind that it
is the theory of the short-range reference and not of complete
water, the qualitative behavior of the response functions, the
thermal expansion coefficient, α, the coefficient of isothermal
compressibility, κ , and the residual isopiestic heat capacity were
examined with the following result. At low pressures, α is a
monotonous function that becomes negative with decreasing
temperature, which means that the density exhibits a maximum.
At elevated pressures, the maximum of ρ moves to lower
temperatures in agreement with experimental observations.
Another interesting feature of α is crossing of all isobars in a
small region around 360 K and α ≈ 0.4 × 10−3. This behavior
corresponds surprisingly well to that observed on real water:
α of real water exhibits the same phenomenon around 325 K
with α ≈ 0.45 × 10−3. All these findings correspond to rather
a very complex behavior of α as a function of pressure along
isotherms. The temperature dependence of the coefficient of
isothermal compressibility exhibits a minimum that becomes
less pronounced with increasing pressure in agreement with the
experiment, and there is also a decrease of κ with increasing
pressure. The residual isopiestic heat capacity is found to be only
weakly temperature dependent, exhibiting, in agreement with
reality, a very shallow minimum. The pressure effect on 1CP is
very small.

To summarize, the fact that the proposed theoretical approach
reproduces the known anomalies of water semi-quantitatively
without any reference to or incorporation of H-bonding should
be considered as a great success of theory. Accounting further
for the fact that all the results are available in an analytic form
this would be the perfect reference system for developing a
perturbation-theory-based EoS.

4. SUMMARY AND CONCLUSIONS

The ultimate goal of the statistical mechanics of matter is to
provide methods of explaining and predicting the experimentally
measurable quantities of a given substance in terms of the
properties of its constituent particles. From the purely theoretical
point of view this is feasible because all gears, theories, and
simulation methods are readily available. The problem is their
implementation. In chemical engineering applications, it is
demanded that the obtained equations be in an analytic form
while most of the exact statistical mechanical results are in
a numerical form only. It is therefore necessary to restore
to approximations, but this has to be done with caution.
Results of statistical mechanics possess the great power of
predictability, whereas too crude approximations may debase
them to mere correlation schemes; some recommendations are
summarized below.

The theoretical perturbed equations and SAFT equations
represent two extreme methods for developing EoS. As already
discussed in section 3.1, the theoretical approach is too strictly
bound to a parent realistic model which itself has always
some deficiency. Furthermore, it also imposes certain limits on
theoretical tools, e.g., the simple model used in the process is
subject to certain rules. Finally, it may hardly handle fluids made
up of large flexible molecules. On the other hand, SAFT is not
linked to any real fluid, and its connection with molecular theory
is at the same level as it would be the vdW equation in which
the original hard sphere term was replaced by the correct EoS
of the fluid of HS: a very rough model of molecules is treated
by the very sophisticated TPT. Although attempts to improve
its performance have been made, these attempts are driven by
intuition and analogies only and also keep the resulting EoS only
more complex. No doubt that the SAFT equations have been very
successful in correlating experimental data, but their potential
to predict the properties of fluids in the regions where no data
are available—a factor of great importance and necessity—is
very questionable.

As it appears, the best way to obtain an accurate and reliable
EoS with a potential of predictability may be a combination of
both above approaches, i.e., a semi-theoretical approach. It is
evident that the crucial point along this way is the choice of a
reference fluid that should capture most of the behavior of the
studied system (or, more accurately, of the short-range reference
fluid) and remove the burden imposed on the correction terms.
At this point, the theoretical route may fullfil its role: to supply a
primitive model mimickingmore or less faithfully real molecules,
their interaction, and the structure of the fluid. If this is satisfied,
the correction terms will play much less important role and will
not need too sophisticated elaboration.

A very important problem is the evaluation of the parameters
of equations. It is important to bear in mind that the primitive
model should reproduce as faithfully as possible the properties
of the reference fluid and not of the considered fluid. It means
that the parameters of the primitive model and of the correction
terms have to be evaluated separately, which will make this route
different from the current SAFT and previous semitheoretical
approaches. Concerning the evaluation of the parameters of the
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correction terms, this is discussed in [84]. A typical choice used
in the majority of papers on SAFT are vapor-liquid equilibrium
(VLE) data. Clark et al. discuss this problem and are aware
of the fact that the pairwise additive force fields are not able,
in principle, to describe simultaneously the behavior of liquid
and gas [102] of strongly associating fluids and that only the
orthobaric pressures and liquid saturated densities should be
used in fitting.

Another important problem concerns the inclusion of the
dipole-dipole interaction. The best and simplest, and also most
commonly used, is the Padé approximant of Rushbrook et al.
[103]. However, its incorporation is not straightforward, which
is not always recognized. It is not possible to formally add this
term as is to the EoS. As mentioned in section 3.2, the dipole-
dipole interaction at short separations is part of the electrostatic
interactions that result in H-bonding and is thus already included
in the models with the explicit H-bonding terms. If this is not
taken care of, the electrostatic interaction at short separations
will be counted twice. To assess the importance/effect of this
inconsistency remains to be done.

An associated problem is the choice of properties to use to
assess the developed EoS. In the overwhelming majority cases,
how accurately the equation can correlate the equilibrium data is
reported as a rule despite the fact that such data were, at least
partially, used for the evaluation of the parameters. It is not
necessary to bother with the structure because this should be
the problem of the primitive model to be developed. We think
that the useful and fair way to assess accuracy/correctness of
the EoS is to go away from the phase equilibrium region and
to present the response functions, i.e., the second derivatives
of the Helmholtz free energy. Not only water but also other
associating fluids exhibit an interesting behavior of these
functions. This comparison could cast light on the quality of the
derived equation.

The last remark concerns the future development. In this
review, we have focused on pure fluids, which is of importance
for theory, but in applications, we have to deal primarily with
mixtures. Mixtures were in the focus of research in the early

stages of the development of theories of fluids, but we are not
aware of any systematic theoretical research activities at the
present time. Moreover, whereas for pure fluids force fields
are being continuously developed and improved, practically no
results are available for the intermolecular interaction between
the molecules of species A and B. In other words, the effect of
the presence of molecule B on the pair interaction A–A is not
known, and empirical combining rules must be employed. This
deficiency could be, at least partially, bypassed by employing
polarizable force fields but then the theoretical path is out
of question. Consequently, a SAFT-type approach remains at
present the only available tool to deal with mixtures (and other
complex problems such as for example, interfacial phenomena).
With regards to theory, it can be assumed that the effect of
the range of interactions found for pure liquids will hold true
also for mixtures. A natural choice for the reference system will
then be a mixture of primitive models, though with the only
exception [104] that results for the thermodynamic properties
of such mixtures are missing. It is generally accepted that
excluded volume effects are responsible for a number of observed
properties of mixtures, and the primitive models (or their
pseudohard cores) may capture them. It is also known that
mixtures/solutions, e. g., aqueous solutions of alcohols, exhibit
anomalies in their structural properties and primitive models
may be able to capture them. All these theoretical results may
lead to a more sophisticated reference system, which is the key
to developing accurate and reliable equations of state.
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