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In this paper, we present a computational method to solve the fractional Klein-Gordon

equation (FKGE). The proposed technique is the grouping of orthogonal polynomial

matrices and collocation method. The benefit of the computational method is that it

reduces the FKGE into a system of algebraic equations which makes the problem

straightforward and easy to solve. The main reason for using this technique is its high

accuracy and low computational cost compared to other methods. The main solution

behaviors of these equations are due to fractional orders, which are explained graphically.

Numerical results obtained by the proposed computational method are also compared

with the exact solution. The results obtained by the suggested technique reveals that the

method is very useful for solving FKGE.

Keywords: fractional Klein-Gordon equation, fractional derivative, numerical solution, Chebyshev polynomials,

operational matrices

INTRODUCTION

The standard Klein-Gordon equation (KGE) is written as

∂2v

∂t2
−

∂2v

∂x2
+ v = h (x, t) , x ≥ 0, t ≥ 0 (1)

where v indicates an unknown function in variables x and t, and h(x, t) stands for the source
term. Due to the non-local nature and real-life applications of fractional derivatives, the fractional
extension of this equation is very useful [1–12]. The fractional extension of this model handles
the initial and boundary conditions of the model very accurately. The non-integer derivative helps
in understanding the complete memory effect of the system. A broad literature of models with
fractional derivatives can be found in [13–17]. Therefore, motivated by our ongoing research work
into this special branch of mathematics (namely, fractional calculus), we study non-integer KGE by
changing integer order derivative in both time and space using the Liouville-Caputo derivative of
fractional order in the following manner:
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∂βv(x, t)

∂tβ
−

∂γ v (x, t)

∂xγ
+ v (x, t)

= h (x, t) , 1 < β ≤ 2, 1 < γ ≤ 2 (2)

having the initial conditions:

v (x, 0) = h1(x),
∂v(x, 0)

∂t
= h2(x), for 0 ≤ x, t ≤ 1 (3)

and boundary conditions:

v (0, t) = g1(t), v (1, t) = g2 (t) (4)

The KGE is used in science, plasma (especially in quantum
field theory), optical fibers, and dispersive wave-phenomena.
Due to the great importance of KGE, many authors have
studied it using various numerical and analytical schemes [18–
27], each with their own limitations and shortcomings. The
operational matrix method [28–38] is also applied to solve
problems in fractional calculus. There are several other numerical
and analytical methods which have been used to solve non-linear
problems pertaining to fractional calculus, which can be found
in [39, 40]. Some other applications of orthogonal polynomials-
based solutions can be found in [41, 42].

In this paper, we present a computational technique
which is a combination of the operational matrix and
collocation method. We have used Chebyshev polynomials
as a basis function for the construction of operational
matrices of differentiations and integrations. In our proposed
method, first the unknown function and their derivatives are
approximated by taking finite dimensional approximations.
Then, by using these approximations along with operational
matrices of differentiations and integrations in the FKGE,
we obtain a system of equations. Finally, by collocating this
system, we get an approximate solution for the FKGE. The
efficiency and accuracy of the used technique is shown by
making a comparison amongst the results derived by our
technique, exact solutions, and numerical results by some
existing methods.

SOME BASIC DEFINITIONS

In this paper, we use non-integer order integrals and derivatives
in the Riemann-Liouville and Caputo sense, respectively, which
are given as:

Definition 2.1: The Riemann-Liouville non-integer integral
operator of order α is presented as

Iα f (x) =
1

Γ (α)

∫ x

0
(x− t)α−1 f (t)dt,α > 0, x > 0,

I0f (x) = f (x).

Definition 2.2: The Liouville-Caputo non-integer derivative
of order β are defined as [1–3]

Dβ f (x) = Il−βDlf (x) = 1
Ŵ(l−β)

∫ x
0 (x− t)l−β−1 dl

dtl
f (t)dt,

l− 1 < β < l, x > 0 and l is a natural number.
Chebyshev polynomial of the third kind of degree i on [0, 1] is

given as,

Hi (t) =

i
∑

k=0

(−1)i−k Ŵ(i+ 3
2 )Ŵ(i+ k+ 1)

Ŵ
(

k+ 3
2

)

Ŵ (i+ 1)
(

i− k
)

!k!
tk (5)

The orthogonal property of these polynomials is given as:

∫ 1

0
Hn (t)Hm (t)w (t) dt =

{

π
2 , n = m
0, n 6= m

(6)

where, w (t) =

√

t
1−t , is a weight function and n and m are the

degrees of polynomials.
A function g(x, t) ∈ L2

w(t) ([0, 1]× [0, 1]) can be

approximated as

g (x, t) ∼=

n1
∑

i1=0

n2
∑

i2=0

ci1 ,i2Hi1 ,i2 (x, t) = CTθn1 ,n2 (x, t) (7)

where, C = [c0,0, . . . , c0,n2 , . . . , cn1 ,1, . . . , cn1 ,n2 ]
T and

θn1 ,n2 (x, t) = [H0,0 (x, t) , . . . ,H0,n2 (x, t) ,

. . . .Hn1 ,0 (x, t) , . . .Hn1 ,n2 (x, t )]T .

For any approximation taking n1 = n2 = n then Equation (6),
can be written as,

g(x, t) ∼= θTn (x)Cθn(t) (8)

The matrix C in Equation (8), is given as:

C = P−1

(∫ 1

0

∫ 1

0
θn(x)CθTn (t)w(x)w(t)dxdt

)

P−1 (9)

where, P =
∫ 1
0 θn(x)θ

T
n (x)w(x)dx, is called the matrix of dual.

Theorem 1. If θn(t) = [H0,H1, . . . .,Hn]
T , is Chebyshev

vector and we consider v > 0, then

IvHi (t) = I(v)θn (t) (10)

where, I(v) =
(

e
(

i, j
))

, is (n+ 1) × (n + 1) matrix of integral of
non-integer order v and its entries are given by
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e
(

i, j
)

=

i
∑

k=0

j
∑

l=0

(−1)i+j−k−l

×
Ŵ( 12 )Ŵ(i+

3
2 )Ŵ(i+ k+ 1)Ŵ(j+ l+ 1)Ŵ(v+ k+ l+ 3

2 )
(

2j+ 1
)

j!
(

i− k
)

!
(

j− l
)

!(l)! Ŵ(k+ 3
2 )Ŵ(i+ 1)Ŵ(v+ k+ 1)Ŵ(j+ 1

2 )Ŵ(l+
3
2 )Ŵ

(

k+ l+ v+ 2
) .

Proof. Please see [30, 32, 38].
Theorem 2. If θn(t) = [H0,H1, . . . .,Hn]

T , is Chebyshev
vector and we consider β > 0, then

DβHi (t) = D(β)θn (t) (11)

where, D(β) =
(

s
(

i, j
))

, is (n+ 1) × (n + 1) matrix of
differentiation of non-integer order β and its entries are given by

s
(

i, j
)

=

i
∑

k=⌈β⌉

j
∑

l=0

(−1)i+j−k−l

×
Ŵ( 12 )Ŵ(i+

3
2 )Ŵ(i+ k+ 1)Ŵ(j+ l+ 1)Ŵ(k+ l− β + 3

2 )
(

2j+ 1
)

j!
(

i− k
)

!
(

j− l
)

!(l)! Ŵ(k+ 3
2 )Ŵ(i+ 1)Ŵ(k− β + 1)Ŵ(j+ 1

2 )Ŵ(l+
3
2 )Ŵ

(

k+ l− β + 2
) .

Proof. Please see [38].

METHOD OF SOLUTION

In this section, we apply our proposed algorithm to solve a
fractional model of KGE.We use equal number basis elements i.e.
n1 = n2 = n, for any approximations of space and time variables.
We initially approximate the time derivative of the unknown
function as follows:

∂βv(x, t)

∂tβ
= θTn (x)Cθn(t) (12)

Taking integral of order β with respect to t on both sides of
Equation (12), we have

v (x, t) = θTn (x)CI(β)θn (t) + θTn (x)AI(1)θn (t)

+θTn (x)Bθn (t) (13)

where I(β)and I(1) are operational matrices of integration of
order β and 1, respectively, and are given by Equation (10) and

∂v(x, 0)

∂t
= h2(x) = θTn (x)Aθn(t) (14)

v (x, 0) = h1(x) = θTn (x)Bθn(t) (15)

where A and B are known square matrices and can be calculated
using Equation (9).

Taking the differentiation of order γ on both sides of Equation
(13), we get

∂γ v (x, t)

∂xγ
= θTn (x)D(γ ), TCI(β)θn (t) + θTn (x)D(γ ), TAI(1)θn (t)

+ θTn (x)D(γ ), TBθn (t) (16)

where, D(γ )is the operational matrix of differentiation of order γ

and is given by Equation (11). Further, the inhomogeneous term
can be approximated as

h(x, t) = θTn (x)Eθn(t) (17)

where E is the known square matrix and can be calculated using
Equation (9).

Grouping Equations (12), (13), (16), (17), and (2), we get

θTn (x)Cθn (t) −
(

θTn (x)D(γ ), TCI(β)θn (t)

+ θTn (x)D(γ ), TAI(1)θn (t) + θTn (x)D(γ ), TBθn (t)
)

+θTn (x)CI(β)θn (t) + θTn (x)AI(1)θn (t)

+θTn (x)Bθn (t) = θTn (x)Eθn(t)

(18)

Equation (18), can be written as

C − D(γ ), TCI(β) − D(γ ), TAI(1) − D(γ ), TB+ CI(β)

+ AI(1) + B = E (19)

Equation (19) is a system of equations which is easy to handle
using the collocation method to determine the unknown matrix.
By making use of the value of C in Equation (13), we can obtain
an approximate solution for FLGE.

NUMERICAL EXPERIMENTS AND
DISCUSSION

Example 1. Firstly, we take the time fractional KGE [26] given as
∂βv(x,t)

∂tβ
−

∂2v(x,t)
∂x2

− v (x, t) = 0, 1 < β ≤ 2, having the ICs:

v (x, 0) = 1 + sin (x), ∂v(x,0)
∂t = 0, for 0 ≤ x, t ≤ 1, and

boundary conditions:
v (0, t) = cosh (t), v (1, t) = sin (1)+ cosh (t).

The exact solution is v (x, t) = sin (x)+ cosh (t).
In Figure 1, we have shown the three-dimensional trajectory

of the approximate solution obtained by our used technique for
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FIGURE 1 | Approximate solution at β = 2.

FIGURE 2 | Absolute errors at β = 2.

integer KGE. In Figure 2, we have shown absolute errors by our
proposed method for integer order KGE at n = 4.

From Figure 2 it is detected that absolute errors are very low,
showing good agreement between the exact and approximate
solution. In Figure 3, we have plotted fractional order KGE by
changing the values of β and t at x = 0.8. In Figure 4, we have
plotted fractional order KGE by changing the values of β and t at
x = 1.

From Figures 3, 4, it can be seen that the solution changes
consistently from fractional order to integer solution, showing
the consistency of the proposed algorithm for time fractional
order models.

Example 2. Secondly, taking the space fractional KGE [26]
given as

∂2v(x,t)
∂t2

−
∂γ v(x,t)

∂xγ = h (x, t) , 1 < γ ≤ 2, having the ICs:

v (x, 0) = xγ (1 − x), ∂v(x,0)
∂t = xγ (x − 1), for 0 ≤ x, t ≤ 1,

and boundary conditions:

FIGURE 3 | Approximate solution at different values of t and β at x = 0.8.

FIGURE 4 | Approximate solution at different values of t and β at x = 1.

v (0, t) = 0, v (1, t) = 0, with source function h (x, t) =

xγ (1− x) exp (−t) − [⌈(γ + 1) − ⌈(γ + 2) x] exp (−t)and the
exact solution v (x, t) = xγ (1− x) exp (− t).

In Figure 5, we have shown the three-dimensional trajectory
of the approximate solution obtained by our proposed method
for integer KGE. In Figures 6–8, we have shown absolute errors
by our proposedmethod for integer order KGE at different values
of n = 3, 5, and 7, respectively.

From Figures 6–8, it is detected that absolute errors are
very low and show good agreement between the exact and
approximate solution. It is also observed that absolute errors
decrease when increasing the basis elements. In Figure 9, we have
plotted fractional order KGE by changing the values of γ and x at
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FIGURE 5 | Approximate solution at γ = 2.

FIGURE 6 | Absolute errors at n = 3 and γ = 2.

FIGURE 7 | Absolute errors at n = 5 and γ = 2.

FIGURE 8 | Absolute errors at n = 7 and γ = 2.

FIGURE 9 | Approximate solution at different values of x and γ at t = 0.5.

FIGURE 10 | Approximate solution at different values of x and γ at t = 1.
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TABLE 1 | Comparison of absolute errors by our method and the method in [26]

at t = 1, Example 2.

x n= 3 n= 5

Present method Method in [26] Present method Method in [26]

0.0 1.6402e-05 1.1234e-03 2.2794e-08 8.1245e-04

0.1 1.0593e-05 2.7894e-03 1.4125e-08 6.8754e-04

0.2 3.4033e-06 4.4561e-03 2.6052e-09 4.9541e-04

0.3 4.5760e-06 1.7418e-03 1.0543e-08 2.4875e-04

0.4 1.2753e-05 7.8527e-03 2.4098e-08 8.5154e-04

0.5 2.0535e-05 5.9634e-03 3.6840e-08 4.0092e-04

0.6 2.7330e-05 6.8527e-03 4.7547e-08 6.1457e-04

0.7 3.2547e-05 3.1237e-03 5.4998e-08 6.9541e-04

0.8 3.5593e-05 1.7595e-03 5.7972e-08 7.1478e-04

0.9 3.5876e-05 3.0030e-03 5.5247e-08 2.0854e-04

1.0 3.2804e-05 0.0129e-03 4.5603e-08 0.0034e-04

TABLE 2 | Comparison approximate and exact solution at γ = 2 and n = 5,

Example 2.

(x, t) Exact solution Present method Absolute errors

(0.1, 0.1) 0.00814353 0.00814354 5.9041e-09

(0.2, 0.2) 0.02619938 0.02619938 4.3087e-09

(0.3, 0.3) 0.04667154 0.04667152 2.0611e-08

(0.4, 0.4) 0.06435072 0.06435071 1.2501e-08

(0.5, 0.5) 0.07581633 0.07581635 2.4796e-08

(0.6, 0.6) 0.07902887 0.07902889 2.3619e-08

(0.7, 0.7) 0.07299803 0.07299801 2.7123e-08

(0.8, 0.8) 0.05751410 0.05751405 4.9922e-08

(0.9, 0.9) 0.03293214 0.03293211 2.3894e-08

t = 0.5. In Figure 10, we have plotted fractional order KGE by
changing the values of γ and x at t = 1.

From Figures 9, 10, it can be seen that the solution changes
consistently from fractional order to integer solution, showing
the consistency of the proposed algorithm for space fractional
order models. In Table 1, we have compared absolute errors by
our method and the method used in [26] and observed that our
used technique is more accurate in comparison to the technique
used in [26].

In Table 2, we have compared our solution with the exact
solution for different values of x and t at γ = 2.

CONCLUDING REMARKS

The key benefit of the used algorithm is that it works for
both time and space FKGE. Using the proposed algorithm,
we can derive an approximate solution for FKGE when
the analytical solutions are not possible. It is also easy
for computational purposes because FKGE is reduced into
algebraic equations. We can apply this method together for
time and space fractional, which reduces the time period of
computation. Integer and fractional order behavior of KGE is
shown. The outcomes of the present study are very helpful
for scientists and engineers working in the mathematical
modeling of natural phenomena. In a nutshell, we can say
that with the aid of this scheme we can examine FKGE
for use in quantum field theory, plasma, optical fibers, and
dispersive wave-phenomena.
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