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The variable-coefficient Heisenberg ferromagnetic spin chain (vcHFSC) equation is

investigated using the Lie group method. The infinitesimal generators and Lie point

symmetries are reported. Four types of similarity reductions are acquired by virtue

of the optimal system of one-dimensional subalgebras. Several invariant solutions

are derived, including trigonometric and hyperbolic function solutions. Furthermore,

conservation laws for the vcHFSC equation are obtained with the help of Lagrangian

and non-linear self-adjointness.
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INTRODUCTION

The investigation of physical phenomenon modeled by non-linear partial differential equations
(NLPDEs) and searching for their underlying dynamics remain the hot issue of research for applied
and theoretical sciences. A lot of attention has been concentrated on looking for the explicit
solutions of NLPDEs, for they can provide accurate information with which to understand some
interesting physical phenomena. A great many powerful methods have been proposed to construct
the explicit solutions of NLPDEs, such as the inverse scattering method [1], the Lie group method
[2–5], the Hirota bilinear method [6, 7], the extended tanh method [8–10], the homoclinc test
method [11–13], the F-expansion technique [14], and so on [15–18]. Among these methods, the
Lie group method is a powerful and prolific method for the study of NLPDEs. On the one hand,
based on the Lie group method, we can obtain new exact solutions directly or from the known
ones or via similarity reductions; on the other hand, the conservation laws can be constructed
via the corresponding Lie point symmetries. Recently, invariant solutions of a class of constant
and variable coefficient NLPDEs have been obtained by virtue of this method, such as Keller-Segel
models [19], generalized fifth-order non-linear integrable equation [20], KdV equation [21], and
Davey-Stewartson equation [22].

So far, many effective methods have been extended to construct exact solutions of different types
of differential equations. For example, the generalized Bernoulli sub-ODE and the generalized
tanh methods have been applied to establish optical soliton solutions of the Chen-Lee-Liu
equation [23]. The Lie group method has been used to find the exact solutions of the time
fractional Abrahams–Tsuneto reaction diffusion system [24] and the non-linear transmission line
equation [25].
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In this work, we will focus on the (2+1)-dimensional
variable-coefficient Heisenberg ferromagnetic spin chain
(vcHFSC) equation

iqt + δ1(t)qxx + δ2(t)qyy + δ3(t)qxy + δ4(t)
∣

∣q
∣

∣

2
q = 0, (1)

where δ1(t), δ2(t), δ3(t), and δ4(t) are arbitrary functions with
respect to t. The interaction properties and stability of the
bright and dark solitons are presented in [26]. Non-autonomous
complex wave and analytic solutions are obtained in [27]. When
δi(t) (i = 1, · · · , 4) are arbitrary constants, Equation (1)
can be reduced to the following (2+1)-dimensional Heisenberg
ferromagnetic spin chain (HFSC) equation:

iqt + δ1qxx + δ2qyy + δ3qxy + δ4
∣

∣q
∣

∣

2
q = 0. (2)

Latha and Vasanthi [28] obtained multisoliton solutions by
employing Darboux transformation and analyzed the interaction
properties of Equation (2). Anitha et al. [29] derived the
dynamical equations of motion by employing long wavelength
approximation and discussed the complete non-linear excitation
with the aid of sine-cosine function method. Periodic solutions
were obtained by Triki andWazwaz [30], and they also discussed
conditions for the existence and uniqueness of wave solutions.
Tang et al. [31] reported the explicit power series solutions and
bright and dark soliton solutions of Equation (2), and they also
obtained some other exact solutions via the sub-ODE method.

However, the Lie symmetries, invariant solutions, and
conservation laws of the (2+1)-dimensional vcHFSC equation
(1) have not been studied. In the current work, we study
the vcHFSC equation (1) via the Lie group method and
obtain new invariant solutions, including the trigonometric and
hyperbolic function solutions. Moreover, based on non-linear
self-adjointness, conservation laws for vcHFSC equation (1)
are constructed.

The main structure of this paper is as follows. In section
Lie Symmetry Analysis and Optimal System, based on the Lie
symmetry analysis, we construct the Lie point symmetries and the
optimal system of one-dimensional subalgebras for Equation (1).
In section Symmetry Reductions and Invariant Solutions, four
types of similarity reductions and some invariant solutions are
studied by virtue of the optimal system. In section Non-linear
Self-Adjointness and Conservation Laws, conservation laws for
Equation (1) are obtained with the help of Lagrangian and non-
linear self-adjointness. Section Results and Discussion provides
the results and discussion. Finally, the conclusion is given in
section Conclusion.

LIE SYMMETRY ANALYSIS AND OPTIMAL
SYSTEM

In this section, our aim is to obtain the Lie point symmetries and
the optimal system of the vcHFSC equation (1) by employing the
Lie group method.

The vcHFSC equation (1) can be changed to the
following system















F1 = ut + δ1(t)vxx + δ2(t)vyy + δ3(t)vxy
+δ4(t)(u2v+ v3) = 0,

F2 = −vt + δ1(t)uxx + δ2(t)uyy + δ3(t)uxy
+δ4(t)(u3 + uv2) = 0,

(3)

by using the transformation

q(x, y, t) = u(x, y, t)+ iv(x, y, t), (4)

where u(x, y, t) and v(x, y, t) are real and smooth functions.
Suppose that the associated vector field of system (3) is

as follows:

V = ξ 1(x, y, t, u, v)
∂

∂x
+ ξ 2(x, y, t, u, v)

∂

∂y
+ ξ 3(x, y, t, u, v)

∂

∂t

+ η1(x, y, t, u, v)
∂

∂u
+ η2(x, y, t, u, v)

∂

∂v
, (5)

where ξ 1(x, y, t, u, v), ξ 2(x, y, t, u, v), ξ 3(x, y, t, u, v), η1(x, y, t, u, v)
and η2(x, y, t, u, v) are unknown functions that need to
be determined.

If vector field (5) generates a symmetry of system (3), then V
must satisfy symmetry condition

pr(2)V(11)
∣

∣

11 = 0, pr(2)V(12)
∣

∣

12 = 0, (6)

where

{

11 = ut + δ1(t)vxx + δ2(t)vyy + δ3(t)vxy + δ4(t)(u2v+ v3),

12 = −vt + δ1(t)uxx + δ2(t)uyy + δ3(t)uxy + δ4(t)(u3 + uv2).

The infinitesimals ξ 1, ξ 2, ξ 3, η1, and η2must satisfy the following
invariant conditions















































η1t + ξ 3δ1′(t)vxx + δ1(t)η2xx + ξ 3δ2′(t)vyy + δ2(t)η2yy
+ξ 3δ3′(t)vxy
+δ3(t)η2xy + ξ 3δ4′(t)(u2v+ v3)+ δ4(t)(2uη1v
+u2η2 + 3v2η2) = 0,

−η2t + ξ 3δ1′(t)uxx + δ1(t)η1xx + ξ 3δ2′(t)uyy
+δ2(t)η1yy + ξ 3δ3′(t)uxy
+δ3(t)η1xy + ξ 3δ4′(t)(u3 + uv2)+ δ4(t)(3u2η1

+η1v2 + 2uvη2) = 0,

(7)

where

η1t = Dt(η
1 − ξ 1ux − ξ 2uy − ξ 3ut)+ ξ 1uxt + ξ 2uyt

+ξ 3utt ,
η1xx = Dxx(η

1 − ξ 1ux − ξ 2uy − ξ 3ut)+ ξ 1uxxx
+ξ 2uxxy + ξ 3uxxt ,

η1xy = Dxy(η
1 − ξ 1ux − ξ 2uy − ξ 3ut)+ ξ 1uxxy

+ξ 2uxyy + ξ 3uxyt ,
η1yy = Dyy(η

1 − ξ 1ux − ξ 2uy − ξ 3ut)+ ξ 1uxyy
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+ξ 2uyyy + ξ 3uyyt ,
η2t = Dt(η

2 − ξ 1vx − ξ 2vy − ξ 3vt)+ ξ 1vxt
+ξ 2vyt + ξ 3vtt ,

η2xx = Dxx(η
2 − ξ 1vx − ξ 2vy − ξ 3vt)+ ξ 1vxxx

+ξ 2vxxy + ξ 3vxxt ,
η2xy = Dxy(η

2 − ξ 1vx − ξ 2vy − ξ 3vt)

+ξ 1vxxy + ξ 2vxyy + ξ 3vxyt ,
η2yy = Dyy(η

2 − ξ 1vx − ξ 2vy
−ξ 3vt)+ ξ 1vxyy + ξ 2vyyy + ξ 3vyyt .

Solving Equation (7), one can obtain

ξ 1 = c1x+ c2, ξ
2 = c1y+ c3, ξ

3 =
2c1

∫

δ1(t)dt

δ1(t)

+
c4

δ1(t)
, η1 = c1u, η

2 = c1v, (8)

where c1, c2, c3, and c4 are arbitrary constants, and the coefficient
functions δ1(t), δ2(t), δ3(t), and δ4(t) are determined by

ξ 3δ2t + ξ 3t δ2 − 2δ2c1 = 0,

ξ 3δ3t + ξ 3t δ3 − 2δ3c1 = 0,

ξ 3δ4t + ξ 3t δ4 + 2c1δ4 = 0. (9)

The Lie algebra of infinitesimal symmetries of system (3) is
generated by the four vector fields:

J1 = x
∂

∂x
+ y

∂

∂y
+

2
∫

δ1(t)dt

δ1(t)

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
,

J2 =
∂

∂x
, J3 =

∂

∂y
, J4 =

1

δ1(t)

∂

∂t
. (10)

The one-parameter groups gi generated by the Ji are given
as follows:

g1 :(x, y, t, u, v) →
(

xeε , yeε , t + ε
2
∫

δ1(t)dt

δ1(t)
, ueε , veε

)

,

g2 :(x, y, t, u, v) →
(

x+ ε, y, t, u, v
)

,

g3 :(x, y, t, u, v) →
(

x, y+ ε, t, u, v
)

,

g4 :(x, y, t, u, v) →
(

x, y, t +
ε

δ1(t)
, u, v

)

. (11)

If
{

u = U(x, y, t), v = V(x, y, t)
}

is a solution of system (3), by
employing symmetry groups gi (i = 1, 2, 3, 4), we can obtain the
following new solutions

(u(1), v(1)) →

(

eεU

(

xe−ε , ye−ε , t − ε
2
∫

δ1(t)dt

δ1(t)

)

,

eεV

(

xe−ε , ye−ε , t − ε
2
∫

δ1(t)dt

δ1(t)

)

)

,

(u(2), v(2)) →
(

U
(

x− ε, y, t
)

,V
(

x− ε, y, t
))

,

TABLE 1 | Commutator table of the vector fields of system (3).

[Ji ,Jj] J1 J2 J3 J4

J1 0 −J2 −J3 −2J4

J2 J2 0 0 0

J3 J3 0 0 0

J4 2J4 0 0 0

TABLE 2 | Adjoint table of the vector fields of system (3).

Ad J1 J2 J3 J4

J1 J1 J2e
ε J3e

ε J4e
2ε

J2 J1 − εJ2 J2 J3 J4

J3 J1 − εJ3 J2 J3 J4

J4 J1 − 2εJ4 J2 J3 J4

(u(3), v(3)) →
(

U
(

x, y− ε, t
)

,V
(

x, y− ε, t
))

,

(u(4), v(4)) →
(

U

(

x, y, t −
ε

δ1(t)

)

,V

(

x, y, t −
ε

δ1(t)

))

.(12)

In order to construct the optimal system for system (3), we apply
the formula

Ad(exp(εJi))Jj = Jj − ε
[

Ji, Jj
]

+
ε2

2

[

Ji,
[

Ji, Jj
]]

− · · · , (13)

where
[

Ji, Jj
]

= JiJj − JjJi and ε is a parameter. The
commutator table and the adjoint table of system (3) have been
constructed and are presented in Tables 1, 2, respectively.

Based on Tables 1, 2, system (3) has the following optimal
system [3, 32]

(i) J1; (ii) J2 + αJ3 + βJ4; (iii) J3 + χJ4; (iv) J4, (14)

where α,β , and χ are arbitrary constants.

SYMMETRY REDUCTIONS AND
INVARIANT SOLUTIONS

Based on the optimal system (14), our major goal is to deal with
the similarity reductions and invariant solutions for system (3).

Subalgebra J1
The characteristic equations of subalgebra J1 can be written as

dx

x
=

dy

y
=

dt
2

δ1(t)

∫

δ1(t)dt
=

du

u
=

dv

v
. (15)

Solving these equations yields the four similarity variables

r = x

(∫

δ1(t)dt

)− 1
2

, s = y

(∫

δ1(t)dt

)− 1
2

,

u = F(r, s) ·
(∫

δ1(t)dt

)
1
2

, v = H(r, s) ·
(∫

δ1(t)dt

)
1
2

, (16)
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and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t),

δ4(t) = k3δ1(t)

(∫

δ1(t)dt

)−2

, (17)

where k1, k2, and k3 are arbitrary constants. These variables
reduce system (3) to the following (1+1)-dimensional PDEs















F − rFr − sFs + 2Hrr + 2k1Hss + 2k2Hrs

+2k3(F
2H +H3) = 0,

−H + rHr + sHs + 2Frr + 2k1Fss + 2k2Frs + 2k3(F
3

+FH2) = 0.

(18)

Subalgebra J1 does not give any group-invariant solutions.

Subalgebra J2 + αJ3 + βJ4
The similarity variables of this generator are

r = αx− y, s = βx−
∫

δ1(t)dt,

u = F(r, s), v = H(r, s), (19)

and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (20)

where ki (i = 1, 2, 3, 4) are arbitrary constants. Substituting
Equations (19) and (20) into (3), we have















Fs − (α2 + k1 − αk2)Hrr − β2Hss − (2αβ − βk2)Hrs

−k3(F
2H +H3) = 0,

Hs + (α2 + k1 − αk2)Frr + β2Fss + (2αβ − βk2)Frs
+k3(F

3 + FH2) = 0.

(21)

For solving Equation (21), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where κ is an arbitrary constant, and then
(21) can be reduced to the following ODEs















−κf ′ + (2αβκ − βk2κ − β2κ2 − α2 − k1 + αk2)h′′
−k3(f

2h+ h3) = 0,
−κh′ − (2αβλ− βk2λ− β2λ2 − α2 − k1 + αk2)f ′′

+k3(f
3 + f h2) = 0.

(22)

Solving Equation (22) yields































f = −B1

+A1 tan

(

r − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

h = A1

+B1 tan

(

r − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

(23)

and






























f = −B1

+A1 cot

(

r − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

h = A1

+B1 cot

(

r − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2
s

)

,

(24)

where k3 = − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2(A2
1+B21)

and A1, B1

are free parameters.
Based on Equations (19), (23), and (24), we obtain the

following trigonometric function solutions for system (3)















































































u = −B1

+A1 tan

(

αx− y− 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

v = A1

+B1 tan

(

αx− y− 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

(25)

and














































































u = −B1

+A1 cot

(

αx− y− 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

v = A1

+B1 cot

(

αx− y− 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2

(

βx−
∫

δ1(t)dt
)

)

,

(26)

where k3 = − 4αβ−2βk2+1−
√

4β2(k22−4k1)+4β(2α−k2)+1

4β2(A2
1+B21)

and A1, B1

are free parameters.

Subalgebra J3 + χJ4
The similarity variables of this generator are

r = x, s = χy−
∫

δ1(t)dt,

u = F(r, s), v = H(r, s), (27)

and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (28)

where ki (i = 1, 2, 3, 4) are arbitrary constants. System (3) can
then be transformed to

{

Fs −Hrr − χ2k1Hss − χk2Hrs − k3(F
2H +H3) = 0,

Hs + Frr + χ2k1Fss + χk2Frs + k3(F
3 + FH2) = 0.

(29)

For solving Equation (29), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where κ is an arbitrary constant; Equation
(29) can then be written as

{

−κf ′ + (χk2κ − χ2κ2k1 − 1)h′′ − k3(f
2h+ h3) = 0,

−κh′ − (χk2κ − χ2κ2k1 − 1)f ′′ + k3(f
3 + f h2) = 0.

(30)
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To obtain the solutions of Equation (30), we shall apply the
(

G′

G

)

method, as described in [33].
Let us consider the solutions of (30), as

f =
n
∑

i=0

Ai

(

G′

G

)i

, h =
m
∑

i=0

Bi

(

G′

G

)i

. (31)

By balancing the highest order derivative term and non-linear
term in (30), we obtain m = n = 1, and G = G(ζ ) satisfies
second-order ODE

G′′ + λG′ + µG = 0.

Solving Equation (30), we obtain

µ =
λ2(A2

1 + B21)+ 4B0(B0 − λB1)
4A2

1

,

A0 =
λ(A2

1 + B21)− 2B0B1

2A1
, κ =

k3(A
2
1 + B21)(2B0 − λB1)

2A1
,

k1 =
−2A1((A

2
1 + B21)(λχB1k2k3 − 2χA1B0k2k3 + 2A1k3)+ 2A1)

χ2k23(λA
2
1B1 + λB

3
1 − 2A2

1B0 − 2B0B
2
1)

2
, (32)

where λ, χ , d1, B0, B1, k2, and k3 are arbitrary constants.
Substituting (32) into (30), we obtain two types of solutions of

(30), as follows:
When λ2 − 4µ > 0,











































f = λB1−2B0
2i ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λ(λB1−2B0)

2i
√
λ2−4µ

− λB0−2µB1

i
√
λ2−4µ

,

h = B1
2

√

λ2 − 4µ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λB1
2 + B0,

(33)

where

k1 =

2k3(λB0B1 − µB21 − B20)+ λ2 − 4µ+ 2iχk2k3(λB0B1
−µB21 − B20)

√

λ2 − 4µ

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = r −
2k3(λB0B1 − µB21 − B20)

i
√

λ2 − 4µ
s, λ,µ,χ ,B0,B1,

C1,C2, k2, and k3 are arbitrary constants.

When λ2 − 4µ < 0,











































f = λB1−2B0
2 ×

(

C1 cosh
(

1
2

√
4µ−λ2ζ

)

−C2 sinh
(

1
2

√
4µ−λ2ζ

)

C1 sinh
(

1
2

√
4µ−λ2ζ

)

+C2 cosh
(

1
2

√
4µ−λ2ζ

)

)

− λ(λB1−2B0)

2
√

4µ−λ2
− λB0−2µB1√

4µ−λ2
,

h = B1
2

√

4µ− λ2 ×

(

C1 cosh
(

1
2

√
4µ−λ2ζ

)

−C2 sinh
(

1
2

√
4µ−λ2ζ

)

C1 sinh
(

1
2

√
4µ−λ2ζ

)

+C2 cosh
(

1
2

√
4µ−λ2ζ

)

)

− λB1
2 + B0,

(34)

where

k1 =

2k3(λB0B1 − µB21 − B20)+ λ2 − 4µ+ 2χk2k3(λB0B1
−µB21 − B20)

√

4µ− λ2

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = r −
2k3(µB

2
1 + B20 − λB0B1)
√

λ2 − 4µ
s, λ,µ,χ ,B0,B1,C1,C2, k2,

and k3 are arbitrary constants.

Taking into account Equations (27), (33), and (34), we obtain the
hyperbolic function solutions for system (3):











































u = λB1−2B0
2i ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λ(λB1−2B0)

2i
√
λ2−4µ

− λB0−2µB1

i
√
λ2−4µ

,

v = B1
2

√

λ2 − 4µ×

(

C1 cosh
(

1
2

√
λ2−4µζ

)

+C2 sinh
(

1
2

√
λ2−4µζ

)

C1 sinh
(

1
2

√
λ2−4µζ

)

+C2 cosh
(

1
2

√
λ2−4µζ

)

)

− λB1
2 + B0,

(35)

where λ2 − 4µ > 0,

k1 =

2k3(λB0B1 − µB21 − B20)+ λ2 − 4µ

+2iχk2k3(λB0B1 − µB21 − B20)
√

λ2 − 4µ

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = x−
2k3(λB0B1 − µB21 − B20)

i
√

λ2 − 4µ

(

χy−
∫

δ1(t)dt

)

,

λ,µ,χ ,B0,B1,C1,C2, k2,

and k3are arbitrary constants.










































u = λB1−2B0
2 ×

(

C1 cos
(

1
2

√
4µ−λ2ζ

)

−C2 sin
(

1
2

√
4µ−λ2ζ

)

C1 sin
(

1
2

√
4µ−λ2ζ

)

+C2 cos
(

1
2

√
4µ−λ2ζ

)

)

− λ(λB1−2B0)

2
√

4µ−λ2
− λB0−2µB1√

4µ−λ2
,

v = B1
2

√

4µ− λ2 ×

(

C1 cos
(

1
2

√
4µ−λ2ζ

)

−C2 sin
(

1
2

√
4µ−λ2ζ

)

C1 sin
(

1
2

√
4µ−λ2ζ

)

+C2 cos
(

1
2

√
4µ−λ2ζ

)

)

− λB1
2 + B0,

(36)

where λ2 − 4µ < 0,

k1 =

2k3(λB0B1 − µB21 − B20)+ λ2 − 4µ+ 2χk2k3(λB0B1
−µB21 − B20)

√

4µ− λ2

4χ2k23(λB0B1 − µB
2
1 − B20)

2
,

ζ = x−
2k3(µB

2
1 + B20 − λB0B1)
√

λ2 − 4µ

(

χy−
∫

δ1(t)dt

)

,

λ,µ,χ ,B0,B1,C1,C2, k2, and k3 are arbitrary constants.

Subalgebra J4 =
1

δ1(t)
∂
∂t

The similarity variables of this generator are

r = x, s = y,

u = F(r, s), v = H(r, s), (37)
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and solving the constrained conditions (9), we get

δ2(t) = k1δ1(t), δ3(t) = k2δ1(t), δ4(t) = k3δ1(t), (38)

where ki (i = 1, 2, 3) are arbitrary constants. Thus, system (3) can
be transformed to

{

Hrr + k1Hss + k2Hrs + k3(F
2H +H3) = 0,

Frr + k1Fss + k2Frs + k3(F
3 + FH2) = 0.

(39)

For solving Equation (39), we use the transformation ζ = r− κs,
F = f (ζ ), H = h(ζ ), where λ is an arbitrary constant, and then
(39) can be reduced to the following ODEs

{

(1+ κ2k1 − κk2)h′′ + k3(f
2h+ h3) = 0,

(1+ κ2k1 − κk2)f ′′ + k3(f
3 + f h2) = 0.

(40)

Solving Equation (40) yields















































f = C1 sin

(

r − k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

s

)

−C2 cos

(

r − k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

s

)

,

h = C2 sin

(

r − k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

s

)

+C1 cos

(

r − k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

s

)

,

(41)

where C1,C2, k1, k2, and k3 are arbitrary constants.
On combining Equations (37) and (41), we obtain the periodic

function solutions for system (3):















































u = C1 sin

(

x− k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

y

)

−C2 cos

(

x− k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

y

)

,

v = C2 sin

(

x− k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

y

)

+C1 cos

(

x− k2+
√

4k1k3(C
2
1+C2

2)+k22−4k1
2k1

y

)

,

(42)

where C1,C2, k1, k2, and k3 are arbitrary constants.

NON-LINEAR SELF-ADJOINTNESS AND
CONSERVATION LAWS

Conservation laws have been extensively researched due to their
important physical significance. Many effective approaches have
been proposed to construct conservation laws for NPDEs, such
as Noether’s theorem [34], the multiplier approach [35], and so
on [36, 37]. Ibragimov [38, 39] proposed a new conservation
theorem that does not require the existence of a Lagrangian and
is based on the concept of an adjoint equation for NLPDEs. In
this section, we will construct non-linear self-adjointness and
conservation laws for vcHFSC equation (1).

Non-linear Self-Adjointness
Based on the method of constructing Lagrangians [38], we have
the following formal Lagrangian L in the symmetric form

L = ū
[

ut + δ1(t)vxx + δ2(t)vyy + 1
2δ3(t)vxy

+ 1
2δ3(t)vyx + δ4(t)(u

2v+ v3)
]

+v̄
[

−vt + δ1(t)uxx + δ2(t)uyy + 1
2δ3(t)uxy

+ 1
2δ3(t)uyx + δ4(t)(u

3 + uv2)
]

,

(43)

where ū and v̄ are two new dependent variables.
The adjoint system of system (3) is

{

F∗1 = δL
δu = 0,

F∗2 = δL
δv = 0,

(44)

where

δL

δu
=
∂L

∂u
− Dt

∂L

∂ut
+ DxDx

∂L

∂uxx
+ DxDy

∂L

∂uxy
+ DyDy

∂L

∂uyy
, (45)

δL

δv
=
∂L

∂v
− Dt

∂L

∂vt
+ DxDx

∂L

∂vxx
+ DxDy

∂L

∂vxy
+ DyDy

∂L

∂vyy
, (46)

with Dx, Dy, and Dt the total differentiations with respect to x, y,
and t.

For illustration, Dx can be expressed as

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ uxt

∂

∂ut

+vxt
∂

∂vt
+ · · · .

Substituting (43), (45), and (46) into (44), the adjoint system for
system (3) is















F∗1 = −ūt + δ1(t)v̄xx + δ2(t)v̄yy + δ3(t)v̄xy
+2δ4(t)ūuv+ δ4(t)v̄(3u2 + v2),
F∗2 = v̄t + δ1(t)ūxx + δ2(t)ūyy + δ3(t)ūxy
+2δ4(t)v̄uv+ δ4(t)ū(u2 + 3v2).

(47)

The system (3) is non-linear self-adjoint when adjoint system (47)
satisfy the following conditions

{

F∗1
∣

∣

ū = φ(x,y,t,u,v),v̄ = ψ(x,y,t,u,v) = λ11F1 + λ12F2,
F∗2
∣

∣

ū = φ(x,y,t,u,v),v̄ = ψ(x,y,t,u,v) = λ21F1 + λ22F2,
(48)

where φ(x, y, t, u, v) 6= 0 or ψ(x, y, t, u, v) 6= 0, and λij (i, j = 1, 2)
are undetermined coefficients.
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Substituting the expressions of Fi (i=1,2) and F∗i (i=1,2) into
(48), we obtain the following equations

(λ12 − ψu)(δ1(t)uxx − δ2(t)uyy − δ3(t)uxy)
−(λ11 − ψv)(δ1(t)vxx + δ2(t)vyy + δ3(t)vxy)
−(λ11 + φu)ut + (λ12 − φv)vt + ψuv(2δ1(t)uxvx

+2δ2(t)uyvy + δ3(t)uxvy + δ3(t)uyvx)
+ψuu(δ1(t)u

2
x + δ2(t)u2y + δ3(t)uxuy)+ ψvv(δ1(t)v

2
x

+δ2(t)v2y + δ3(t)vxvy)
+(2δ1(t)ψxu + δ3(t)ψyu)ux + (2δ2(t)ψyu + δ3(t)ψxu)uy

+(2δ1(t)ψxv + δ3(t)ψyv)vx
+(2δ2(t)ψyv + δ3(t)ψxv)vy + δ1(t)ψxx + δ2(t)ψyy

+δ3(t)ψxy − λ11δ4(t)(u2v+ v3)
−λ12δ4(t)(uv2 + u3)+ 2δ4(t)φuv+ 3δ4(t)ψu

2

+δ4(t)ψv2 − φt = 0,

(49)

−(λ22 − φu)(δ1(t)uxx + δ2(t)uyy + δ3(t)uxy)
−(λ21 − φv)(δ1(t)vxx + δ2(t)vyy + δ3(t)vxy)

−(λ21 − ψu)ut + (λ22 + ψv)vt + φuv(2δ1(t)uxvx
+2δ2(t)uyvy + δ3(t)uxvy + δ3(t)uyvx)

+φuu(δ1(t)u2x + δ2(t)u2y + δ3(t)uxuy)+ φvv(δ1(t)v2x
+δ2(t)v2y + δ3(t)vxvy)

+(2δ1(t)φxu + δ3(t)φyu)ux
+(2δ2(t)φyu + δ3(t)φxu)uy + (2δ1(t)φxv + δ3(t)φyv)vx

+(2δ2(t)φyv + δ3(t)φxv)vy + δ1(t)φxx + δ2(t)φyy
+δ3(t)φxy − λ21δ4(t)(u2v+ v3)

−λ22δ4(t)(uv2 + u3)+ 2δ4(t)ψuv+ 3δ4(t)φv
2

+δ4(t)φu2 + ψt = 0.

(50)

Solving the above systems, we have

φ = −Cu,ψ = Cv, λ12 = λ21 = 0, λ11 = C, λ22 = −C. (51)

Theorem 4.1. System (3) is non-linearly self-adjoint.
The formal Lagrangian corresponding to (43) reads as,

L = −Cu[ut + δ1(t)vxx + δ2(t)vyy + 1
2δ3(t)vxy

+ 1
2δ3(t)vyx + δ4(t)(u

2v+ v3)]

+Cv[−vt + δ1(t)uxx + δ2(t)uyy + 1
2δ3(t)uxy

+ 1
2δ3(t)uyx + δ4(t)(u

3 + uv2)].

(52)

Conservation Laws
In this section, we will construct the conservation laws for
system (3) by Ibragimov’s theorem. Next, we briefly review the
notations used in the following sections. Let x = (x1, x2, . . . , xn)
be n independent variables, u = (u1, u2, . . . , um) be m
dependent variables,

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηs(x, u, u(1), . . .)

∂

∂us
, (53)

be a symmetry ofm equations

Fs(x, u, u(1), . . . , u(N)) = 0, s = 1, 2, . . . ,m. (54)

and the corresponding adjoint equation

F∗s (x, u, v, u(1), v(1), . . . , u(N), v(N))

=
δ(viFi)

δus
= 0. s = 1, 2, . . . ,m. (55)

Theorem 4.2. Any Lie point, Lie-Bäcklund and non-local
symmetry X,as given in (53), of Equation (54) provides a
conservation law for the system (54) and its adjoint system (55).
The conserved vector is defined by

Ti = ξiL+Ws

[

∂L
∂usi

− Dxj

(

∂L
∂usij

)

+ DxjDxk

(

∂L
∂us

ijk

)

− · · ·
]

+Dxj (W
s)

[

∂L
∂usij

− Dxk

(

∂L
∂us

ijk

)

+ DxkDxr

(

∂L
∂us

ijkr

)

− · · ·
]

+DxjDxk (W
s)

[

∂L
∂us

ijk
− Dxr

(

∂L
∂us

ijkr

)

+ · · ·
]

+ · · · ,

(56)

where Ws = ηs − ξiu
s
i is the Lie characteristic function and

L =
m
∑

i=1
viFi is the formal Lagrangian.

Based on the formula in Theorem 4.2, we next construct
conserved vectors for system (3) by employing the formal
Lagrangian (43) and the symmetry operator (10). For system (3),
Equation (56) becomes the following form

Tx = ξL−W1
[

Dx

(

∂L
∂uxx

)

+ Dy

(

∂L
∂uxy

)]

+Dx(W
1)
(

∂L
∂uxx

)

+ Dy(W
1)
(

∂L
∂uxy

)

−W2
[

Dx

(

∂L
∂vxx

)

+ Dy

(

∂L
∂vxy

)]

+ Dx(W
2)
(

∂L
∂vxx

)

+Dy(W
2)
(

∂L
∂vxy

)

= ξL−W1C(δ1(t)vx + 1
2δ3(t)vy)

+Dx(W
1)
(

Cδ1(t)v
)

+ Dy(W
1)
(

1
2Cδ3(t)v

)

+W2C(δ1(t)ux + 1
2δ3(t)uy)− Dx(W

2)
(

Cδ1(t)u
)

−Dy(W
2)
(

1
2Cδ3(t)u

)

,

(57)

Ty = ηL−W1
[

Dx

(

∂L
∂uyx

)

+ Dy

(

∂L
∂uyy

)]

+Dx(W
1)
(

∂L
∂uyx

)

+ Dy(W
1)
(

∂L
∂uyy

)

−W2
[

Dx

(

∂L
∂vyx

)

+ Dy

(

∂L
∂vyy

)]

+Dx(W
2)
(

∂L
∂vyx

)

+ Dy(W
2)
(

∂L
∂vyy

)

= ηL−W1C
[

1
2δ3(t)vx + δ2(t)vy

]

+ Dx(W
1)
(

1
2Cδ3(t)v

)

+Dy(W
1)
(

Cδ2(t)v
)

+W2C
[

1
2δ3(t)ux + δ2(t)uy

]

− Dx(W
2)
(

1
2Cδ3(t)u

)

−Dy(W
2)
(

Cδ2(t)u
)

,

(58)

Tt = τL+W1

(

∂L

∂ut

)

+W2

(

∂L

∂vt

)

= τ

L−W1 (Cu)−W2 (Cv) ,(59)

with

W1 = 8− ξux − ηuy − τut ,
W2 = �− ξvx − ηvy − τvt .

Case 1 J1 = x ∂
∂x + y ∂

∂y +
2
∫

δ1(t)dt

δ1(t)
∂
∂t + u ∂

∂u + v ∂
∂v

The Lie characteristic functions for this operator are

W1 = u− xux − yuy −
2
∫

δ1(t)dt

δ1(t)
ut , (60)

W2 = v− xvx − yvy −
2
∫

δ1(t)dt

δ1(t)
vt . (61)
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FIGURE 1 | Plot of invariant solution (25) with δ1(t) = sint, A1 = 1, B1 = 4, α = β = k1 = 1, k2 = 3 at t = 0. (A) Perspective view of the solution u. (B) Perspective

view of the solution v.

FIGURE 2 | Plot of invariant solution (36) with δ1(t) = 1, C1 = 2, C2 = 1, λ = µ = χ = 1, B0 = B1 = k2 = k3 = 1 at t = 5. (A) Perspective view of the solution u. (B)

Perspective view of the solution v.

FIGURE 3 | Plot of invariant solution (42) with C1 = 1, C2 = 2, k1 = k2 = k3 = 1 at t = 0. (A) Perspective view of the solution u. (B) Perspective view of the solution v.

The corresponding conservation laws are

Tx = − 1
2C
[

2k1δ1(t)(uvyy − uyyv)+ k2δ1(t)

(uvxy − uxvy + uyvx − uxyv)+ 2(uut + vvt)
]

x

− 1
2C
[

k2δ1(t)(uyyv− uvyy)+ 2δ1(t)
(uxyv− uyvx − uvxy + uxvy)

]

y

− 1
2C
∫

δ1(t)dt
[

2k2(utyv− uvty − utvy + uyvt)

+4(utxv− uvtx − utvx + uxvt)
]

− 1
2C
[

k2δ1(t)(uvy − uyv)+ 2δ1(t)(uvx − uxv)
]

,

(62)

Ty = 1
2C
[

2k1δ1(t)(uvxy + uxvy − uyvx − uxyv)+ k2δ1(t)

(uvxx − uxxv)
]

x

+ 1
2C
[

2δ1(t)(uxxv− uvxx)+ k2δ1(t)

(uyvx + uxyv− uvxy − uxvy)− 2(uut + vvt)
]

y

+ 1
2C
∫

δ1(t)dt
[

2k2(uvtx − utxv+ utvx − uxvt)

+4k1(uvty − utyv+ utvy − uyvt)
]

+ 1
2C
[

k2δ1(t)(uxv− uvx)+ 2k1δ1(t)(uyv− uvy)
]

,

(63)

Tt = C
[

(uux + vvx)x+ (uuy + vvy)y− (u2 + v2)
]

−C
∫

δ1(t)dt
[

2k1(uvyy − uyyv)
+2k2(uvxy − uxyv)+ 2(uvxx − uxxv)

]

.
(64)
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Case 2 J2 = ∂
∂x

The Lie characteristic functions for this operator are

W1 = −ux,W
2 = −vx. (65)

The corresponding conservation laws are

Tx = −
1

2
C
[

2δ2(t)(uvyy − uyyv)+ δ3(t)

(uvxy − uxyv− uxvy + uyvx)+ 2(uut + vvt)
]

, (66)

Ty =
1

2
C
[

2δ2(t)(uvxy − uxyv+ uxvy − uyvx)+ δ3(t)

(uvxx − uxxv)
]

, (67)

Tt = C(uux + vvx). (68)

Case 3 J3 = ∂
∂y

The Lie characteristic functions for this operator are

W1 = −uy,W
2 = −vy. (69)

The corresponding conservation laws are

Tx =
1

2
C
[

2δ1(t)(uvxy − uxyv− uxvy + uyvx)+ δ3(t)

(uvyy − uyyv)
]

, (70)

Ty =
1

2
C
[

2δ1(t)(uxxv− uvxx)− δ3(t)

(uvxy − uxyv+ uxvy − uyvx)− 2(uut + vvt)
]

, (71)

Tt = C(uuy + vvy). (72)

Case 4 J4 = 1
δ1(t)

∂
∂t

The Lie characteristic functions for this operator are

W1 = −
1

δ1(t)
ut ,W

2 = −
1

δ1(t)
vt . (73)

The corresponding conservation laws are,

Tx =
1

2
C
[

k2(uvty − utyv+ utvy − uyvt)

+2(uvtx − utxv+ utvx − uxvt)
]

, (74)

Ty =
1

2
C
[

k2(uvtx − utxv+ utvx − uxvt)

+2k1(uvty − utyv+ utvy − uyvt)
]

, (75)

Tt = C
[

k1(uyyv− uvyy)

+k2(uxyv− uvxy)+ (uxxv− uvxx)
]

. (76)

RESULTS AND DISCUSSION

The Lie group method has been successfully used to establish
the invariant solutions for the vcHFSC equation. Some results
for the vcHFSC equation have been published in the literature.

Huang et al. [26] used the Hirota bilinear method and found the
bright and dark solitons to Equation (1). Peng [27] reported some
new non-autonomous complex wave and analytic solutions to
Equation (1) with the aid of the

(

G′/G
)

method. In this article, we
constructed the trigonometric and hyperbolic function solutions
to the studied equation. Compared with the solutions obtained
in references [26, 27], our results are new. To better understand
the characteristics of the obtained solutions, the 3D graphical
illustrations are plotted in Figures 1–3.

With the Lagrangian, we find that the vcHFSC equation
is non-linearly self-adjoint. Furthermore, a new conservation
theorem has been used to construct conservation laws for the
vcHFSC equation. Based on the four infinitesimal generators,
we obtained four conserved vectors. It worth noting that the
conservation laws obtained in this article have been verified by
Maple software.

CONCLUSION

In this research, the infinitesimal generators and Lie point
symmetries of the vcHFSC equation have been investigated
using the Lie group method. Based on the optimal system of
one-dimensional subalgebras, four types of similarity reductions
are presented. Taking similarity reductions into account, the
invariant solutions are provided, including trigonometric and
hyperbolic function solutions. Furthermore, conservation laws
for the vcHFSC equation are derived by non-linear self-
adjointness and a new conservation theorem.
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