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This invited review paper summarizes and discusses developments of QTF

based state-of-the-art quartz-enhanced photoacoustic spectroscopy (QEPAS) and

quartz-enhanced photothermal spectroscopy (QEPTS) gas sensing techniques over the

past 3 years. Due to the merits of a high quality factor, a narrow resonance frequency

band, a low cost, a small volume, and immunity to the laser wavelength, a QTF is widely

used as a sensitive detector in sensing photoacoustic spectroscopy and photothermal

spectroscopy based gas. The review also presents prospects in the development of

QEPAS and QEPTS based gas sensing techniques.
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INTRODUCTION

Due to the advantages of high selectivity and sensitivity, cost benefits, in-situ and non-invasiveness
detection [1–3], optical gas sensors are widely used in numerous fields, such as combustion
diagnostics, atmospheric monitoring, life sciences, planetary exploration, environmental
monitoring, and early fire detection [4–9]. Many laser spectroscopy-based methods such as tunable
diode laser absorption spectroscopy (TDLAS) [10–15], photoacoustic spectroscopy [16–18], and
photothermal spectroscopy [19] have been adopted extensively.

Quartz tuning fork (QTF) is an elementmade from silicon dioxide (SiO2) that has a piezoelectric
effect. A QTF is fabricated by photolithographic and chemical etching techniques [20]. It is widely
used to produce the clock rate in electronic circuits, crystal watches, and timers. Due to its high
quality factor (∼100,000 in vacuum, ∼10,000 at normal atmospheric pressure) and a narrow
resonance frequency band (<1Hz), a QTF is widely used as a sensitive detector in many fields,
such as atomic force microscopy, scanning near-field optical microscope, Femto-Newtonian force
sensing, alternating gradient magnetometer, magnetic force microscopy, and detection of electric
field intensity distribution [21–26].

With a U-pattern geometry, a QTF is formed from two fork prongs. The unique acoustic
quadrupole structure and narrow resonance frequency band of a QTF mean that it has excellent
immunity to environment noise [27–29], which is advantageous in reducing the system noise level
and therefore improves the signal to noise ratio (SNR) of a QTF-based gas sensor. Furthermore,
compared to an optical detector used in TDLAS, especially an expensive mercury cadmium
telluride (MCT) detector with cryogenic cooling, a QTF is less costly (<$1) and immune to
the laser wavelength [30–33]. Furthermore, the small size of a QTF is beneficial to reducing a
sensor’s volume. Due to the advantages mentioned above, a QTF is widely used as a detector in
photoacoustic spectroscopy and photothermal spectroscopy based gas sensing [34–37].
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FIGURE 1 | Schematic diagram of photoacoustic spectroscopy.

QUARTZ-ENHANCED PHOTOACOUSTIC
SPECTROSCOPY (QEPAS) BASED GAS
SENSING

Photoacoustic spectroscopy is a sensitive trace gas detection
method. When the output of a light source (laser, LED, etc.) is
absorbed by a gas sample due to non-radiative processes, the
absorbed optical energy is transformed into heat energy. This
process increases the localized temperature and pressure in the
gas sample. If the intensity of the light is modulated, an acoustic
wave will be generated [38, 39]. The intensity of the generated
acoustic wave relates to the sample concentration and therefore
can be used to retrieve the gas concentration. The acoustic wave
can be detected by a sensitive acoustic wave transducer, such
as a microphone, a cantilever, or a QTF [40–42]. A schematic
diagram of photoacoustic spectroscopy is shown in Figure 1.
Photoacoustic spectroscopy is regarded as an advanced technique
for gas sensing, which offers several merits such as compact size,
a wide dynamic range, non-destructive detection, and simplicity
in the setup [43].

Quartz-enhanced photoacoustic spectroscopy (QEPAS) was
first reported in 2002 by Tittel [44]. In QEPAS, a QTF is used to
detect an acoustic wave. The laser beam passes through the gap
between the two prongs of QTF and excites the gas molecules
[45–49]. Figure 2 shows the schematic diagram of the laser
beam, a QTF, and the produced acoustic wave. A QEPAS sensor
has the merits of high sensitivity (ppt-ppm level), compactness,
low cost, and a large dynamic range [50–58]. As a result, it
has been widely adopted in the detection of numerous gases
for biomedical diagnostics [59–61], chemical analysis [62–65],
atmospheric monitoring [66–73], and trace gas sensing [74–
81]. Different types of QEPAS sensors have been developed in
recent years to meet the requirements of (1) a robust structure,
(2) an ultra-high sensitivity, and (3) a distributed gas sensing

FIGURE 2 | Schematic diagram of a QTF, a laser and an acoustic wave in a

QEPAS sensor.

ability. This review discusses these issues of interest in section
Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) Based
Gas Sensing.

Mid-Infrared All-Fiber QEPAS Sensor With
a 3D-Printed ADM
A 3D printing technique was introduced as it has the advantages
of high stability and integration, which provides an easy way of
fabricating sensors as well as implementing sensor applications
that require compact size and lighter weight. In 2018, we used a
3D printing technique to fabricate a compact acoustic detection
module (ADM) for a QEPAS sensor [82]. With a size of 29 × 15
× 8 mm3, the design model is shown in Figure 3a.

Compared with separate optical elements, an all-fiber
configuration has the merits of lower insertion loss, easier optical
alignment, improved system stability, reduction in sensor size,
and a lower cost. A mid-infrared fiber-coupled Grin lens using
an ion exchange method was fabricated in 2019 [83]. The Grin
lens was used for laser coupling in a mid-infrared all-fiber carbon
monoxide (CO) QEPAS sensor, employing a diode laser with
an emission wavelength of 2.3µm. The mid-infrared all-fiber
structure combined with a 3D-printed ADM further improved
the stability of the system and reduced the volume and weight
of the sensor. A UV-curable resin was used as the processing
material. Finally, a sensor mass of ∼5 g was obtained for the 3D
printed ADM with a mid-infrared all-fiber structure, shown in
Figures 3b, c.

An Allan deviation analysis was performed to evaluate the
long-term system stability of the mid-infrared all-fiber CO-
QEPAS sensor with a 3D-printed ADM. A minimum detection
limit (MDL) of 1.3 ppm was observed when the integration
time was 150 s. Long-term system drifts start to dominate after
an integration time of 150 s, which demonstrated that the mid-
infrared all-fiber QEPAS sensor with a 3D-printed ADM had
excellent system stability when compared with the QEPAS system
employing separated optical elements, which had an optimum
integration time of 70 s [84].
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FIGURE 3 | (a) Design model of the 3D-printed ADM. (b) Assembled configuration of a CO-QEPAS sensor with a mid-infrared all-fiber structure and a 3D-printed

AMD. (c) Schematic of the fiber-coupled Grin collimator. Reprinted with permission from [82, 83] © The Optical Society.

FIGURE 4 | Experimental setup of a FEW-QEPAS sensor. The insert is scanning an electron microscope (SEM) image of fiber taper. Reproduced from [86], with the

permission of AIP Publishing.

Long Distance, Distributed Gas Sensing
Based on Fiber Evanescent Wave QEPAS
Most QEPAS based gas sensors are designed for single point
concentrationmeasurements, which limits practical applications.
An optical fiber gas sensor has the merits of immunity
to electromagnetic interruptions, on-line measurements, a
compact structure, and flexible in sensor design [85]. A
Fiber evanescent wave (FEW) technique based on tapered
fiber for gas sensing is used widely. Ma developed a new
FEW-QEPAS sensor in 2017, in which the FEW and QEPAS
technologies were combined [86], enable a more distributed
gas sensing ability. An experimental setup is shown in
Figure 4 below.

A 3 km single mode fiber (Corning SMF-28e+) with 3
tapers (Taper 1, Taper 2, and Taper 3) was used in this FEW-
QEPAS sensor. Three QTFs were used to detect the acoustic
wave generated from the three tapers. Evanescent wave power
increased when the diameter of the taper decreased. In this
investigation, the fabricated tapers had diameters of 1.67, 1.77,
and 1.12µm, respectively, for Taper 1, Taper 2, and Taper 3. The
scanning electronmicroscope (SEM) image of the fabricated fiber
taper is shown in Figure 4. Acetylene (C2H2) was selected as the
analyte and a diode laser with an emission wavelength of 1.53µm
was used as the excitation source. The MDL of the three tapers
was 30, 51, 13 ppm, respectively. The detection capability of such
a FEW-QEPAS sensor can be further improved by adopting a
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better quality fiber taper with a smaller diameter, a laser source
with higher output power, and microresonators.

Compared with the traditional QEPAS system, the new
FEW-QEPAS can reduce the sensor volume and improve
the stability of the optical system, which is beneficial in
applications with limited space or that are sensitive to vibrations.
Compared with a FEW gas sensor, the FEW-QEPAS has a
better detection performance with a lower MDL. FEW-QEPAS
does not need an expensive spectrometer as used in traditional
FEW gas sensors. In particular, due to the advantages of low
transmission loss and convenient treatment of fibers, FEW-
QEPAS has the potential of a long distance and a distributed gas
sensing ability.

QEPAS Based on Custom QTF With
Octupole Electrode Pattern
A great deal of effort has put into improving QEPAS sensor
detection sensitivity, a key element of QTF. Commercially
available QTFs with a resonant frequency of ∼30 kHz are
widely adopted. The electrode layout of widely used QTFs is
a quadrupole pattern, which matches the charge distribution
produced by the in-plane flexure vibration mode [87]. The
adoption of custom QTFs in the QEPAS sensor has been
reported since 2013 [88]. Custom QTFs are designed to
operate with a fundamental flexural vibration mode with
a resonance frequency of a few kilohertz because a low
resonance frequency increases the energy accumulation time
in a QTF. The equivalent electrical resistance R of QTF
represents the loss in the equivalent resistance-inductance-
capacitance (RLC) resonator circuit of QTF, which determines
the capability of charge generation during the QEPAS
sensing process.

Different from the quadrupole pattern, a custom QTF with
a novel octupole configuration was developed in 2018 by
Spagnolo [89]. The schematic of these two different patterns
is shown in Figure 5. Different electrode layouts resulted in
different QTF characteristics, such as the resonance frequency,
electrical resistance, and quality factor. The electrical resistance
was measured for the two QTFs when they were vibrating
at the first overtone mode. Compared with the quadrupole
pattern (157.6 k�), the electrical resistance for the octupole
contact pattern was strongly reduced (36.1 k�), indicating
that this configuration had a stronger capability of charge
generation. The advantage of the octupole pattern was verified
by a QEPAS sensor with water vapor as the target gas
sample. The measured signal value for a QEPAS sensor
using a QTF with an octupole pattern is ∼2.3 times higher
than that obtained by using a QTF with quadrupole pattern
at the overtone mode, demonstrating the superiority of an
octupole pattern.

In-Plane QEPAS (IP-QEPAS) Sensor
In producing an effective QTF signal in a QEPAS sensor, the
laser beam should pass through the gap between the two prongs
of QTF. In the traditional QEPAS sensor, shown in Figure 6A,
the laser beam is perpendicular to the QTF plane. This type is
called “perpendicular plane-QEPAS,” abbreviated as “PP-QEPAS”

FIGURE 5 | Schematic of two different electrode pattern configuration. (A)

Quadrupole pattern. (B) Octupole pattern. Reprinted with permission from [89]

© The Optical Society.

FIGURE 6 | The relationship between laser beam and QTF plane. (A)

Perpendicular plane (PP-QEPAS). (B) In plane (IP-QEPAS). Reproduced from

[90], with the permission of AIP Publishing.

[91, 92]. In PP-QEPAS, the effective acting area for the QTF
and acoustic wave is limited by the thickness (T) of the QTF
prongs. However, chemical etching of a quartz crystal with a T
> 1mm cannot ensure sharp edge profiles. Therefore, usually,
the T is thin and is in the order of a micrometer (for standard
QTF, T ∼ 360µm), which is disadvantageous for the interaction
between an acoustic wave and a QTF and limits the QEPAS
sensor performance.

According to the Euler-Bernoulli theoretical model, the
resonance frequency of a QTF is related to the QTF’s geometric
parameters [36]. To reduce resonance frequency, a large length
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FIGURE 7 | The stimulated stress and displacement for the custom QTF in

different QEPAS sensor systems. (A) QTF stress for traditional PP-QEPAS

sensor. (B) QTF displacement for traditional PP-QEPAS sensor. (C) QTF stress

for IP-QEPAS sensor. (D) QTF displacement for IP-QEPAS sensor.

Reproduced from [90], with the permission of AIP Publishing.

(L) of QTF prongs in a millimeter scale is employed (for standard
QTF, L ∼ 3.6mm), which is much larger than T. In 2020,
an “in plane quartz-enhanced photoacoustic spectroscopy (IP-
QEPAS)” was invented [90], in which the laser beam is in the
QTF plane to increase the interaction area between acoustic wave
and the QTF and hence to improve the sensor performance.
The schematic of IP-QEPAS is depicted in Figure 6B. A custom
T-shaped QTF with an L of 9.4mm and a T of 250µm was
designed and used in the experiments to verify this IP-QEPAS
technique. Finite element modeling was used to simulate the
stress and displacement fields of the custom QTF in IP-QEPAS
and traditional PP-PQEAS sensors to support the analyses. The
simulated results are shown in Figure 7. It can be seen that
the maximum stress and displacement for PP-QEPAS sensor
were 2.62 × 103 Pa and 1.19 × 10−6 mm, respectively. The
corresponding values for the IP-QEPAS sensor were 5.21 × 104

Pa and 1.95 × 10−5 mm, respectively, which is at least one
order of magnitude better than the traditional PP-QEPAS sensor.
Water vapor was chosen as the target analyte in the experimental
section to perform the verification. The 2f signal amplitude
for the IP-QEPAS sensor was 132.88 µV, which represents a
42.6 times signal improvement compared to the traditional PP-
QEPAS sensor indicating the superior performance of the IP-
QEPAS technique.

QUARTZ-ENHANCED PHOTOTHERMAL
SPECTROSCOPY (QEPTS) BASED GAS
SENSING

QEPAS is a contact measurement technique, in which a QTF
should be embedded in the gas sample [93, 94]. This feature limits
its application in many fields, such as combustion diagnostics,
long distance measurement, and remote sensing. Furthermore,
if the target gas is acidic or corrosive, the silver film coated on
the surface of QTF acting as electrodes would be corroded, which
will cause a drift of resonance frequency, a decrease of the quality
factor, and can even make the QTF fail to operate.

In 2018, a new technique of quartz-enhanced photothermal
spectroscopy (QEPTS) was invented by Ma [95]. The QEPTS
sensor contains four parts: (a) a QTF is used to receive
the light, which is partly transmitted, reflected, and absorbed
by the QTF; (b) thermoplastic expansion of QTF appeared
when the photothermal energy generated from light absorption
is transformed into mechanical motion of the QTF due to
the photo-thermo-elastic conversion; (c) QTF enhances this
mechanical motion because of its resonant characteristic; (d) due
to the essential feature of the piezoelectric effect the QTF converts
the mechanical motion into an electrical signal [96, 97]. QEPTS
is based on the photothermal effect or light-thermo-elastic
effect and is also called light-induced thermoelastic spectroscopy
(LITES) [98]. The principle of QEPTS is shown in Figure 8. In
QEPTS, a QTF can be placed far from the target gas and be sealed
in a gas chamber with an inert gas such as nitrogen to avoid
corrosion, which is different from QEPAS. Therefore, QEPTS is
a non-contact measurement method and can be used for remote
and standoff gas detection.

The First QEPTS Based Gas Sensor
The experimental setup of the first QEPTS based gas sensor is
shown in Figure 9 [95]. C2H2 was selected as the analyte, and
a diode laser with an emission wavelength of 1.53µm was used
as the excitation source. C2H2 was flushed into an absorption
cell with a length of 20 cm. After passing through the cell the
diode laser beam was focused onto the surface of a QTF, which
had a resonance frequency of 30.72 kHz. The background noise
of this QEPTS sensor was measured when pure nitrogen was
flushed into the absorption cell. Based on the measured signal
and noise levels an MDL of 718 ppb for this C2H2-QEPTS sensor
was obtained at the integration time of a lock-in amplifier of
1 s. The corresponding calculated normalized noise equivalent
absorption coefficient (NNEA) was 7.63 × 10−9 cm−1W/

√
Hz,

which is much better than the 3.54× 10−8 cm−1W/
√
Hz used for

a recently reported QEPAS based C2H2 gas detection study [67].
A finite element model was used to simulate the temperature

and displacement fields of the QTF used in the QEPTS sensor
to support experiment results. The simulated 2D and 3D results
are depicted in Figure 10, in which 1Y represents the distance
between the laser beam and the top of the QTF prongs. It can be
seen that the incident position of the laser beam on the QTF has
an impact on the signal level of such a QEPTS sensor. The QTF
in the QEPTS sensor was excited, complying with the anti-phase
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FIGURE 8 | The principle of quartz-enhanced photothermal spectroscopy (QEPTS).

FIGURE 9 | The schematic of the QEPTS sensor. Reprinted with permission

from [95] © The Optical Society.

mode based on the simulation displayed in Figure 10, which
indicates that the two prongs of the QTF vibrate symmetrically
(opposite in phase).

QEPTS Sensor Based on a Multipass Cell
and a High Quality Factor QTF
A multipass cell and a high quality factor QTF based QEPTS
sensor was demonstrated in 2019, which aimed to improve the
detection performance of a QEPTS sensor [99]. The schematic
of such a QEPTS sensor system is shown in Figure 11. A Herriot
multipass cell with a long optical pathlength of 10.1mwas used as
an absorption cell. A resonant QTFwith an increased high quality
factor was used to improve the photothermal detection capability,
which was sealed in a gas chamber with a low pressure of 20
Torr to minimize the energy loss. The measured quality factor
was 50,177 at a pressure of 20 Torr, which represents a 3.4 times

increase compared to standard atmospheric pressure. The output
laser beam from the multipass cell was focused on the surface of
the QTF. In this investigation, CO was selected as the analyte and
a diode laser with an emission wavelength of 2.23µmwas used as
the excitation source.

A finite element model was used to simulate the optimization
position of the laser focal point on the surface of the QTF.
A normalized integration was performed for the photothermal
effect induced by a two prong mechanical displacement of
the QTF’s surface. As shown in Figure 12, the optimized focal
point was located at the root of the QTF’s prongs at which
the strongest piezoelectric signal amplitude in QEPTS could
be obtained.

Figure 12 The normalized integration for photothermal effect
induced two prongs mechanical displacement of the QTF’s
surface. Reprinted with permission from [99] © The Optical
Society.

QEPTS Sensor Based on a Custom QTF
With Enhanced Absorption
The signal level of the QEPTS sensor is related to the absorbed
laser energy by the QTF. However, the high reflection feature
of the silver film coated on the surface of QTF minimizes
laser absorption. Furthermore, the signal amplitude of QEPTS
is inversely proportional to the resonant frequency of the QTF
because a QTF with a lower resonant frequency will produce a
longer energy accumulation time. Commercially available QTFs
with a high resonant frequency of >30 kHz (such as 30.72
and 32.768 kHz) are usually adopted in QEPTS sensors [95–
99]. In QEPTS, the optimum laser incident position on the
surface of the QTF surface is located at the root of the prongs
at which area the highest signal level could be obtained [99].
In 2020 an ultra-high sensitive QEPTS gas sensor based on a
custom QTF with a special coating design to enhance the laser
absorption was demonstrated [100]. The area for the optimum
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FIGURE 10 | Calculated temperature and displacement fields of the QTF in a QEPTS sensor. (A) Two-dimensional (2D) temperature and displacement fields at

different 1Y. (B) Three-dimensional (3D) temperature and displacement fields at 1Y of 5.6mm. Reprinted with permission from [95] © The Optical Society.

FIGURE 11 | (A) Schematic of a QEPTS sensor system. (B) The particular optical path structure. (C) The image of the used QTF. Reprinted with permission from [99]

© The Optical Society.

laser incident position on the custom QTF’s surface had no metal
film coating on one side and improved the laser absorption. On
the other side of QTF’s surface, the coated gold film reflected
the transmitted laser beam and hence further enhanced the
absorption. The coating design of the custom QTF and laser

beam transmission is shown in Figure 13. Furthermore, the
low resonant frequency of 9.35 kHz of the custom QTF was
beneficial in improving the QEPTS signal level. C2H2 was
selected as the analyte and a diode laser with an emission
wavelength of 1.53µm was used as the excitation source in
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FIGURE 12 | The normalized integration for photothermal effect induced two

prongs mechanical displacement of the QTF’s surface. Reprinted with

permission from [99] © The Optical Society.

FIGURE 13 | The coating design of a custom QTF and laser beam

transmission for the QEPTS sensor. Reproduced from [100], with the

permission of AIP Publishing.

the verification experiments. The integration time of lock-in
amplifier was1 s.

The noise level for the C2H2-QEPTS sensor was determined
when the 20 cm long absorption cell was filled with pure nitrogen.
As shown in Figure 14, when the optical power was <2 mW,

FIGURE 14 | C2H2-QEPTS noise level and SNR value as a function of optical

power. Reproduced from [100], with the permission of AIP Publishing.

TABLE 1 | The measured performance of QTF based gas sensors.

Parameter QEPAS [67] Standard

QTF based

QEPTS [95]

Custom QTF

based

QEPTS

NNEA (cm−1Hz−1/2) 3.54×10−8 7.63×10−9 9.16×10−10

the noise level had an insignificant change with laser power.
The noise began to increase with an increase of optical power
when it was larger than 2 mW and it grew faster with a higher
power because the fundamental Johnson thermal noise of the
QTF became more obvious under this condition. The signal to
noise ratio (SNR) was calculated based on the measured 2f signal
amplitude and noise level. The obtained SNR value vs. optical
power is depicted in Figure 14. It can be seen that the SNR
increased with the power initially and then decreased with power.
The highest SNR could be achieved when the optical power was
∼4 mW.

The corresponding normalized noise equivalent absorption
coefficient (NNEA) for this customQTF based C2H2-QEPTS was
calculated to be 9.16 × 10−10 cm−1W/

√
Hz. The comparison of

NNEA for the recently reported C2H2 gas detection sensor using
QEPAS and a standard QTF based QEPTS are listed in Table 1.
The QEPTS method showed a distinct advantage over QEPAS
and the customQTF basedQEPTS had a better performance than
using a standard QTF due to the enhanced laser absorption and
low resonant frequency.

Comparison Between QEPAS and QEPTS
QEPAS and QEPTS were invented in 2002 and 2018, respectively.
In QEPAS and QEPTS (also called LITES), a QTF is driven into
oscillation through the photoacoustic and photothermal (light-
thermo-elastic) effects, respectively. A piezoelectric current is
generated in QTF, which is used for retrieving gas concentration.
Due to the high quality factor, narrow resonance frequency band,
and intrinsic resonance characteristics, QEPAS and QEPTS have
the merits of high sensitivity (ppt-ppm level), compact structure,
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TABLE 2 | Performance comparison between QEPAS and QEPTS.

Parameter QEPAS QEPTS

MDL (for CO detection) Good (11.2 ppm)

[71]

Better (0.47 ppm)

[99]

NNEA (for C2H2 detection) Good (3.54 ×
10−8

cm−1W/
√
Hz) [67]

Better (7.63 ×
10−9 cm−1

W/
√
Hz) [95]

Distributed gas sensing ability Yes [86] No

Non-contact measurement ability No Yes [95]

Corrosion risk of QTF High Low

low cost, and large dynamic range. However, there are some
differences between QEPAS and QEPTS, as indicated in Table 2.

CONCLUSIONS AND FUTURE OUTLOOK

Due to the merits of a high quality factor (∼100,000 in vacuum,
∼10,000 at standard atmospheric pressure), a narrow resonance
frequency band (<1Hz), low cost (<$1), a small volume, and
immune to laser wavelength, the QTF is widely used as a sensitive
detector in QEPAS and QEPTS based gas sensing. In this invited
review paper, recent progress in QTF based QEPAS and QEPTS
gas sensing techniques in the past 3 years have been summarized
and discussed.

As discussed, a 3D printing technique with the merits of
high stability and integration was used to fabricate a compact
ADM, which improved the stability of the system and reduced
the volume and weight of the QEPAS sensor. An all-fiber
configuration has advantages of lower insertion loss, easier
optical alignment, improvement in system stability, reduction in
sensor size, and a lower cost. Combining with this 3D printing
method, a mid-infrared all-fiber QEPAS sensor was developed
to further improve the stability and size of the system. FEW
has the merits of on-line measurement and flexible operation.
By integrating FEW and QEPAS methods, a long-distance
gas sensing technique with distributed gas detection ability
was achieved. A commercially available QTF with a resonant
frequency ∼30 kHz and an electrode layout of a quadrupole
pattern is widely used in the QEPAS sensor. A custom QTF
with an octupole contact pattern was designed to reduce the
electrical resistance, which implied that this configuration had a
stronger capability of charge generation. Therefore, the detection
sensitivity of a QEPAS sensor-based custom QTF with an
octupole contact pattern was improved significantly. Different

from a traditional PP-QEPAS sensor, in which the laser beam
is perpendicular to the QTF plane, an IP-QEPAS sensor with
a laser beam in the QTF plane increases the interaction area
between acoustic wave and QTF was developed. With over
40 times signal improvement, it has been indicated that the
traditional PP-QEPAS sensor has superior capabilities than the
IP-QEPAS technique.

QEPAS is a contact measurement technique with limited
applications inmany fields, including combustion diagnosis, long
distance measurement, and remote sensing. If the target gas is
acidic or corrosive, the silver film coating the surface of QTF
could be corroded, which will cause a drift of the resonance
frequency, a decrease of quality factor, and could even make a
QTF fail to operate. In 2018, a new technique of quartz-enhanced
photothermal spectroscopy (QEPTS), based on the photothermal
effect was invented. In QEPTS, a QTF can be placed far from
the target gas to avoid corrosion. Different from QEPAS, QEPTS
is a non-contact measurement technique that can be used for
remote and standoff gas detection. In terms of detection ability,
QEPTS showed a distinct superiority of more than one order of
improvement in the NNEAwhen compared with a QEPAS sensor
under the same conditions. Further improvement of the QEPTS
sensor performance was also achieved when a multipass cell and
a customQTFwith enhanced laser absorption and a low resonant
frequency were used.

Since the signal level of a QEPAS sensor has a positive
correlation with the power of the excitation source, further
improvement of detection sensitivity can be achieved by using
an advanced light source, such as a high power mid-infrared
solid-state laser or a THz laser [101]. For a QEPTS sensor, a mid-
infrared all-fiber configuration such as a hollow-core fiber could
be used as an absorption cell to improve system stability and
detection performance [102].
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