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This research communicates the triple diffusion perspective of Eyring–Powell

nano-materials configured by a periodically moving configuration. The thermal

consequences of variable natures are utilized as a novelty. Combined magnetic

and porous medium effects are also involved, which result in a magneto-porosity

parameter. The thermophoretic and Brownian motion aspects are reported by using

Buongiorno’s nanofluid theory. The formulated flow equations in non-dimensional forms

are tackled with the implementation of a homotopy analysis algorithm. A detailed

physical investigation against derived parameters is presented graphically. Due to

periodically accelerated surface, the oscillations in velocity and wall shear stress have

been examined.

Keywords: eyring–powell nanofluid, triple diffusion, variable thermal conductivity, oscillatory stretching sheet,

homotopy analysis method

INTRODUCTION

Recent advances in nanotechnology have discovered an advanced source of energy based on
utilization nanoparticles. Nanofluids have been interacted for the impressive thermal properties
that turn into enhancement of energy transportation. The enhancement of thermo-physical
features of conventional base liquids with the addition of micro-sized metallic particles is a
relatively new and interesting development in nanotechnology. Nanoparticles attain microscopic
size, having a range between 1 and 100 nm. Recently, the investigations on nano-materials become a
new class of intense engineering research due to inherent significances in biomedical, chemical, and
mechanical industries, electronic field, nuclear reactors, power plants, cooling systems, diagnoses,
diseases, etc. The primary investigation on this topic was reported by Choi [1], which was further
worked out by several scientists, especially in the current century. The convective features for
nano-materials based on thermophoresis and Brownian movement phenomenon were notified
by Buongiorno [2]. This investigation revealed that the role of thermophoresis and Brownian
motion factors was quite essential for convective slip mechanism. Khan and Pop [3] discussed the
feature of nanofluid immersed in base material confined by moving configuration. Sheikholeslami
et al. [4] reported the features of thermal radiation in magneto-nanoparticle flow between
circular cylinders. The slip flow in nano-material due to porous surface has been reported by
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Shahzadi et al. [5]. Khan et al. [6] directed their investigation
regarding stability prospective of nanoliquids in a curved
geometry and successfully estimated a dual solution for
the formulated problem. Turkyilmazoglu [7] imposed zero
mass flux constraints regarding asymmetric channels filled by
nanoparticles. Vaidya et al. [8] enrolled the fundamental thermal
characteristics in the three-dimensional (3D) flow of Maxwell
nanofluid where analytical expressions were developed by using
optimal homotopic procedure. Hayat et al. [9] focused on the
thermal properties and developed the 3D flow of Oldroyd-B
fluid featuring mixed convection effects. Some valuable closed-
form expressions for a nanofluid flow problem in porous space
have been computed by Turkyilmazoglu [10]. Krishna and
Chamkha [11] investigated the ion and hall slip effects in the
rotating flow of nanofluid configured by a vertical porous plate.
The enhancement of heat transfer by using hybrid nanofluids
having variable thermal viscosity was reported by Manjunatha
et al. [12]. Sardar et al. [13] used non-Fourier’s expressions for
Carreau nanofluid and suggested some useful multiple numerical
solutions successfully. Alwatban et al. [14] performed a numerical
analysis to examine the rheological consequences in Eyring–
Powell fluid subjected to the second-order slip along with
activation energy. The stability analysis for bioconvection flow
of nanofluid was reported by Zhao et al. [15]. Alkanhal et al. [16]
involved thermal radiation and external heat source for nanofluid
enclosed by a wavy shaped cavity. Kumar et al. [17] discussed
the thermo-physical properties of hybrid ferrofluid in thin-film
flow impacted by uniform magnetic field. Bhattacharyya et al.
[18] evaluated the characteristics of different carbon nanotubes
for coaxial movement of disks. Mekheimer and Ramdan [19]
investigated the flow of Prandtl nanofluid in the presence of
gyrotactic microorganisms over a stretching/shrinking surface.

Recently, researchers specified their attention toward the
complex and interesting properties of non-Newtonian meterials
due to their miscellaneous application in many industries and
technologies. The non-Newtonian materials due to convoluted
features attracted special attention especially in the current
century. The novel physical importance of such non-Newtonian
liquids in various engineering and physical processes, biological
sciences, physiology, and manufacturing industries is associated
due to complex rheological features. Some useful applications
associated with the non-Newtonian fluids include polymer
solutions, certain oil, petroleum industries, blood, honey,
lubricants, and many more. It is commonly observed that
distinctive features of such non-Newtonian fluid cannot be
pointed out via single relation. Therefore, different non-
Newtonian fluid models are suggested by investigators according
to their rheology. Among these, Eyring–Powell fluid is inferred
from kinetic laws of gases instead of any empirical formulas. This
model reduces the viscous fluid at both low and high shear rates
(see Powell and Eyring [19]). Gholinia et al. [20] carried out the
homogenous and heterogeneous impact in flow of Powell–Eyring
liquid due to rotating. Khan et al. [21] focused on viscosity-
dependent mixed convection flow of Eyring–Powell nanofluid
encountered by inclined surface. Salawu and Ogunseye [22]
reported the entropy generation prospective in Eyring–Powell
nanofluid featuring variable thermal consequences and electric

field. Another useful continuation performed by Abegunrin et al.
[23] examined the change in the boundary layer for the flow of
Eyring–Powell fluid subjected by the catalytic surface reaction.
Rahimi et al. [24] adopted a numerical technique to compute the
numerical solution of a boundary value problem modeled due to
the flow of Eyring–Powell fluid. Reddy et al. [25] involved some
interesting thermal features, like activation energy, chemical
reaction, and non-linear thermal radiation in the 3D flow
of Eyring–Powell nanofluid induced via slandering surface.
Hayat and Nadeem [26] examined the flow of Eyring–Powell
fluid and suggested modification in energy and concentration
expressions by using generalized Fourier’s law. Ghadikolaei et al.
[27] reported the Joule heating and thermal radiation features
inflow of Eyring–Powell non-Newtonian fluid in a stretching
walls channel.

The double diffusion convection is a natural phenomenon
that encountered multiple novel applications in area soil
sciences, groundwater, oceanography, petroleum engineering,
food processing, etc. The double-diffusive convection refers to
the intermixing of components of two fluid having different
diffuse rates. However, the situation becomes quite interesting
when double-diffusive convection depends upon more than
two components of fluids. Examples of such multiple diffusive
phenomenons include seawater, molten alloy solidification,
and geothermally heated lakes. The triple diffusion flow
appears in diverse engineering and scientific fields like geology,
astrophysics, disposals of nuclear waste, deoxyribonucleic acid
(DNA), chemical engineering, etc. [28–30].

After careful observation of the previously cited work, it
is claimed that no efforts have been made to report the
triple diffusion flow of Eyring–Powell nanofluid induced by
an oscillatory stretching surface with variable thermal features.
Although some investigations on flow that is due to periodical
acceleration have been available in the literature, thermodiffusion
features for Eyring–Powell nanofluid are not studied yet.
Therefore, our prime objective of this contribution is to report
the triple diffusion aspects of Eyring–Powell nanofluid flow
by using variable thermal properties. The most interesting
convergent technique homotopy analysis procedure is followed
to simulate the solution [31–35]. The graphs are prepared
to see the impact of different flow parameters with relevant
physical consequence.

FLOW PROBLEM

To develop governing equations for unsteady flow of Eyring–
Powell nanofluid, we have considered a periodically stretching
surface where x-axis is assumed along with the stretched
configuration, whereas y-axis is taken normally. The source
of induced flow is based on the periodically moving surface
where amplitude of oscillations are assumed to be small. Let
velocity of the moving surface as u = uω = bx sinωt, b as
stretching rate, ω being angular frequency, whereas t represent
time. The uniform features of the magnetic field are reported by
implementing it vertically. Let T represent the temperature, C
solutal concentration, whereas 8 report the nanoparticle volume
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fraction. Furthermore, T∞, C∞, and 8∞ denote free stream
nanoparticle temperature, free stream solutal concentration, and
volume fraction of nanofluid, respectively. After using such
assumptions, the flow problem is modeled through the following
equations [22, 33]:

∂u

∂x
+

∂v

∂y
= 0, (1)

u

(

∂u
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)
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(
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(
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, (5)

where ν is viscosity, ρf fluid density, (β∗,C) fluid parameters,
ϑ permeability of porous medium, σe electrical conductivity,
α1 thermal diffusivity, DKTC Dufour diffusivity, τT =
(ρc)p/(ρc)f ratio of heat capacity of nanoparticles to heat
capacity of fluid, DB Brownian diffusion coefficients, Ds solutal
diffusivity, DT thermophoretic diffusion coefficient, whereas
DKCT Soret diffusivity.

Following boundary assumptions are articulated for current
flow problem

u = u (x, t) = uw sinωt = bx sinωt, v = 0,

T = Tw, C = Cw,8 = 8w at y = 0, (6)

u → 0, v → 0, T → T∞, C → C∞,8 → 8∞ at y → ∞.

(7)

In order to suggest modification in energy equation (3), we used
the following relations for variable thermal conductivity [33, 34]

K (T) = K∞

[

1+ ε
(T − T∞)

1T

]

, (8)

where K∞ ambient fluid conductivity and ε thermal dependence
conductivity constant. Now, before perfume analytical
simulations, first, we reduce the number of independent variables
in the governing equations by using the following variables:

ξ =
(

b

ν

)1/2

y, τ = tω, u = uwfy (ξ , τ) ,

v = −
√

νbf (ξ , τ) , (9)

θ (ξ , τ) =
(T − T∞)

(Tw − T∞)
,ϕ (ξ , τ) =

(

(C − C∞)

Cw − C∞

)

,φ (ξ , τ)

=
(8 − 8∞)

(8w − 8∞)
, (10)

The dimensionless set of equations in view of the previously
mentioned transformations is

(1+ K) fξξξ − Sfξτ − f 2ξ + f fξξ − �fξ − ŴKf 2ξξ fξξξ = 0, (11)

(1+ δθ) θξξ + δ
(

θξ

)2 + Pr
[

fφξ − Sφτ + Nbθξφξ + Nt
(

θξ

)2

+
(

Nd
)

ϕξξ

]

= 0, (12)

ϕξξ − Sϕτ + Le
(

fϕξ

)

+ Ldθξξ = 0, (13)

φξξ − Sφτ + Ln
(

fφξ

)

+
Nt

Nb
θξξ = 0, (14)

The boundary constraints in the non-dimensional form are

fξ (0, τ) = sin τ , f (0, τ) = 0,

θ(0, τ ) = 1, ϕ(0, τ ) = 1,φ(0, τ ) = 1, (15)

fy (∞, τ) → 0, θ (∞, τ) → 0,ϕ (∞, τ) → 0,φ (∞, τ) → 0,

(16)

where K = 1/µβ∗C and Ŵ = uw
2b/2νC2 denote

the material parameters, � = σB20/ρf b + νϑ/k′b is
magneto-porosity constant, S = ω/b oscillating frequency-
to-stretching rate ratio, Nt = (ρc)pDT (Tw − T∞) /(ρc)fT∞ν

thermophoresis parameter, Pr = ν/αm is Prandtl number, Nb =
(ρc)pDB (Cw − C∞) /(ρc)f ν Brownian motion constant, Nd =
DTC (Cw − C∞) /αm (Tw − T∞)modified Dufour number, Ld =
DCT (Tw − T∞) /αm (Cw − C∞) Dufour Lewis number, Le =
ν/Ds regular Lewis number, whereas Ln = ν/DB nano-
Lewis number.

We define the following relations associated with the
definitions of wall shear stress, local Nusselt number, Sherwood

FIGURE 1 | h− curves for fξξ (0,π/2) , θξ (0,π/2) ,ϕξ (0,π/2), and φξ (0,π/2)

temperature, solutal concentration, and nanoparticle concentration.
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number, and nano-Sherwood number:

Cf =
τw

ρu2w
,Nux =

xqs

k (Tw − T∞)
, Shx =

xjs

DB (Cw − C∞)
,

Shxn =
xqm

Ds (ϕw − ϕ∞)
, (17)

where qs, js, and gs stand for surface heat flux, surface mass flux,
and motile microorganisms flux, respectively. The dimensionless
forms of the previously mentioned physical quantities are

Re
1/2
x Cf = (1+ K) fξξ − K

3 β
(

fξξ

)

ξ=0
,

Nux Re
−1/2
x = −θξ (0, τ) ,

Shx Re
−1/2
x = −ϕξ (0, τ) ,

Shn Re
−1/2
x = −φξ (0, τ) .



















(18)

TABLE 1 | Comparison of fξξ (0, τ) for τ with Abbas et al. [35] when S = 1,

� = 12, Ŵ = 0, and K = 0.

τ Abbas et al. [35] Present results

τ = 1.5π 11.678656 11.6786560

τ = 5.5π 11.678707 11.678708

τ = 9.5π 11.678656 11.678656

where Rex = uwx̄/ν is mentioned for local Reynolds number.

SOLUTION METHODOLOGY

The structured set of non-linear partial differential equations
(12–16) with boundary conditions (17–18) are simulated
analytically via homotopy analysis technique. Due to efficient and
convincing accuracy, various physical problems in recent years
have been solved by following this procedure. The initial guesses
for the present flow problem are

f0 (ξ , τ) = sin τ
(

1− e−ξ
)

, θ0 (ξ) = e−ξ , ϕ0 (ξ) = e−ξ ,

φ0 (ξ) = e−ξ , (19)

Following auxiliary linear operators that are followed to precede
the solution

£f =
∂3

∂ξ 3
−

∂

∂ξ
, £θ =

∂2

∂ξ 2
− 1, £ϕ =

∂2

∂ξ 2
− 1,

£φ =
∂2

∂ξ 2
− 1, (20)

satisfying

£f
[

a1 + a2e
ξ + a3e

−ξ
]

= 0, (21)

FIGURE 2 | Impact of (A) K (B) S on skin friction coefficient.

FIGURE 3 | Impact of (A) K (B) � on velocity.
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£θ

[

a4e
ξ + a5e

−ξ
]

= 0, (22)

£ϕ

[

a6e
ξ + a7e

−ξ
]

= 0, (23)

£φ

[

a8e
ξ + a9e

−ξ
]

= 0, (24)

where a1, . . . a9 are arbitrary constants.

CONVERGENT REGION

The convergence procedure in homotopic solution is regulated
with auxiliary parameters hf , hθ , hϕ , and hφ . On this end,
we prepare h−curves to report the convincible range of such
parameters. It is obvious from Figure 1 that the preferable range
of these such parameters can be utilized from −2 ≤ hf ≤ 0,
−1.2 ≤ hθ ≤ −0.2,−1.4 ≤ hϕ ≤ 0 and−1.2 ≤ hφ ≤ −0.2.

VALIDATION OF RESULTS

Table 1 shows the comparison of present results with Abbas et al.
[35] as a limiting case. An excellent accuracy of results is noted
with these reported investigations.

DISCUSSION

This section aims tomanifest the features of some interesting flow
parameters that appeared in the dimensionless equations, where
material parameter K, magneto-porosity constant �, oscillating
frequency-to-rate of stretching ratio S, Brownian motion Nb,

thermophoresis constant Nt, variable thermal conductivity δ,
Prandtl number Pr, Dufour Lewis number Ld, modified Dufour
constant Nd, regular Lewis number Le, and nano-Lewis number
Ln. During variation of each flow parameter, we fixed some
numerical values to remaining parameters, like K=0.2, � = 0.4,
S = 0.2, Nt = 0.3, Pr = 0.7, Nb = 0.4, Nd,= 0.5, Ld = 0.3,
Le = 0.2, and Ln = 0.3.

Skin Friction Coefficient
The impact of the skin friction coefficient against time τ for
diverse variation of K and S is evaluated in Figures 2A,B.
An interesting periodic oscillation in the wall shear stress is
evaluated by both figures. Furthermore, the growing values of
both parameters increase the amplitude of oscillation sufficiently.
Due to no-slip conditions at the surface, the fluid particles
accelerated together with surface in same amplitude and phase.
However, the occurrence of a phase shift in both curves is
almost negligible.

Velocity Profile
The results reported in Figures 3A,B show the change in velocity
fξ , verse time τ and leading values of material constant K,
and magneto-porosity parameter �. Figure 3A characterized the
influence of K on fξ , which shows that an increment in K leads
to higher velocity amplitude. The physical justification of such
enhancing velocity distribution is attributed to the lower viscosity
of fluid associated with the higher values of K. However, reverse
observations are predicated for �. In fact, magneto-porosity

FIGURE 4 | Impact of (A) δ, (B) K, (C) Nd.
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constant is the combination of magnetic field and porous space.
The existence of a magnetic force encountered the effects of
Lorentz force, in which a declining oscillation behavior is noticed.
Similarly, the permeability of a porous medium also retards
the velocity amplitude due to the loss of fluid. Moreover, the
utilization of magnetic force enhances the apparent viscosity of
fluid up to a certain point of becoming an elastic solid, and
subsequently, the fluid stress can be managed upon changing
the magnetic force. These interesting observations can be
used in various processes, like magnetohydrodynamic drive
ion propulsion, magnetohydrodynamic drive power generators,
electromagnetic material casting, etc.

Temperature Distribution
To visualize the alter profile of nanoparticle temperature θ due
to δ, K, and Nd, Figures 4A–C are prepared. Figure 4A reveals
that temperature distribution θ increases with variable thermal
conductivity constant δ. Figure 4B is constituted to observe the
change in θ due to material parameter K. A fall in θ is associated
with leading variation of K. An increment in viscosity would
yield for arising values of K that increases the fluid velocity but
a decline in the temperature of fluid. The change in θ with effect
of modified Dufour number Nd has been reported in Figure 4C.
A slightly dominant variation in θ is seen with larger values ofNd.

Solutal Concentration Profile
Now, we observe the variation in solutal concentration profile ϕ

by varying regular Lewis number (Le) , Dufour Lewis constant
(

Ld
)

, andmaterial constant (K). Figure 5A is designed to observe
the impact of Le on ϕ. A decreasing solutal concentration
profile ϕ is notified due to Le. Physical explanation of such
decling variation of ϕ can be justified on the fact that Le
captures reverse relation with species diffusion, whichmeans that
when Le is maximum, species diffusion is lower, which leads
to the decrement of the resulting solutal concentration. From
Figure 5B, ϕ increases with the growth of Ld. Physically, Ld
depends upon the Lewis number due to lower mass diffusivity.
Figure 5C presents change in ϕ due to material constant K.
Again, an enhanced distribution of solutal concentration profile
ϕ has resulted for maximum values of K.

Nanoparticle Concentration
The physical consequences of Ln, Nt, and Nb on concentration
distribution φ are deliberated in Figures 6A–C. Figure 6A

specified the input of Ln on φ. A declining concentration
distribution φ is examined in the peak values of Ln. This
decreasing behavior of φ is attributed to the fact that Ln
is associated with the Brownian diffusion coefficient because
Ln expresses the thermal diffusivity-to-mass diffusivity ratio.
This parameter that is referred to the fluid flow in a

FIGURE 5 | Impact of (A) Le, (B) Ld, and (C) K on solutal concentration.
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phenomenon of heat and mass transfer occurs due to convection.
The consequences for another important parameter, namely
thermophoresis constant Nt, are analyzed in Figure 6B. As
expected, a larger concentration distribution φ is reported due

to involvement of Nt. The larger variation of Nt helps to improve
the thermal conductivity of fluid. Physically, the thermophoretic
process is based on collective migrated heat particles in the region
of low temperature and plays a momentous role in many physical

FIGURE 6 | Impact of (A) Ln, (B) Nt, and (C) Nb.

TABLE 2 | Numerical values of −θξ (0, τ) , −ϕξ (0, τ), and −φξ (0, τ), when τ = π/2.

� Pr Nt Nb ε K −θξ (0, τ) −ϕξ (0, τ) −φξ (0, τ)

0.0

0.5

1.0

0.7 0.3 0.3 0.1 0.1 0.62231

0.60854

0.59654

0.55537

0.53876

0.50535

0.54652

0.51828

0.49632

0.2 0.2

0.5

1.0

0.48896

0.55658

0.57875

0.44689

0.47598

0.49535

0.42658

0.46485

0.50280

0.7 0.0

0.4

0.5

0.58029

0.53531

0.51189

0.60986

0.56154

0.519856

0.62384

0.57567

0.53878

0.3 0.2

0.5

0.7

0.49598

0.44357

0.42637

0.455454

0.44543

0.43045

0.43562

0.50635

0.57420

0.3 0.2

0.4

0.6

0.48351

0.46743

0.44092

0.44659

0.42798

0.40659

0.50015

0.48243

0.44564

0.1 0.0

0.4

0.6

0.49359

0.46578

0.43395

0.44659

0.42298

0.41326

0.52658

0.50256

0.47559
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phenomenons. The curve of φ attained maximum level due to
Nt. However, a reduced concentration distribution φ is associated
with Nb, as shown in Figure 6C. The Brownian movement is
based on random pattern moving fluid particles in flow surface.
It is further justified from Equation (16), which clearly shows
that reverse relation is developed between Nb and φ. In fact,
the specified numerical values of Nb are associated to the more
prominent nanoparticle moments that are being pushed back
from accelerated plate to quiescent, which resulted in a retarded
concentration distribution.

Physical Quantities
To perform the numerical simulations for local Nusselt number
−θξ (0, τ) , local Sherwood Number −ϕξ (0, τ) and nanofluid
Sherwood number−φξ (0, τ) , Table 2 is designed. It is observed
that when �, ε, and K assigned larger numerical values, a
decreasing trend in −θξ (0, τ) , −ϕξ (0, τ), and −φξ (0, τ) is
reported. However, these physical quantities increase with the
variation of Pr.

CONCLUSIONS

We have focused on periodically accelerated unsteady flow of
Eyring–Powell nanofluid with utilization of thermal diffusive
features. The variable impact of thermal conductivity, porous
medium, and magnetic field consequences are also utilized.
The important observations from current flow problem are
summarized as:

➢ The magneto-porosity parameter declined the periodic
oscillation in the velocity, and subsequently, the magnitude
of velocity declined.

➢ The wall shear stress oscillates periodically with time that
increases by varying material parameter.

➢ The thermal conductivity with the variable nature is more
effective in enhancing the nanoparticle temperature.

➢ The modified Dufour number increases the
temperature distribution.

➢ It is noted that solutal concentration increases subject to
Dufour Lewis number and material constant.

➢ An increasing change in nanoparticle concentration
determined with nano-Lewis number and a
material parameter.

The observation based on the reported results can be used
to improve thermal extrusion processes, heat exchangers, solar
technology, energy production, cooling processes, etc.
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