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We consider the comparison theorems for the fractional forward h-difference equations

in the context of discrete fractional calculus. Moreover, we consider the existence and

uniqueness theorem for the uncertain fractional forward h-difference equations. After

that the relations between the solutions for the uncertain fractional forward h-difference

equations with symmetrical uncertain variables and their α-paths are established and

verified using the comparison theorems and existence and uniqueness theorem. Finally,

two examples are provided to illustrate the relationship between the solutions.
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1. INTRODUCTION

The study of fractional calculus and fractional differential equations has received recent attention
from both applied and theoretical disciplines. Indeed, it was observed that the use of them are very
useful for modeling many problems in mathematical analysis, medical labs, engineering sciences,
and integral inequalities (see for e.g., [1–14]). There is much interesting research on what is
usually called integer-order difference equations (see for e.g., [15, 16]). Discrete fractional calculus
and fractional difference equations represent a new branch of fractional calculus and fractional
differential equations, respectively. Also, for scientists, they represent new areas that have, in their
early stages, developed slowly. Some works are dedicated to boundary value problems, initial value
problems, chaos, and stability for the fractional difference equations (see for e.g., [17–23]).

Besides the discrete fractional calculus, the uncertain fractional differential and difference
equations have been introduced and investigated in order to model the continuous or discrete
systems with memory effects and human uncertainty (see for e.g., [24–28]). In Lu and Zhu
[27], the relations between uncertain fractional differential equations and the associated fractional
differential equations have been created via comparison theorems for fractional differential
equations of Caputo type in Lu and Zhu [26]. Lu et al. [28] presented analytic solutions to a type
of special linear uncertain fractional difference equation (UFDE) by the Picard iteration method.
Moreover, they provided an existence and uniqueness theorem for the solutions by applying the
Banach contraction mapping theorem. After that, Mohammed [29] generalized the above work.

Nowadays, discrete fractional calculus shows incredible performance in the fields of physical and
mathematical modeling. Themotivation behind solving the fractional difference equations relies on
fast investigation of the properties within models of fractional sum and difference operators (see for
e.g., [20, 30–36]).

Motivated by the aforementioned results, we will try to create a link between uncertain
fractional forward h-difference equations (UFFhDEs) and associated fractional forward
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h-difference equations (FFhDEs) in the sense of Riemann–
Liouville fractional operators via the comparison theorems and
existence and uniqueness theorem.

The rest of our article is designed as follows. In section
2, we presented the preliminary definitions and important
features that are useful in the accomplishment of this study. In
section 3, the comparison theorems of the fractional differences
are pointed out. Inverse uncertainty distribution, the existence
and uniqueness theorem, the relation between UFFhDEs and
associated FFhDEs, and some related examples are pointed out
in section 4. Finally, the future scope and concluding remarks are
summarized in section 5.

2. PRELIMINARIES

In what follows, we recall some results in discrete fractional
calculus that has been developed in the last few years; for more
details, we refer to references [24–28, 28, 29, 37, 38] and the
related references therein.

Definition 2.1 ([39]). The forward difference operator on hZ is
defined by

1h f (η) =
f (η + h)− f (η)

h
,

and the backward difference operator on hZ is defined by

∇h f (η) =
f (η)− f (η − h)

h
.

For h = 1, we get the classical forward and backward difference
operators 1ψ(η) = ψ(η + 1) − ψ(η) and ∇ψ(η) = ψ(η) −
ψ(η − h), respectively. The forward jumping operator on hZ is
σ (r) = r+h and the backward jumping operator is ρ(r) = r−h.

For a, b ∈ R with a < b, b−a
h

∈ N and 0 < h ≤ 1, we use the
notationsNa,h = {a, a+h, a+2h, ...}, b,hN = {b, b−h, b−2h, ...}.

Definition 2.2 ([39]). Let η, θ ∈ R and 0 < h ≤ 1, the delta
h-factorial of η is defined by

η
(θ)
h

=
Ŵ

(

η
h
+ 1

)

Ŵ
( η
h
+ 1− θ

) , (2.1)

where we use the convention that division at a pole yields zero
and θ is the falling delta h-factorial order of η. It is worth

mentioning that η
(θ)
h

is a function of η for given θ and h.

Definition 2.3 ([37, 38, 40]). Let f be defined on Na,h for the left
case and b,hN for the right case. Then, the left delta h-fractional
sum of order θ > 0 is defined by

(

a1
−θ
h
ψ

)

(η) =
∫ σ (η−θh)

a
(η − σ (τ ))(θ−1)

h
ψ(τ )1hτ

=
1

Ŵ(θ)

η
h
−θ

∑

r= a
h

(η − σ (rh))(θ−1)
h

ψ(rh)h, η ∈ Na+θh,h,

and the right delta h-fractional sum is defined by

(

h1
−θ
b
ψ

)

(η) =
∫ b

ρ(η+θh)
(ρ(τ )− η)(θ−1)

h
ψ(τ )∇hτ

=
1

Ŵ(θ)

b
h

∑

r= η
h
+θ

(rh− σ (η))(θ−1)
h

ψ(rh)h,

η ∈ b−θh,hN.

Lemma 2.1 ([40]). Let θ ,µ > 0, h > 0, and p be defined on
∈ Na,h. We then have

(

a+µ h1
−θ
h a1

−µ
h

p
)

(η) =
(

a1
−(µ+θ)
h

p
)

(η)

=
(

a+θ h1
−µ
h a1

−θ
h

p
)

(η), (2.2)

for all η ∈ Na+(θ+µ)h,h.

Lemma 2.2 ([40]). Let θ > 0 and ψ be defined on Na,h and b,hN,
respectively. Then the left and right delta h-fractional differences of
order θ are defined by

(

a1
µ

h
ψ

)

(η) =
(

1m
h a1

−(m−µ)
h

ψ
)

(η), (2.3)

(

h1
µ

b
ψ

)

(η) = (−1)m
(

∇m
h h1

−(m−µ)
b

ψ
)

(η), (2.4)

where m = [θ]+ 1.

Lemma 2.3 ([40]). Let ψ be defined on Na,h, then, for any θ > 0,
we have

(

a1
−θ
h
1hψ

)

(η) = 1h a1
−θ
h
ψ(η)−

(η − a)
(θ−1)
h

Ŵ(θ)
ψ(a). (2.5)

Lemma 2.4 ([40]). Let θ > 0,µ > 0, and h > 0, and we
then have

a+µh1
θ
h(η − a)

(µ)
h

=
Ŵ(µ+ 1)

Ŵ(µ+ θ + 1)
(η − a)

(θ+µ)
h

,

h1
θ
b−µh(b− η)

(θ)
h

=
Ŵ(µ+ 1)

Ŵ(µ+ θ + 1)
(b− η)(θ+µ)

h
.

Lemma 2.5 ([40]). Let θ ∈ R and q be any positive integer, then

(

a1
−θ
h
1

q

h
ψ

)

(η) =
(

1
q

h a1
−θ
h
ψ

)

(η)

−
q−1
∑

k=0

(η − a)
(v−q+k)

h

Ŵ(v− q+ k+ 1)
1k

hψ(a), (2.6)

for η ∈ Na+θ h,h.

Lemma 2.6 ([38]). Suppose that µ
h
, µ
h
+θ ∈ R\{...,−2,−1}, then

we have

a1
−θ
h

(η − a+ µ)
( µ
h

)

h
=

Ŵ
(

µ
h
+ 1

)

Ŵ
(

µ
h
+ θ + 1

) (η − a+ µ)
( µ
h
+θ

)

h
,

for each η ∈ Na+θ h,h.
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Lemma 2.7. Let ψ be defined on Na,h and m be a positive integer
with 0 < m − 1 < µ ≤ m. The definition of the fractional
h-difference (2.3) is then equivalent to

(

a1
−µ
h
ψ

)

(η) =






















1
Ŵ(−µ)

η
h
+µ
∑

r= a
h

(η − σ (rh))(−µ−1)
h

ψ(rh)h, m− 1 < µ < m,

a1
m
h
p(η), µ = m,

for η ∈ Na,h.

Motivated by the definition of nth order forward sum for
uncertain sequence ξη, we define the θ th order forward sum for
uncertain sequence ξη as follows:

Definition 2.4. Let θ be a positive real number, a ∈ R, and ξη be
an uncertain sequence indexed by η ∈ Na,h. Then,

a1
−θ
h
ξη =

1

Ŵ(θ)

η
h
−θ

∑

r= a
h

(η − σ (rh))(θ−1)
h

ξrh h

is called the θ th order forward fractional sum of uncertain
sequence ξη, where σ (r) = r + h.

Definition 2.5. The fractional Riemann–Liouville-like forward
difference for uncertain sequence ξη is defined by

a1
µ

h
ξη = 1n

h

(

a1
−(n−µ)
h

ξη

)

,

where θ > 0 and 0 ≤ n − 1 < µ ≤ n, n represents
a positive integer.

3. THE COMPARISON THEOREMS

Consider the following FFhDEs:

(θ−n)h1
θ
hψ(η) = g(η + (θ − n)h,ψ(η + (θ − n)h)), (3.1)

subject to the initial conditions

(θ−n)h1
θ−n+i
h

ψ(η)
∣

∣

∣

t=0
= ψi, i = 0, 1, ..., n− 1, (3.2)

where (θ−n)h1
θ
h
denotes a fractional Riemann–Liouville forward

h-difference with 0 ≤ n− 1 < θ ≤ n, g is a real-valued function
defined on [0,∞)×R, η ∈ N0,h, andψi ∈ R for i = 0, 1, ..., n−1.

Now, by applying the operator 01
−θ
h

to Equation (3.1), then
the initial value problem (3.1) and (3.2) is equivalent to the
following fractional sum equation:

ψ(η) =
n−1
∑

i=0

(η)
(θ−n+i)
h

Ŵ(θ − n+ i+ 1)
ψi

+
1

Ŵ(θ)

η
h
−θ

∑

r=0

(

η − σ (rh)
)(θ−1)

h
g(r + (θ − n)h,ψ(r + (θ − n)h))h,

(3.3)

where we have used Lemma 2.1, Lemma 2.5, and the fact that
1n

h
1−n

h
ψ(η) = ψ(η).

First, a comparison theorem for Riemann–Liouville fractional
h-difference equations with θ ∈ (0, 1] will be presented.

Theorem 3.1. Suppose g(η,ψ) and k(η,ψ) are two real-value
functions defined on [0,∞]×R. Function k is Lipschitz continuous
in y with Lipschitz constant Lk that has 0 < Lk ≤ h−θθ . If ψ1(η)
and ψ2(η) are, respectively, unique solutions of the following IVPs















(θ−1)h1
θ
h
ψ(η) = g(η + (θ − 1)h,ψ(η + (θ − 1)h)), η ∈ N0,

(θ−1)h1
θ−1
h

ψ(η)
∣

∣

∣

t=0
= X0,

(3.4)

and















(θ−1)h1
θ
h
ψ(η) = k(η + (θ − 1)h,ψ(η + (θ − 1)h)), η ∈ N0,

(θ−1)h1
θ−1
h

ψ(η)
∣

∣

∣

t=0
= ψ0.

(3.5)

1. if g(η,ψ) ≤ k(η,ψ), then ψ1(η) ≤ ψ2(η) for each
η ∈ N(θ−1)h,h,

2. if g(η,ψ) > k(η,ψ), then ψ1(η) > ψ2(η) for each η ∈ Nθ h,h.

Proof: (1) Assume that the condition ψ1(η) ≤ ψ2(η) is not valid;
there thus exists η0 ∈ N(θ−1)h,h such that ψ1(η0) > ψ2(η0). Let
η1 = min

{

η ∈ N(θ−1)h,h; ψ1(η) > ψ2(η)
}

and X(η) = ψ1(η)−
ψ2(η). Then, we have

X(η1) > 0, (3.6)

X(η) ≤ 0, η ∈ N(θ−1)h,h ∩ [0, η1 − h]. (3.7)

Considering the fractional sum equations equivalent to IVPs
(3.4) and (3.5), we have

ψ1(θ h) = θ hv−1ψ0 + hθ g((θ − 1)h,X0),

ψ2(θ h) = θ hv−1ψ0 + hθk((θ − 1)h,X0).

Subtracting these and then making use of hθ > 0 for h >

0, θ ∈ (0, 1], and g(η,ψ) ≤ k(η,ψ), we get

ψ1(θh)− ψ2(θh) = hv
(

g((θ − 1)h,X0)− k((θ − 1)h,X0)
)

≤ 0.
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This verifies that η1 > θ h. From this and since η1 ∈ N(θ−1)h,h,
we can write η1 = (θ+ℓ)h, l = 1, 2, .... By Lemma 2.6, we then get

(θ−1)h1
θ
hX(η1 − θ h)

=
1

Ŵ(−θ)

η1
h

∑

r=θ−1

(

η1 − θ h− σ (rh)
)(−θ−1)

h
X(rh)h

=
1

Ŵ(−θ)

θ+ℓ
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
X(rh)h

= h−θX((θ + ℓ)h)− θh−θX((θ + ℓ− 1)h)

+
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
X(rh)h.

That is,

h−θX((θ + ℓ)h) = (θ−1)h1
θ
hX(η1 − θ h)+ θh

−θX((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
X(rh)h.

(3.8)

Now, by using the Lipschitz continuity of k in y, g(η, x) ≤ k(η, x),
and (3.7), we get

(θ−1)h1
θ
hX(η1 − θ h) = (θ−1)h1

θ
hψ1(η1 − θ h)

− (θ−1)h1
θ
hψ2(η1 − θ h)

= g(η1 − h,ψ1(η1 − h))

− k(η1 − h,ψ2(η1 − h))

≤ k(η1 − h,ψ1(η1 − h))

− k(η1 − h,ψ2(η1 − h))

≤ −Lk
(

ψ1(η1 − h)− ψ2(η1 − h)
)

≤ −LkX(η1 − h).

Denoting ω(η1 − h) : = (θ−1)h1
θ
h
X(η1 − θ h)+ LkX(η1 − h),

it follows that

ω((θ + ℓ− 1)h) ≤ 0. (3.9)

This gives

(θ−1)h1
θ
hX(η1 − θ h) = −LkX((θ + ℓ− 1)h)+ ω((θ + ℓ− 1)h).

Thus, Equation (3.8) becomes

h−θX((θ + ℓ)h) =
(

θh−θ − Lk
)

X((θ + ℓ− 1)h)+ ω((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
X(rh)h. (3.10)

We write r = v− 1+ i, i = 0, 1, ..., ℓ− 1 to obtain

(

ℓ h− σ (rh)
)(−θ−1)

h

Ŵ(−θ)
=

(

ℓ h− (θ + i)h
)(−θ−1)

h

Ŵ(−θ)

= h−θ−1 Ŵ (ℓ− i+ 1− θ)
Ŵ(−θ)Ŵ (ℓ− i+ 2)

= h−θ−1 (ℓ− i− θ) (ℓ− i− 1− θ) · · · (−θ)Ŵ(−θ)
Ŵ(−θ)Ŵ (ℓ− i+ 2)

= h−θ−1 (−θ)(−θ + 1) · · · (ℓ− i− 1− θ) (ℓ− i− θ)
Ŵ (ℓ− i+ 2)

= h−θ−1 (−θ)(−θ + 1) · · · (−θ − 1+ c) (−θ + c)

Ŵ (c+ 1)
,

where c = ℓ− i.

Since θ ∈ (0, 1] and h−θ−1 > 0, so

(

ℓ h− σ (rh)
)(−θ−1)

h

Ŵ(−θ)
≤ 0. (3.11)

Considering Lk < θ h−θ , h−θ > 0 and Equations (3.9)–(3.11), it
follows that

h−θX((θ + ℓ)h) ≤ 0.

This implies that X(η1) ≤ 0, which contradicts with (3.6).

(2) By the same technique of (1), we assume that the
condition ψ1(η) > ψ2(η) is not valid. There thus exists
η2 ∈ Nθ h,h, such that ψ1(η2) ≤ ψ2(η2). Let η3 =
min

{

η ∈ Nθ h,h; ψ1(η) ≤ ψ2(η)
}

and z(η) = ψ2(η)−ψ1(η). We
then have

z(η3) ≥ 0, (3.12)

z(η) < 0, η ∈ Nθ h,h ∩ [0, η3 − h]. (3.13)

Considering the fractional sum equations equivalent to IVPs (3.4)
and (3.5), hθ > 0 and g(η,ψ) > k(η,ψ), we find ψ1(θ h) >
ψ2(θ h). That is; η3 > θ h. If we write η3 = (θ + ℓ)h, l = 1, 2, ...,
then, by Lemma 2.6, we get

(θ−1)h1
θ
hz(η3 − θ h)

=
1

Ŵ(−θ)

η3
h

∑

r=θ−1

(

η3 − θ h− σ (rh)
)(−θ−1)

h
z(rh)h

= h−θ z((θ + ℓ)h)− θh−θ z((θ + ℓ− 1)h)

+
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
z(rh)h,

or equivalently,

h−θ z((θ + ℓ)h) = (θ−1)h1
θ
hz(η3 − θ h)+ θh

−θ z((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
z(rh)h.

(3.14)
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Now, by using the Lipschitz continuity of k in y, g(η, z) > k(η, z),
and (3.13), we get

(θ−1)h1
θ
hz(η3 − θ h) = (θ−1)h1

θ
hψ1(η3 − θ h)

− (θ−1)h1
θ
hψ2(η3 − θ h)

= w(η3 − h,ψ2(η3 − h))

− k(η3 − h,ψ1(η3 − h))

≤ k(η3 − h,ψ2(η3 − h))

− k(η3 − h,ψ1(η3 − h))

≤ −Lk
(

ψ2(η3 − h)− ψ1(η3 − h)
)

≤ −Lkz(η3 − h).

Denoting w(η3 − h) : = (θ−1)h1
θ
h
z(η3 − θ h) + Lkz(η3 − h), it

follows that

w((θ + ℓ− 1)h) ≤ 0. (3.15)

This gives

(θ−1)h1
θ
hz(η3 − θ h) = −Lkz((θ + ℓ− 1)h)+ w((θ + ℓ− 1)h).

Equation (3.14) thus becomes

h−θ z((θ + ℓ)h) =
(

θh−θ − Lk
)

z((θ + ℓ− 1)h)+ w((θ + ℓ− 1)h)

−
1

Ŵ(−θ)

θ+ℓ−2
∑

r=θ−1

(

ℓ h− σ (rh)
)(−θ−1)

h
z(rh)h.

(3.16)

Similarly for θ ∈ (0, 1] and h−θ−1 > 0, we can show that

(

ℓ h− σ (rh)
)(−θ−1)

h

Ŵ(−θ)
≤ 0. (3.17)

Considering Lk < θ h−θ , h−θ > 0 and Equations (3.15)–(3.17),
it follows that

h−θ z((θ + ℓ)h) ≤ 0.

This implies that z(η3) ≤ 0, which contradicts with (3.12). The
proof of Theorem 3.1 is thus completed.

In the sequel, we will extend a comparison theorem for
Riemann-Liouville fractional h-difference equations of the order
θ with 0 ≤ n− 1 < θ ≤ n.

Theorem 3.2. Suppose g(η,ψ), and k(η,ψ) are two real-value
functions defined on [0,∞]×R. Function k is Lipschitz continuous
in y with a Lipschitz constant Lk that has 0 < Lk ≤ h−θθ . If ψ1(η)
and ψ2(η) are, respectively, unique solutions of the following IVPs















(θ−n)h1
θ
h
ψ(η) = g(η + (θ − n)h,ψ(η + (θ − n)h)), η ∈ N0,

(θ−n)h1
θ−n+i
h

ψ(η)
∣

∣

∣

t=0
= ψi, i = 0, 1, ..., n− 1

(3.18)

and















(θ−n)h1
θ
h
ψ(η) = k(η + (θ − n)h,ψ(η + (θ − n)h)), η ∈ N0,

(θ−n)h1
θ−n+i
h

ψ(η)
∣

∣

∣

t=0
= ψi, i = 0, 1, ..., n− 1.

(3.19)

1. if g(η,ψ) ≤ k(η,ψ), then ψ1(η) ≤ ψ2(η) for each
η ∈ N(θ−n)h,h,

2. if g(η,ψ) > k(η,ψ), then ψ1(η) > ψ2(η) for each
η ∈ N

h
(θ−n+1)h

.

Proof: (1) For µ = θ − n + 1 ∈ (0, 1] and η ∈ N0,h, we have

(θ−n)h1
θ
h
ψ(η) = 1n−1

h (µ−1)h1
µ

h
ψ(η). By using Lemma 2.5, the

IVPs (3.18) and (3.19) can be easily converted to the following
IVPs, respectively,







































(µ−1)h1
µ

h
ψ(η) = 1

Ŵ(n−1)

η
h
−(n−1)
∑

r=0

(

η − σ (rh)
)(µ−2)

h
g(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2
∑

i=0

(η)
(i)
h

Ŵ(i+1)
ψi+1,

(µ−1)h1
µ−1
h

ψ(η)
∣

∣

∣

t=0
= ψ0,

(3.20)

and







































(µ−1)h1
µ

h
ψ(η) = 1

Ŵ(n−1)

η
h
−(n−1)
∑

r=0

(

η − σ (rh)
)(µ−2)

h
k(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2
∑

i=0

(η)
(i)
h

Ŵ(i+1)
ψi+1,

(µ−1)h1
µ−1
h

ψ(η)
∣

∣

∣

t=0
= ψ0.

(3.21)

Denote

ḡ(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)
∑

r=0

(

η − σ (rh)
)(n−2)

h
g(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2
∑

i=0

(η)
(i)
h

Ŵ(i+ 1)
ψi+1,

and

k̄(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)
∑

r=0

(

η − σ (rh)
)(n−2)

h
k(r + (µ− 1)h,

ψ(r + (µ− 1)h))h+
n−2
∑

i=0

(η)
(i)
h

Ŵ(i+ 1)
ψi+1,
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for η ∈ N(θ−1)h,h. These give

ḡ(η, x)− k̄(η, x) =
1

Ŵ(n− 1)

η
h
−(n−1)
∑

r=0

(

η − σ (rh)
)(n−2)

h

×
[

g(r + (µ− 1)h,ψ(r + (µ− 1)h))− k(r + (µ− 1)h,

ψ(r + (µ− 1)h))
]

h. (3.22)

Since g(η,ψ) ≤ k(η,ψ) and

(

η − σ (rh)
)(n−2)

h

Ŵ(n− 1)
=

(

η − (r + 1)h
)(n−2)

h

Ŵ(n− 1)

= h−n−2
Ŵ

( η
h
− r

)

Ŵ(n− 1)Ŵ
( η
h
− r − n+ 2

)

= h−n−2 Ŵ (c)

Ŵ(n− 1)Ŵ (c− n+ 2)
,

where c =
η

h
− r, r = 0, 1, ...,

η

h
− n+ 1 > 0,

it follows from (3.22) that ḡ(η,ψ) ≤ k̄(η,ψ) for η ∈ N(θ−1)h,h.
Then, by applying Theorem 3.1 for the above findings, we get
ψ1(η) ≤ ψ2(η) for η ∈ N(θ−n)h,h. Hence, the proof of the first
item is completed.

(2)Analogously, we can obtain the proof of this item, and thus
our proof is completely done.

4. INVERSE UNCERTAINTY DISTRIBUTION

In this section, we make a link between the solution for an
UFFhDE and the solution for the associated FFhDE; we firstly
define a symmetrical uncertain variable and α-path for an
UFFhDE in view of Lu and Zhu [27]. After that, we state and
verify a theorem that demonstrates a link between solution for the
UFFhDE with symmetrical uncertain variables and its α-path via
the comparison theorems in section 3. To understand the theory
of inverse uncertainty distribution, we advise the readers to read
[41] carefully.

First, we recall the inverse uncertainty distribution theory:

Definition 4.1 ([41]). An uncertainty distribution 9 is called
regular if it is a continues and strictly increasing function
and satisfies

lim
x→−∞

9(x) = 0, lim
x→+∞

9(x) = 1. (4.1)

Definition 4.2 ([41]). Let ξ be an uncertain variable with a
regular uncertainty distribution 9 . Then, the inverse function
9−1 is called the inverse uncertainty distribution of ξ .

Example 4.1. From definition 4.2, we deduce that

(i) the inverse uncertainty distribution of a linear uncertain
variable L(a, b) is given by

9−1(θ) = (1− θ)a+ θ b; (4.2)

(ii) the inverse uncertainty distribution of a normal uncertain
variableN (e, σ ) is given by

9−1(θ) = e+
√
3 σ

π
ln

(

θ

1− θ

)

; (4.3)

(iii) and the inverse uncertainty distribution of a normal uncertain
variable LOGN (e, σ ) is given by

9−1(θ) = exp(e)+
(

θ

1− θ

)

√
3 σ
π

. (4.4)

Definition 4.3 ([41]). We say that an uncertain variable ξ is
symmetrical if

9(x)+9(−x) = 1, (4.5)

where9(x) is a regular uncertainty distribution of ξ .

Remark 4.1. From definition 4.3, we can deduce that the
symmetrical uncertain variable has the inverse uncertainty
distribution9−1(θ), which satiates

9−1(θ)+9−1(1− θ) = 0. (4.6)

Example 4.2. From definition 4.3, we deduce the following:

1. the linear uncertain variable L(−a, a) is symmetrical for any
positive real number a.

2. The normal uncertain variableN (0, 1) is symmetrical.

Consider the following UFFhDE with Riemann-Liouville-like
forward difference:

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ G(η + (θ − n)h,X(η + (θ − n)h))ξη+(θ−n)h,
(4.7)

subject to the crisp initial conditions

(θ−n)h1
θ−n−k
h

X(η)
∣

∣

∣

t=0
= Xk, k = 0, 1, ..., n− 1, (4.8)

where (θ−n)h1
θ
h
denotes a fractional Riemann–Liouville forward

h-difference with 0 ≤ n − 1 < θ ≤ n, M,N are two real-
valued functions defined on [0,∞)×R, η ∈ N0,h ∩ [0,Th], Xk ∈
R for k = 0, 1, ..., n − 1, and ξ(θ−n)h, ξ(θ−n+1)h, · · · , ξη+(θ−n)h

are i.i.d. uncertain variables with symmetrical uncertainty
distribution L(a, b).

Definition 4.4 ([41]). An UFFhDE (4.7) with crisp initial
conditions (4.8) is said to have an α-path if it is the solution of
the corresponding FFhDE

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ |G(η + (θ − n)h,X(η + (θ − n)h))|9−1(θ)
(4.9)

with the same initial conditions (4.8), where 9−1(θ) is the
inverse uncertainty distribution of uncertain variables ξη for η ∈
N(θ−n)h,h ∩ [0,Th].
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Theorem 4.1. Let η ∈ N0,h ∩ [0,Th], n ∈ N, λ ∈ (0, 1) and
θ ∈ (0, 1]. The linear UFFhDE:

(θ−n)h1
θ
hX(η) = λX(η + (θ − n)h)+ λ ξη+(θ−n)h,

with the initial conditions

(θ−n)h1
θ−n−i
h

X(η)
∣

∣

∣

t=0
= Xi, i = 0, 1, ..., n− 1,

has a solution

X(η) = XiFµ,λ;h(η)+ ξη, , i = 0, 1, ..., n− 1,

where ξη is an uncertain sequence with the uncertainty distribution
L

(

a · eθ ,λ;h(η), b · eθ ,λ;h(η)
)

, and

Fθ ,λ;h(η) =
∞
∑

k=0

λk
n−1
∑

i=0

(η + k(θ − n)h)
((k+1)θ h−nh+i)
h

Ŵ((k+ 1)θ − n+ i+ 1)
,

and

eθ ,λ;h(η) =
∞
∑

k=1

λk
(η + (k− 1)(θ − n)h)

(kθ)
h

Ŵ(kθ + 1)
.

Proof: By making the use of Lemma 2.5, we can easily prove
this theorem by the similar technique of [29, Theorem 3.1], so
it is omitted.

Example 4.3. Consider the following UFFhDE:

(θ−1)h1
θ
hX(η) = λX(η + (θ − 1)h)+ λ ξη+(θ−1)h,

η ∈ N0,h ∩ [0,Th], λ ∈ (0, 1), θ ∈ (0, 1], (4.10)

where ξ(θ−1)h, ξθ h, . . . , ξη+(θ−1)h are i.i.d linear uncertain
variable L(−2, 2), which has the inverse uncertainty distribution
9−1(θ) = 4θ − 2 by (4.2).

By Theorem 4.1, the associated FFhDE of (4.10) with its
initial condition

(θ−1)h1
θ
hX(η) = λX(η + (θ − 1)h)+ λ9−1(θ),

(θ−1)h1
θ−1
h

X(η)
∣

∣

∣

t=0
= X0

has a solution

X(η) = X0

∞
∑

k=0

λk
(η + k(θ − 1)h)

((k+1)θ−1)
h

Ŵ((k+ 1)θ)

+
∞
∑

k=1

λk
(η + (k− 1)(θ − 1)h)

(kθ)
h

Ŵ(kθ + 1)
(4θ − 2).

The UFFhDE (4.10) has an α-path

Xθη = X0

∞
∑

k=0

λk
(η + k(θ − 1)h)

((k+1)θ−1)
h

Ŵ((k+ 1)θ)

+
∞
∑

k=1

λk
(η + (k− 1)(θ − 1)h)

(kθ)
h

Ŵ(kθ + 1)
(4θ − 2).

with the initial condition (θ−1)h1
θ−1
h

X(η)
∣

∣

∣

t=0
= X0.

Example 4.4. Consider the following UFFhDE:

(θ−2)h1
θ
hX(η) = qX(η + (θ − 2)h)+ q ξη+(θ−1)h,

η ∈ N0,h ∩ [0,Th], q ∈ (0, 1), θ ∈ (0, 1], (4.11)

where ξ(θ−2)h, ξ(θ−1) h, . . . , andξη+(θ−2)h are the i.i.d normal
uncertain variable N (0, 1), which has the inverse uncertainty

distribution9−1(θ) =
√
3
π

ln
(

θ
1−θ

)

by (4.2).

By Theorem 4.1, the associated FFhDE of (4.11) with its
initial condition

(θ−2)h1
θ
hX(η) = qX(η + (θ − 2)h)+ q9−1(θ),

(θ−2)h1
θ−2+i
h

Xi(η)
∣

∣

∣

t=0
= Xi, i = 0, 1

has a solution

X(η) =
∞
∑

k=0

qk
1

∑

i=0

Xi

(η + k(θ − 2)h)
((k+1)θ h−2h+i)
h

Ŵ((k+ 1)θ − 1+ i)

+
√
3

π
ln

(

θ

1− θ

) ∞
∑

k=1

qk
(η + (k− 1)(θ − 2)h)

(kθ)
h

Ŵ(kθ + 1)
.

The UFFhDE (4.11) has an α-path

Xθη =
∞
∑

k=0

qk
1

∑

i=0

Xi

(η + k(θ − 2)h)
((k+1)θ h−2h+i)
h

Ŵ((k+ 1)θ − 1+ i)

+
√
3

π
ln

(

θ

1− θ

) ∞
∑

k=1

qk
(η + (k− 1)(θ − 2)h)

(kθ)
h

Ŵ(kθ + 1)
.

with the initial condition (θ−2)h1
θ−2+i
h

Xi(η)
∣

∣

∣

t=0
= Xi, i=0,1.

In the following theorem, we make a relationship between
uncertain fractional forward h-difference equations (UFFhDEs)
and fractional h-difference equations (FFhDEs) based on the
comparison theorems in section 3.

Theorem 4.2. If Xη and Xθη are the unique solution and α-path
of UFFhDE (4.7) with the initial conditions (4.8), respectively.
Assume that F + |G|9−1(θ) is a Lipschitz continues function
in x with a Lipschitz constant Lk that has 0 < Lk < θ h−θ .
Assume that ξη is the i.i.d. symmetrical uncertain variable for

η ∈ N
h
(θ−(n−1))h,h

∩ [0,Th], then

(i) Xη ≤ Xθη if ξη(γ ) ≤ 9−1(θ) for η ∈ D+ and ξη(γ ) ≥
9−1(1− θ) for η ∈ D−, where

D+ =
{

η ∈ N(θ−(n−1))h,h ∩ [0,Th]; G(η, x) ≥ 0
}

,

and

D− =
{

η ∈ N(θ−(n−1))h,h ∩ [0,Th]; G(η, x) < 0
}

,

Frontiers in Physics | www.frontiersin.org 7 November 2020 | Volume 8 | Article 280

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Srivastava and Mohammed A Correlation Between UFFDEs and Paths

(ii) Xη > Xθη if ξη(γ ) > 9−1(θ) for η ∈ D+ and ξη(γ ) <

9−1(1− θ) for η ∈ D−.

Proof: First, we let ξη(γ ) ≤ 9−1(θ) for η ∈ D+. Then η ∈
N(θ−(n−1))h,h ∩ [0,Th] and G(η, x) ≥ 0. Therefore,

G(η, x)ξη(γ ) ≤ |G(η, x)|9−1(θ). (4.12)

Moreover, if ξη(γ ) ≥ 9−1(1 − θ) for η ∈ D−, we have η ∈
N(θ−(n−1))h,h ∩ [0,Th] and G(η, x) < 0. Since ξη is symmetrical,
we have9−1(θ)+9−1(1− θ) = 0. Thus,

G(η, x)ξη(γ ) ≤ G(η, x)9−1(1− θ) = −G(η, x)9−1(θ)

= |G(η, x)|9−1(θ). (4.13)

Since Xη(γ ) and Xθη are the unique solution and α-path of
UFFhDE (4.7) with the initial conditions (4.8), respectively,
we have

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ G(η + (θ − n)h,X(η + (θ − n)h))ξη+(θ−n)h(γ ),
(4.14)

(θ−n)h1
θ
hX(η) = F(η + (θ − n)h,X(η + (θ − n)h))

+ |G(η + (θ − n)h,X(η + (θ − n)h))|9−1(θ).
(4.15)

Hence, by use of Theorem 3.2 with (4.12)–(4.15), we get the
proof of item (i). The proof of the second item (ii) is similar to
(i). Thus, the proof of Theorem 4.2 is completed.

Theorem 4.3 (Existence and Uniqueness). Assume that F(η, x)
and G(η, x) satisfy the Lipschitz condition

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤ L|x− y|, (4.16)

and there is a positive number L that satisfies the
following inequality:

L < h−θ−1Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

, (4.17)

where Q = |a| ∨ |b|. Then UFFhDE (4.7) with the initial
conditions (4.8) has a unique solutionX(η) for η ∈ Nθ h,h∩[0,Th].

Proof: Proof of this theorem is similar to the existence
and uniqueness theorem [29, Theorem 3.2], and it is
therefore omitted.

Example 4.5. Consider the following UFFhDE:

−11
0.5
2 X(η) =

sinX(η − 1)

50+ (η − 1)2
+ ξη−1, η ∈ N

2
0 ∩ [0, 8],

(4.18)

where ξ−1, ξ1, ξ3, ξ5, ξ7 are 5 i.i.d. linear uncertain variables with
linear uncertainty distribution L(−2, 2).

In this example h = 2, θ = 0.5,T = 4,

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤
1

50
|x− y| = 0.02|x− y|,

and

h−θ−1 Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

= 2−1.5 Ŵ (0.5+ 1) Ŵ (4+ 1− 0.5)

3Ŵ (4+ 1)

≈ 0.05 > 0.02.

Thus, the existence and uniqueness Theorem 4.3 confirms that
UFFhDE (4.18) has a unique solution.

Now, since

F(η, x)+ |G(η, x)|9−1(θ) =
sin x

50+ (η − 1)2
+ 4θ − 2,

we deduce that F(η, x) + |G(η, x)|9−1(θ) is Lipschitz continues
in x with Lipschitz constant L = 0.02 < 0.35 = θ h−θ .

We see that G(η, x) = 1 > 0, and, from example 4.2,
we see L(−2, 2) is symmetrical. Hence, by Theorem 4.2, we
deduce the following link between unique solution and α-path
of UFFhDE (4.18):

(i) Xη ≤ Xθη if ξη ≤ 4θ − 2,

(ii) Xη > Xθη if ξη > 4θ − 2.

Example 4.6. Consider the following UFFhDE:

− 3
8
1

1
4
1
2

X(η) = 0.025X2

(

η −
3

8

)

+ ξη− 3
8
, η ∈ N

1
2
0 ∩

[

0,
3

2

]

,

(4.19)

where ξ− 3
8
, ξ 1

8
, ξ 5

8
, ξ 9

8
are 4 i.i.d. linear uncertain variables with

linear uncertainty distribution L(−3, 3).
In this example h = 0.5, θ = 0.25,T = 3,

|F(η, x)− F(η,ψ)| + |G(η, x)− G(η,ψ)| ≤ 0.025|x+ y||x− y|
= 0.1|x− y|, for x ∈ [−2, 2],

and

h−θ−1 Ŵ (θ + 1) Ŵ (T + 1− θ)
Ŵ (T + 1) (Q+ 1)

=
(

1

2

)− 5
4 Ŵ (0.25+ 1) Ŵ (3+ 1− 0.25)

4Ŵ (3+ 1)

≈ 0.4 > 0.1.

Thus, the existence and uniqueness Theorem 4.3 confirms that
UFFhDE (4.19) has a unique solution.

Now, since

F(η, x)+ |G(η, x)|9−1(θ) = 0.025x2 + 6θ − 3,
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we deduce that F(η, x)+ |G(η, x)|9−1(θ) is Lipschitz, continued
in x with Lipschitz constant L = 0.1 < 0.3 = θ h−θ .

We see that G(η, x) = 1 > 0, and, from example 4.2, we
see L(−3, 3) is symmetrical. Hence, by use of Theorem 4.2, we
deduce that Xη ≤ Xθη if ξη ≤ 6θ − 3 and Xη > Xθη if ξη >
6θ − 3. This is a link between unique solution and α-path of
UFFhDE (4.19).

5. CONCLUSIONS

Wehave considered the fractional forward h-difference equations
and uncertain fractional forward h-difference equations in the
context of discrete fractional calculus. The comparison theorems
and existence and uniqueness theorem for the FFhDEs and
UFFhDEs have been found. From a theoretical point of view,
we have created a strong relationship between the solutions
for UFFhDEs with the symmetrical uncertain variables and
the solutions for associated UFFhDEs (namely the α-path
of UFFhDEs).

Our presented results are in the sense of Riemann-Liouville
fractional operator. It is important to point out the future scope

of our results. There is an important task here that the researchers
will be able to consider in the future. What is the task? The
interested readers can extend the ideas that were presented in
this article to the two well-known models of fractional calculus
that were defined by operators similar to the Riemann-Liouville
fractional operator but with Mittag-Leffler functions in the
kernel, namely the Atangana–Baleanu (or briefly AB) [42, 43] and
Prabhakar [44] models.
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