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The main purpose of this paper is to study time operators associated with cylindrical
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characterization of the domains of the constructed time operators and partially resolved
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1. INTRODUCTION

The paper is devoted to extensions of internal time operators on the spaces of functions with values
in topological vector spaces and on the spaces of generalized functions of this type associated with
K-systems. The main reason of the introduction of time operators was the Lambda transformation
theory formulated by I. Prigogine and his collaborators (see [1–3]) as a new approach to the
theory of irreversibility in statistical physics. Precisely, to the problem of the relation between the
reversible laws of dynamics and the observed irreversible (stochastic) evolution. Let us remind,
that the classical view point was that irreversible behavior of the observed time evolution in a
dynamical system can only arise from deterministic dynamics as the result of averaging (coarse-
graining). The new approach can be formulated, in simplified terms, as a task to relate a given
unitary evolution group {Ut}t∈R acting on a Hilbert space of Gibbs’ square integrable densities with
an entropy increasing evolution semigroup {Wt}t∈R+ through a similarity transformation called
the transformation 3 (Lambda) (see [3]) as follows:

Wt3 = 3Ut , t ∈ R+ . (1)

Almost all known constructions of 3 transformations have been done so far for the dynamical
systems which admit time operators (see [4] for another approach). Such dynamical systems
allow the existence of Lyapunov variables, defined as functions of time operators, representing
non-equilibrium entropy [1]. This is also a possible way to the task of defining time operator in
quantum mechanics which in turn could allow to determine entropy operator. However, the class
of dynamical systems for which time operators can be defined is very narrow, in fact, it is limited
to K-systems.

Time operators were initially defined on the Hilbert space of square integrable functions. The
problem of an extension of the concept of time operator was motivated by a need to extend the 3

transformation theory beyond square integrable probability densities. Indeed, it is natural to ask
about a possibility to extend 3 and Wt on a larger class of states, including probability measures.
Particularly interesting, from the physical point of view, is the possibility of extension on singular
measures concentrated at single points of the phase space [2, 5–7].

Another motivation for the introduction and study of time operators is due to the recently
discovered fact that time operators can be also associated with non-invertible dynamics and used as
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a new tool in the spectral analysis of evolution semigroups
of unstable dynamical systems (see e.g., [8–13]). In this case
time operators and evolution semigroups are defined on various
topological vector spaces. The relation between the time operator
T and the evolution semigroup {Ut} is such that eachUt preserves
the domain of T and satisfies the relation

TUt = UtT + tUt . (2)

The idea behind the spectral analysis of the evolution semigroup
{Ut} on a Hilbert space with the help of the time operator T is
to decompose T in terms of a complete system of its eigenvectors
{en,k}, Ten,k = nen,k, such that Uten,k = en+t,k, as follows

T =
∑

n

n
∑

k

( · , en,k)en,k .

Similar spectral decompositions but in terms of Schauder bases
or frames can be obtained in other topological vector spaces.

In this paper we will focus on the construction of time
operators associated with K-systems acting on the spaces of
cylindrical elements. A cylindrical element is an object which
is a generalization of an E valued function, where E is a locally
convex space. More precisely, p-cylindrical element, which will
be defined in the next section, is a generalization of a weakly
p-integrable function with values in E.

Although such extensions of time operators concern various
topological vector spaces we will elaborate a unified approach
based on the idea of stochastic integral with respect to cylindrical
martingales (see [14]). We will also study the related problem
of decomposability of cylindrical elements. It can happen that
the action of a time operator or even a conditional expectation
does not leave the space of vector valued functions invariant
but leads to cylindrical elements instead. The decomposability
of cylindrical elements allows to represent them again as
measurable functions.

The paper is organized as follows. In section 2, we gathered
the basic facts on cylindrical elements, cylindrical measures
and cylindrical martingales. We focus on the Pettis integrability
of vector valued functions and cylindrical elements. We
also characterize vector spaces of Pettis integrable cylindrical
elements. Section 3 is devoted to the construction of time
operators with respect to cylindrical processes and to the solution
of the problem of decomposability in two particular cases.

2. CYLINDRICAL ELEMENTS AND

CYLINDRICAL MARTINGALES

Throughout this paper, by a locally convex space (l.c.s.) or
a topological vector space (t.v.s) we mean a Hausdorff l.c.s.
(respectively t.v.s.) not equal to {0} over the field of real or
complex scalars. If E is an l.c.s. then E′ denotes its topological dual
and 〈x, x′〉 stands for the value of a functional x′ ∈ E′ at x ∈ E.
For subsets A ⊂ E and B ⊂ E′ the symbols A◦ and B◦ denote the
polars with respect to the duality 〈E,E′〉 and 〈E′,E〉 respectively,
i.e., A◦ = {x′ ∈ E′ : |〈x, x′〉| ≤ 1, for each x ∈ A} and B◦ = {x ∈
E : |〈x, x′〉| ≤ 1, for each x′ ∈ B}. By σ (E′,E) we shall denote the

weak topology on E′ and by τ (E′,E) the Mackey topology, i.e.,
is the topology of uniform convergence on all σ (E,E′)–compact,
convex, circled subsets of E. E′τ will denote the space E′ with the
Mackey topology. An l.c.s. E is quasi-complete if each bounded
closed subset of E is complete.

Let (�,A, P) be a probability space, Lp = Lp(�,A, P), p ≥
0, and let E be an l.c.s.. By a p-cylindrical element, or simply
cylindrical element, we mean a linear operator X :E′ → Lp.
Notice that any function x(·) :� → E such that 〈x(·), x′〉 ∈ Lp

determines the cylindrical element

Xx′ = Xx(·)x
′ = 〈x(·), x′〉 .

Let us now introduce the concept of Pettis integrability of
cylindrical elements. The reason of doing this is the following.
In statistical physics the main object of interest is the time
evolution of statistical ensembles, represented mathematically
as probability distributions. However, for technical reasons we
often take only some classes of probability distributions as
the states of the system. In our case we confine to those
probability measures which are absolutely continuous with
respect to some reference measure. This allows to replace
measures by their densities (Radon-Nikodyn derivatives) or by
classes of integrable functions in general. Nevertheless, for a given
integrable function f we can recover the corresponding measure
µf putting

µf (A) =

∫

A
f dP , A ∈ A . (3)

Replacing f by a vector valued function Ef :� → E we
should be able to recover the corresponding measure µEf

like in (3) but this is not always possible. For example,

if E is a Banach space and Ef a measurable function such

that ‖Ef ‖ is integrable then (3) holds and defines E-valued
measure. However this is not true, in general, under

the weaker assumption of integrability of |〈Ef , x′〉|, for all
x′ ∈ E. Additional assumptions have to be imposed on
Ef such as the Pettis integrability defined below. The same
can happen when we replace vector valued functions by
cylindrical elements.

We say that a cylindrical element X :E′ → L0 is Pettis
integrable if X(E′) ⊂ L1 and for each A ∈ A there exists xA ∈ E
such that

〈xA, x
′〉 =

∫

A
Xx′ dP for each x′ ∈ E′ . (4)

We write
∫

A
X dP = xA . (5)

and call it the Pettis integral of the cylindrical element X.

Replacing in (4) and (5)X by a vector valued function Ef we obtain
the classical definition of the Pettis integral (see [15]).

General properties of Pettis integrable cylindrical elements
are in ref. ([16]). Here we will show relations between Pettis
integrability and continuity of cylindrical elements.
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We have
Proposition 1. ([16, 17]) Let E be a sequentially complete l.c.s.
space and X :E′ → L1 a cylindrical element. Then the following
conditions are equivalent

(1) T is Pettis integrable
(2) T is (τ (E′,E), ‖ · ‖L1 ) continuous.

Actually, the implication (2) ⇒ (1) in the above Proposition
is valid without the assumption of sequential completeness
(see [17]).

Let us also mention about two properties of Pettis integrable
cylindrical elements which will be used later:
Proposition 2. If E and F are l.c.s., S :E → F is a continuous
linear operator and X :E′ → L1 is a Pettis integrable cylindrical
element, then the linear operator X ◦ S∗ : F′ → L1 is Pettis
integrable and

S

(∫

A
X dP

)
=

∫

A
X ◦ S∗ , for each A ∈ A .

Proposition 3. If X is a Pettis integrable cylindrical element then
for each absolutely convex neighborhood of 0 in E

sup
x′∈U◦

∫

�

|Xx′| dP < ∞

The proofs of the above properties can be found in [17].
It follows fromProposition 3 that if E is a normed space thenX

is a bounded linear operator form E′ to L1 with the operator norm

‖X‖ = sup
‖x′‖≤1

∫

�

|Xx′| dP

Notice that σ (L1, L∞) compactness of a family of functions
in L1 is equivalent to its uniform integrability (Dunford-Pettis
Theorem) thus using the Vallèe-Poussin Theorem (see e.g., [18])
we obtain
Corollary. If p > 1, E is a reflexive Banach space and X :E′ → Lp

a continuous cylindrical element then X is Pettis integrable.
Let E be an l.c.s. and let Lp(E), p ≥ 1, denote the space of all

separably valued and weakly p-integrable functions x(·) :� → E
with the topology generated by the family of seminorms

|||x(·)|||U◦ = sup
x′∈U◦

∫

�

|〈x(·), x′〉|p dP < ∞ ,

where U are convex and circled neighborhoods of zero in E.
It follows from ([16], Prop. 3.2, Th. 3.1 and Th. 3.2) that if E

is a locally convex Fréchet space and p = 1 then the completion
L̂1(E) consists of all cylindrical elements X :E′ → L1 which are
(τ (E′,E), ‖·‖L1 ) continuous and compact linear maps. In general,
we will denote by L̂p(E) the completion of Lp(E).

If X ∈ L̂p then for each fixed g ∈ Lq, 1p +
1
q = 1, the map

x′ 7−→ gXx′

from E′ to L1 is a Pettis integrable cylindrical element.
Let us also recall some relations between cylindrical elements

and cylindrical measures on a locally convex space E. Denote by

C(E) the σ -field generated by cylindrical sets in E, i.e., the sets of
the form

{x ∈ E :(〈x, x′1〉, . . . , 〈x, x
′
n〉) ∈ B} ,

where n ∈ N, x′1, . . . , x
′
n ∈ E′, B ∈ BRn (BRn denotes the Borel

σ -field in R
n).

Let µ be a finitely additive measure on C(E) and let

µx′1 ,...,x
′
n
(B)

df
=µ{x ∈ E :(〈x, x′1〉, . . . , 〈x, x

′
n〉) ∈ B} .

The measure µ is called cylindrical if for each n ∈ N and
x′1, . . . , x

′
n ∈ E′ µx′1 ,...,x

′
n
is a probability measure on (Rn,BRn).

Each cylindrical element X determines a cylindrical measure
µ defined as

µ({x ∈ E :(〈x, x′1〉, . . . , 〈x, x
′
n〉) ∈ B}) = P{(Xx′1, . . . ,Xx

′
n) ∈ B} .

Conversely, if µ is a cylindrical measure on C(E) then there
exist a probability space (�,A, P) and a cylindrical element
X :E′ → L0(�,A, P) satisfying the above equality (see [19]). The
correspondence between cylindrical measures and cylindrical
elements is one-to-one.

If µ is a cylindrical measure and Xµ the corresponding
cylindrical element such that

∫

�

|Xµx
′|p dµ < ∞ , for each x′ ∈ E′ ,

and some p > 0, then we say that µ has a weak p-order.
An important property of a cylindrical measure is its

concentration on some families of sets. Namely, letS be a family
of subsets of E and µ a cylindrical measure on C(E). We say that
µ is scalarly concentrated on S if for each ε > 0 there is A ∈ S

such that

(µx′ )∗(x
′(A)) ≥ 1− ε ,

for each x′ ∈ E′, where ∗ denotes the inner measure.
Assume that S is the family of all compact circled subsets

of E and denote by E′
S

the space E′ with the topology of
uniform convergence on the sets from S. One of the basic
relations between Pettis integrable cylindrical elements and
the corresponding cylindrical measures is contained in the
following Proposition.
Proposition 4. Let E be a complete l.c.s., S the family of all
compact circled subsets of E and X a cylindrical element. If X ∈
L̂p(E), p ≥ 1, then the corresponding cylindrical measure µ is
scalarly concentrated onS.

The proof of this Proposition is based on the fact that X is
(τ (E′,E), ‖ · ‖Lp ) continuous cylindrical element from E′ to Lp

which transforms equicontinuous subsets of E′ into relatively
compact sets in Lp, p > 1 (see also the proof of Th.4.1 in [16]).

The converse implication is not true in general even for
Radon measures but is true for cylindrical Gaussian measures
and corresponding L2–valued cylindrical elements (see [16]
for details).
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3. TIME OPERATOR

Before defining time operator acting on cylindrical elements let
us remind the classical construction which is based on the idea
of Misra-Prigogine-Courbage [3]. Let us consider an abstract
dynamical system given by the quadruple (�,A,µ, {St}), where
{St} is a group of one-to-one µ invariant transformations of �

and either t ∈ Z or t ∈ R.
A K-flow (we will say K-system) is a probability space (�,A, P)

with a group of measure preserving transformations St , t ∈ R, of
�. We assume that there exists a σ -algebraA0 ⊂ A such that the

family {At}t∈R,At
df
= St(A0) has the properties

(i) As ⊂ At , for s < t
(ii) σ

(⋃
t∈R At) = A

(iii)
⋂

t∈R At = A−∞ – the trivial σ -algebra, i.e., the algebra of
sets of measure 0 or 1.

where σ
(
∪t∈RAt) stands for σ -algebra generated byAt , t ∈ R.

We replace deterministic evolution of phase space points by
the Liouville evolution of probability density functions putting

Ut ρ(ω) = ρ(S−tω) , (6)

where ρ is A measurable function on �. The invariance of the
measure µ implies that the transformations Ut considered as
operators on L2 = L2(�,A,µ) form a unitary group.

In this setting a possible approach to the problem of
irreversibility can be formulated as in section 1. Namely it
is constructed the Lambda operator connecting the reversible
group {Ut}t∈R with an entropy increasing evolution semigroup
{Wt}t≥0. It is assumed that 3 is a bounded linear operator on
L2(�,A,µ) with densely defined inverse 3−1 such that Wt =
3Ut3

−1 defines, for t ≥ 0, a continuous one-parameter group of
contractions. For physical reasons it is also additionally assumed
that 3 is positivity preserving, 31 = 1 and ‖Wt(ρ − 1)‖
decreases strictly monotonically to 0, as t → +∞, for all
densities ρ 6≡ 1. The last condition means that the entropy of
the system tends strictly monotonically to zero when the system
approaches equilibrium.

In classical dynamical systems Lambda transformations have
been constructed on the Lp spaces associated with K-systems as
functions of time operators. The main idea of such construction
is ([3] see also [20–22]) that each K-system determines the family
{Et}t∈R of conditional expectations,

Et = EAt ,

which in turn defines the operator T on each space Lp =
Lp(�,A, P), p ≥ 1,

T =

∫ +∞

−∞
tdEt , (7)

which is called the time operator.
In the case of discrete time, t ∈ Z, we consider the group

{Sn}n∈Z generated by a single measure preserving transformation

S, i.e., Sn = Sn, for n 6= 0, and S0 = I. The time operator T is then
defined as

T =

∞∑

n=−∞

nEn .

If p = 2 then the above integral, or sum, defining T is just the
spectral resolution of a selfadjoint operator. In this case {Ut}t∈R
defined in (6) is a unitary group on L2 satisfying the following
relation with T

UtTU−t = T + tI , (8)

which is equivalent to (2).
The transformation 3 is defined, up to constants, as an

operator function 3 = 3(T). Namely

3 = f (T)+ E−∞

where E−∞ is the projection on the space L2(A−∞) = R. The
function f is assumed to be positive, decreasing on R, f (−∞) =
1, f (+∞) = 0 and such that ln f is concave on R. Then, for any
such function f the corresponding operator 3 is injective on L2,
one-to-one with densely defined inverse (see ref. [21]). Moreover
the semigroup

Wt
df
=3Ut3

−1 , t ≥ 0 , (9)

is Markovian and ‖Wtp − 1‖L2 decreases to 0, for each density
ρ 6= 1 and together with {Ut} satisfies the relation (1).

The time operator as defined in (7) uses the family of
conditional expectations {Et} which can be treated as a spectral
family of projectors on the Hilbert space L2 which defines a
selfadjoint operator or, for a given ρ ∈ L2, {Etρ} can be
considered as a martingale with respect to the filtration {At}. In
the latter case the integral defining T can be understood as a
stochastic integral with respect to a martingale. Such approach
allows to define time operators on larger classes of function,
for example on L1. Moreover the stochastic integral technique
allows to replace the family of projectors {Et} by a family of
operators {Mt} such that for a given ρ {Mtρ} is a martingale with
respect to {At}. In fact, such a generalization of the definition of
time operators has been proposed in [22]. The extension of the
definition of T on L1 spaces can be found in [23].

It should be stressed that the abovementioned extension of the
time operator concerns such states (probability measures) which
have densities. However, in statistical physics the class of states
can be larger and contain, for example, singular measures. There
were successful attempts of such extension of the domain of time
operators (see [2, 5, 6]).

We will define now a time operator acting on p-cylindrical
elements. As we have seen in section 2 p-cylindrical element is
actually a generalization of a weakly p-integrable function with
values in a topological vector space. Equivalently, time operators
will act on cylindrical measures on a topological vector spaces.
This is a significant step beyond the classical Lp space.

We have to define first the conditional expectation of a
cylindrical element. Let EB : L1(A) → L1(B) denote the usual
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operator of the conditional expectation (see [18]), and let
Y :E′τ → Lp, p ≥ 1, be a p-cylindrical element obtained as the
composition of operators EB and X. Note that if X :E′τ → Lp is
continuous, then Y = EBX is also continuous. Thus, if X :E′τ →
Lp is continuous, 1 ≤ p < ∞, then for each sub σ -field B ⊂ A

the 1-cylindrical element Y = EBX :E′τ → L1 satisfies

∫

B
YdP =

∫

B
EBXdP =

∫

B
XdP ,

for each B ∈ B.
The above definition of conditional expectation applies, in

particular, to Banach space valued functions. Indeed, each
function x(·) :� → E, where E is a Banach space, which has a
weak p-order defines a cylindrical element X :E′τ → Lp. Thus we
can define the conditional expectation of x(·)

EBx(·) = EBX .

It should be noticed that it is not always possible to define the
conditional expectation of a Banach space valued function which
is not strongly integrable. Indeed one can find (see [24]) a Pettis
integrable function x(·) with values in a reflexive Banach space E
and a sub σ -algebra B for which does not exist any B measurable
function y(·) :� → E such that

∫

B
〈y(·), x′〉dP =

∫

B
〈x(·), x′〉dP , for B ∈ B , x′ ∈ E′ .

However, we have shown above that this conditional expectation
exists as a cylindrical element although not generated by a
measurable function. Thus the replacement of Pettis integrable
functions by the corresponding cylindrical elements allows
to give a meaning to a generalization of the concept of
conditional expectation.

Let us assume that E is a complete l.c.s. and I a linear ordered
set. A family {Xt}t∈I of cylindrical elements Xt :E

′ → Lp, t ∈
I , will be called the p-cylindrical process. If each Xt is Pettis
integrable then the process will be also called Pettis integrable.
Recall that Pettis integrability is equivalent (τ (E′,E), ‖ · ‖L1 )
continuity - Proposition 1.

Let {Bt}t∈I be a family of σ -fields such that Bt ⊂ A and
Bt1 ⊂ Bt2 , for t1 < t2. A p-cylindrical process {Xt}t∈I , where
p ≥ 1, is called p-cylindrical martingale if it is adapted with
respect to {Bt}t∈I , each Xt is (τ (E

′,E), ‖ · ‖Lp ) continuous, and
EBsXt = Xs, for s < t.

It is easy to show that a τ -continuous p-cylindrical process
{Xt}t∈I is p-cylindrical martingale if and only if {Xtx

′}t∈I is a
real martingale for each x′ ∈ E′. The proposition below shows
that for cylindrical martingales we have an analog of the classical
convergence theorem (see [25]).
Proposition 5. Let {Xtx

′}t∈I be a discrete time p-cylindrical
martingale with respect to {Bt}t∈I , p > 1, and assume that E′τ
is barreled Barreled space. If

sup
t∈I

E|Xtx
′|p < ∞ , for each x′ ∈ E′ ,

then there exists a continuous cylindrical element X :E′τ → Lp

such that

Xt = EBtX , for each t ∈ I ,

and Xt converges to X in Lp norm.
This proposition is not true in the case p = 1. However

assuming that

E sup
t

|Xtx
′| < ∞ , for each x′ ∈ E′ , (10)

we obtain an analog of Proposition 5.
In the case of continuous time we can obtain similar results

under the additional assumption of right continuity of the
considered martingales. The assumption of right continuity of a
martingale {mt} allows to define the stochastic integral

∫
f (t) dmt ,

where f (t) is a Borel measurable function (see [26]).
The object of our interest will be the cylindrical martingales

generated by a single cylindrical element, like in the thesis of
Proposition 5, associated with the filtration {Bt}t∈IR determined
by a given. K-flow.

Let {At} be a family of σ -algebras of a given K-flow and {Mt}
an associated operator valuedmartingale i.e., a family of bounded
operators on Lp, p ≥ 1, such that {Mt} is a right continuous
martingale with respect to {At}. In the classical approach (see
[22] for the details) it was assumed that {Mt} acts on L2, has
orthogonal increments: for s1 ≤ s2 < t1 ≤ t2 (Ms2 −
Ms1 )(Mt2 − Mt1 ) = 0 and that M∞ is a positive one-to-one
operator satisfying

M∞1 = 1 M∞Ut = UtM∞ for each t ∈ IR ,

where Ut is given by (6). It was shown that for a fixed monotonic
function f on R the transformation

ρ 7→

∫
f (t) dMtρ +M−∞ρ , ρ ∈ L2 . (11)

is well-defined on the domain Df which is dense in L2. Taking
f (t) = t we obtain the time operator. If we assume that f is a
positive non-increasing function on R with limt→−∞ f (t) = 1,
limt→∞ f (t) = 0 and such that for each t ∈ R the quotient
f (s)/f (s − t) is a bounded and non-increasing function of s
then (11) defines the discussed above similarity transformation
3 which in turn defines the Markov semigroup (9).

Note that taking Mt = Et , where Et = EAt , we obtain
an operator valued martingale satisfying the required properties.
Moreover, a cylindrical element X with values in Lp defines the p-
cylindrical martingale {EtX}. Therefore, in the case p = 2 we can
apply directly the above construction putting in (11) Xx′, x′ ∈ E′,
instead of ρ. Replacing the space L2 by L2 ⊖ 1 we can omit the
second component in (11) obtaining the following operator f (T)
acting on cylindrical elements

f (T)(X) =

∫
f (t) dEtX . (12)

We can not apply directly the above approach in the case p ≥
1 , p 6= 2. Here we have to use a different approach to stochastic
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integration. The theory of integrals
∫
f (t) dmt , where {mt} is a

p-integrable martingale can be found in Bichteler’s paper [26].
This integral is defined first for simple functions (or processes)
f (t). Then it is said that {mt} is an Lp-integrator if {mt} is p-
integrable and the linear operator f 7→

∫
f (t) dmt from the space

of elementary integrands to Lp has an extension satisfying the
dominated convergence theorem (see Def.1 in [26]).
Theorem 1. Let E be an l.c.s. and (�,A,µ, {St}) a K-flow. If
1 < p < ∞ then for any simple function f with a bounded
support the linear operator on L(E′, Lp)

f (T)(X) =

∫
f (t) dEtX .

is correctly defined, for each x′ ∈ E′, the martingale {EtXx
′} is an

Lp-integrator and we have

∥∥∥∥
∫

f (t) dEtXx
′

∥∥∥∥
Lp

≤ Cp‖EτXx
′‖Lp ,

where τ is such that f (t) = 0, for |t| > τ and Cp is a constant
which depends only on p.

If p = 1 then the above integral exists and the martingale
{EtXx

′} is an L1-integrator under the additional assumption that

E(|Xx′| log |Xx′|) < ∞ , for each x′ ∈ E′ , (13)

Proof. If p > 1 we can apply (3.8) from [26] which says that a
p-intergrable martingale is an Lp-integrator. If p = 1 we use Th.
7.2 from [26] and the additional assumption (13) to show that for
each x′ ∈ E" the martingale {EtXx

′} is an L1 integrator. Note that
because the martingales satisfy the assumption (13), in the latter
case, they are elements of the Hardy spaceH1, i.e., (10) is satisfied.

It follows from Theorem 1 that f (T) can be defined for
simple functions with bounded support. However, because of
the dominated convergence theorem we can extend the class of
functions taking, for example, f (t) = t to obtain the operator

T =

∫
t dEt ,

which acts on the space L(E′, Lp).
Let {Ut} be the evolution group on L(E′, Lp) associated with

the transformations {St}, i.e., for X ∈ L(E′, Lp), UtX is a
cylindrical element of the form

(UtX)x
′(ω) = Xx′(S−tω) .

Using the relation Es+tUt = UtEs valid for conditional
expectations associated with the K-system and the evolution {St}
on the ordinary Lp-space (see e.g., [21]) we obtain that also

Es+tUt = UtEs .

This leads to the following
Corollary. The operator T is a time operator on the space
L(E′, Lp) associated with the evolution {Ut}.

We can also take as f a bounded monotonic function with
the listed above properties to obtain an analog of the operator

Lambda, 3 = f (T). An important example of applications the
above construction of T is the possibility to define time operators
on the spaces of weakly integrable E-valued functions. This is
because the constructed above stochastic integral transforms
cylindrical elements into cylindrical elements. If we take as an
argument of T the cylindrical element generated by an E valued
function then after the transformation it need not to remain a
function (see remarks concerning the conditional expectation
of Pettis integrable functions). However f (T) leaves the space
L(E′, Lp) invariant.

An important question is: When a cylindrical element is
generated by a measurable function defined on � with values
in the vector space E? Similar question concerns martingales:
When the integral transformation of a p-cylindrical martingale
generated by a vector valued function will be still a function
generated martingale? The rest of this section is devoted to an
answer to these questions.

Let us introduce first the following definition:
We say that X is p-decomposable, p > 0, if there exists a
measurable function x(·) :� → E such that

10 Xx′ = 〈x(·), x′〉, for each x′ ∈ E′

20
∫
�
‖x(·)‖p dP < ∞ , for each continuous seminorm ‖·‖ on E.

Decomposability of a cylindrical element depends both on
properties of X as a linear operator and on the topological
properties of the vector space E. We will consider the problem
of decomposability in both cases. We begin with the dependence
of the decomposability of a cylindrical element X :E′ → L1 on
the properties of E. It is obvious that if E is finite dimensional
then each 1-cylindrical element is 1-decomposable. If E is infinite
dimensional then the space L1(E) of Pettis integrable functions
on � with values in E, introduced in section 2, is not complete
in general and its completion L̂1(E) may contain cylindrical
elements which are not associated with any measurable function.
However, the transformations like conditional expectation or
time operator leave L̂1(E) invariant. Thus we can ask if there
are locally convex spaces for which this completion remains a
function space. The next theorem shows such a possibility.
Theorem 2. Let E be a locally convex nuclear Fréchet space. Then
each element of L̂1(E) is 1-decomposable.

Proof. In the proof we will use some results concerning tensor
products of l.c.s.. Let us first introduce the notation and remind
the relevant facts (see [27]). Let E be an l.c.s., F a Banach space
and E ⊗ F the algebraic tensor product. We define two basic
topologies on E ⊗ F. First is the ε-topology generated by the
seminorms

εU(z) = sup
x′∈U◦

sup
y′∈B◦

|〈z, x′ ⊗ y′〉| , for z ∈ E⊗ F ,

where U runs over a basis of convex and circled neighborhoods
of 0 in E and B is the unit ball in F. By E⊗̂εF we denote the
completion of E⊗ F in the ε-topology.

The second topology, called the projective topology, is
generated by the seminorms

πU(z) = inf
∑

i

pU(xi)‖yi‖
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where the infinitum is taken over all representations of the
element z =

∑n
i=1 xi ⊗ yi and U is an absolutely convex

neighborhood of 0 in E. By E⊗̂πF we denote the completion of
E⊗ F in the projective topology.

Note that the ε-topology and the projective topology are
respectively the weakest and the strongest topology on the
tensor product of two l.c.s. which are generated by cross-
seminorms (see [27]).

It is known that if E is a Banach space then E⊗̂πL
1 is

norm isomorphic to the space L1(E) of all E valued Bochner
integrable functions f on � endowed with the norm ‖f ‖L1(E) =∫
�
‖f (ω)‖ P(dω). If E is just an l.c.s. then E⊗̂πL

1 is isomorphic
with L1(E) defined as the space of all strongly measurable
functions f such that ‖f (·)‖ is integrable for each semi-norm ‖ · ‖
on E.

We have shown in [16] that if E is a separable l.c.s. Fréchet
space then L̂1(E) can be identified (is isomorhic) with E⊗̂εL

1.
However, when E is a complete nuclear l.c.s. the latter space is
isomorphic to E⊗̂πL

1 (see [27]). Therefore, each element from
L̂1(E) is represented by a Bochner integrable function which ends
the proof.

It follows from the above theorem that for a nuclear space
valued functions the Pettis integrability is equivalent to the
Bochner integrability like in the finite dimensional case.

Let now consider the dependence between decomposability
and operator properties of cylindrical elements. It is known that
if E = H – is a Hilbert space then a 2-cylindrical martingale
X :H′ → L2 is 2-decomposable if and only if the mapping

H′ ∋ h 7→ Xth ∈ L2

is a Hilbert-Schmidt operator for any t (see [14]).
We can also decompose cylindrical elements by composing

them with Hilbert-Schmidt operators or, more generally, with
absolutely summing operators. The problem of decomposability
of a cylindrical element acting on a Banach space through a
composition with an absolutely summing operator has been
already resolved (see [25, 28] and references therein). Here, we
will resolve this problem in the case of cylindrical elements acting
on locally convex spaces.

If E and F are normed spaces and 0 < p < ∞ then a linear
operator S :E → F is said to be p-absolutely summing if there
exists a constant C such that for each x1, . . . , xn ∈ E

n∑

i=1

‖Sxi‖
p ≤ C sup

‖x′‖≤1

n∑

i=1

|〈xi, x
′〉|p .

In the sequel we will use the following Pietsch
Majorization Theorem:
Proposition 6. ([29], p. 232) Let E and F be normed spaces. An
operator S :E → F is p-absolutely summing, 0 < p < ∞, if there
exist a constant C and a Radon probability measure µ on the unit
ball U◦ of E′, where U◦ is equipped with the σ (E′,E) - topology,
such that

‖Sx‖p ≤ C

∫

U◦
|〈x, x′〉|p dµ(x′) for all x ∈ E .

We shall now extend the definition of the p-absolutely
summing operatoron operators acting on an l.c.s. with values in
a t.v.s.. Consider first the case of an operator S :E → F, where F
is a quasi-normed space. Recall that a quasi-norm on F is a non-
negative positively defined homogenous function ‖ · ‖ such that
for some r, 0 < r ≤ 1, we have

‖x+ y‖r ≤ ‖x‖r + ‖y‖r , x, y ∈ E .

We then say that the space F is r-normed.
Remark:

(i) An r-normed space is s-normed for 0 < s ≤ r ≤ 1
(ii) If 0 < r ≤ 1 then the space Lr is r-normed.

The definition of a p-absolutely summing operator S :E → F, for
E normed and F quasi-normed space, is the same as in the case
of normed spaces. Moreover, the Proposition 6 remains true and
we have
Proposition 7. ([29]) Let � be a compact Hausdorff space and
ν a probability measure on �. Then the canonical embedding
of the space C(�) (continuous functions on �) into Lp(�, ν) is
p-absolutely summing for 0 < p < ∞.

Before we turn to the further generalization of the concept
of p-absolutely summing operators we shall introduce first
some auxiliary normed spaces and decompositions of bounded
operators on topological vector spaces.

Let E be an l.c.s. and U an absolutely convex neighborhood of
0 in E. By EU we denote the normed space

(
E/p−1

U ({0}), pU(·)
)

where pU(·) is the Minkowski functional of U. Let ÊU denotes
the completion of EU in the norm pU(·) and 8U the canonical
map from E into EU (or into ÊU). Of course 8U is continuous.
Now, let F be a t.v.s.. A subset B of F is said to be p-absolutely
convex if whenever it contains x and y it contains all αx + βy
with |α|p+|β|p ≤ 1. If p = 1 then B is absolutely convex. We put

‖x‖B = inf{λ > 0 : x ∈ λB} ,

and FB =
∞⋃
n=1

nB. Then (FB, ‖ · ‖B) is p-normed and the

canonical injection
9B : FB → F is continuous. Moreover, FB is complete if B is
complete.

A subset B of F is called quasi-absolutely convex if it is
p-absolutely convex for some 0 < p ≤ 1.

Let E be an l.c.s., F be a t.v.s. and S : E → F a bounded linear
operator, i.e., such that there exists a neighborhood U of 0 in E
for which S(U) is bounded. Then S can be decomposed in the
following way

E F

EU FB

8U

S

S0

9B

where U is an absolutely convex neighborhood of 0 in E and B
is a bounded subset of F. If B can be chosen quasi-absolutely
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convex, then S0 is a continuous linear operator from the normed
space EU into the quasi-normed space FB. Moreover, if B is
complete then S0 has the continuous extension S0 from the
Banach space ÊU into FB. Note that if F is an l.c.s. then FB is a
normed space.

We can now define p-absolutely summing operator on a
locally convex space. Let E be an l.c.s. and F be a t.v.s.. A linear
operator S :E → F is p-absolutely summing, 0 < p < ∞,
if there exist an absolutely convex neighborhood U of 0 in
E and a bounded quasi-absolutely convex subset B of F such
that S0 :EU → FB is p-absolutely summing. This definition is
analogous with the definition of nuclear operators on locally
convex spaces (see [27]).

The next result gives sufficient conditions for p-
decomposability of cylindrical elements. It is an extension
of the Kwapien’s Theorem ([28], Th. 2) as well as ([25],
Th. 1.1) on the case of absolutely summing operators on
locally convex spaces. Moreover, the method of absolutely
summing operators on locally convex spaces allows to
simplify the proof of ([28], Th. 2) and contains the
case 0 < p < 1.
Theorem 3. Let E, F be a quasi-complete l.c.s. and let S :E → F
be p-absolutely summing linear operator, p > 0. If X :E′τ → Lp

is a continuous cylindrical element and either p ≥ 1 or F′ has the
approximation property then

(i) Y = X ◦ S∗ is p-decomposable by an F valued function y(·)
(ii) If Lp is separable then for each absolutely convex

neighborhood U of 0 in E and each continuous seminorm ‖ · ‖
on F we have

∫

�

‖y(·)‖p dP ≤ C

∫

U◦
‖Xe′‖

p
Lp dµ(e

′)

where µ is a Radon measure on (U◦, σ (E′,E)) and C is
some constant.

Proof. Let U be an absolutely convex closed neighborhood
of 0 in E and B an absolutely convex closed subset of F such
that S0 :EU → FB is p-absolutely summing. Because F is quasi-
complete, FB is a Banach space and S0 extends to the map
S̄0 : ÊU → FB, which is also p-absolutely summing. Since (EU)

′ =
(ÊU)

′ = E′U◦ and (FB)
′ = F′B◦ , (S̄0)

∗ = S∗0 : F
′
B◦ → E′U◦ . Moreover

9V◦ : F′V◦ → F′τ is continuous. Therefore applying Kwapien’s
Theorem ([28], Th.2) to the operators S∗0 and X ◦ 9V◦ acting on
Banach spaces, we obtain that that S∗0X9V◦ is p-decomposable by
yB(·) :� → (F′B)

′ = FB (if F′ has the approximation property
then also F′B◦ has it (cf. [27] III, 9.2). Using the continuity of the
cannonical injection 9B : FB → F we see that the function

y(·) = 9ByB(·) :� → F

decomposes X ◦ S∗. Furthermore, let us note that U◦ is the unit
ball in the space (EU)

′ which is compact in σ (E′,E)-topology.
Thus using ([25] Th.1.1 (ii) we obtain the inequality

∫

�

‖y(·)‖
p
B dP ≤ C

∫

U◦
‖Xe′‖

p
Lp dµ(e

′)

where the measure µ is defined as in Proposition 6. If ‖ · ‖ is
a continuous seminorm on F then ‖ · ‖ ≤ C1‖ · ‖B′ for some
constant C1. This ends the proof of this theorem.
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