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This paper examines the risk connectedness across seven cryptocurrencies, Bitcoin,

Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, which have large capitalizations

in the cryptocurrency market. The data sample is from August 7, 2015, to February

15, 2020. We measure the return risks of the cryptocurrencies by using the CAViaR

model, showing that they have similar risk tendencies, with volatility clusterings from

the beginning of 2017 to the end of 2018. The net pairwise spillover index developed

by Diebold and Yilmaz [1] is used as the measure of the risk connectedness among

the cryptocurrencies. We find that the risk spillover directions are highly correlative with

the market capitalizations of the cryptocurrencies. Cryptocurrencies with small market

capitalization transmit risks to those with large market capitalization. When there is a

downward risk tendency, the risk spillover levels among the cryptocurrencies are stronger

than when there is an upward risk tendency, while the spillover directions remain the same

under both risk tendencies, except for the cryptocurrency Monero, the particularity of

which may be due to the difference in its trading volume compared to the others. We

use generalized forecast error variance decomposition for the spillover index and explore

the risk connectedness across the cryptocurrencies at different timescales, namely, the

short term (0–4 days), medium term (4–30 days) and long term (30–300 days). The

risk spillovers can be neglected at the short-term frequency, which implies a delayed

effect. The risk spillovers at medium-term frequency are mostly stronger than those at

long-term frequency. The dynamic connectedness results show that the means of risk

spillover at a long-term frequency are larger than those at medium-term frequency. An

inverse result holds for the ranges of risk spillover. The fluctuations of risk spillover at

long-term and medium-term frequencies admit the same comparison result with the

means of risk spillover in these two frequencies. The findings in this paper provide

some suggestions for regulators controlling market stability and cryptocurrency investors

generating investment strategies.

Keywords: DY spillover index, net pairwise spillover, risk tendency, time-frequency decomposition, cryptocurrency

1. INTRODUCTION

The cryptocurrency markets have recently seen a remarkable increase in prices, leading to some
suggestion that cryptocurrencies could be considered as a new kind of financial asset. The market
capitalization created by Bitcoin, the classical andmost well-known cryptocurrency, grew from 10.1
to 79.7 billion during the period from Oct 2016 to Oct 2017. The price jumped from 616 to 4,800
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US dollars. The high returns from the cryptocurrency markets
may respond rationally to their high volatilities [2, 3]. They
are characterized by a distributed payment system built
on cryptographical protocols. This takes advantage of the
anonymity, low cost, and fast speed of P2P transactions [4].
Cryptocurrencies are easy to generate speculative bubbles [5],
which may spread contagion in return, weakening financial
stability [6]. Hence, there has been a great number of papers
analyzing cryptocurrencies as financial assets and aiming to
identify the information transmission patterns among the
cryptocurrency markets and other asset categories like equities,
bonds, commodities, currencies, and so on [7–12].

A great deal of literature pays attention to relationships
among cryptocurrencies and financial variables due to their
roles as new asset classes [9] and important elements in
the global financial market [13]. Most of them focus on
Bitcoin. However, with the development of cryptocurrency
markets, some newly produced cryptocurrencies like Ethereum,
Ripple, Litecoin, Stellar, Monero, and Dash have gradually
been cutting into the dominant share of market value taken
by Bitcoin. This suggests that cryptocurrency investors are
taking a breather from Bitcoin and meanwhile looking at
other alternative cryptocurrencies. These new cryptocurrencies,
which have taken some of the conceptual and technological
advantages of Bitcoin (e.g., blockchain technology), are attracting
more and more attention as well as creating a mass of
opportunities for cryptocurrency investors. Actually, we have
to explain that this is not a surprising event, given the fact
that each alternative cryptocurrency outperformed Bitcoin in
2017, delivering astonishing returns, which ranged from 5,000%
(Litecoin) to 36,000% (Ripple) compared with the 1,300% price
appreciation of Bitcoin [14].

The growing interest in the new alternative cryptocurrency
markets for investment purposes is accompanied by a lack
of knowledge about the interaction between one leading
cryptocurrency and another. In fact, the rapid development of
cryptocurrency markets results in some relative heterogeneity
among mainstream cryptocurrencies. It is helpful to extend
the limited literature on connectedness among cryptocurrency
markets for use by cryptocurrency investors in devising
investment and trading strategies that may involve introducing
cryptocurrencies into the portfolio. On the other hand, it
is also helpful to construct connectedness networks for use
by policy-makers in formulating policies aimed at preserving
financial stability. Investors and risk managers can benefit
from establishing a connectedness network across many asset
classes to generate their investment and hedging decisions.
Generally, building connectedness networks is hardly new in
conventional assets. Prior works have uncovered connected
network structures among or within different assets/markets,
including equities [15, 16], bonds [17, 18], currencies [19,
20], commodities [21, 22], and interest rates [18]. However,
few works have constructed networks of connectedness in
the cryptocurrency market, which is becoming an appealing
investment ground for investors. Wei [23] examined the
liquidity for 456 kinds of cryptocurrencies. He showed that
return predictability weakens in cryptocurrencies with high

market liquidity and claimed that liquidity has a significant
impact on market efficiency and return predictability for
new cryptocurrencies. Yi et al. [24] focused on both static
and dynamic volatility connectedness among eight leading
cryptocurrencies, revealing their cyclic volatility connectedness,
with an evident rising trend at the end of 2016. They linked
52 cryptocurrencies by constructing a volatility connectedness
network making use of a variance decomposition framework
and found that the 52 cryptocurrencies are interconnected
tightly. The so-called “mega-cap” cryptocurrencies are more
likely to spread volatility shocks to others. Connectedness among
leading cryptocurrencies can also be investigated via return
and volatility spillovers, as in Ji et al. [14], where the results
achieved implied that the return of each cryptocurrency and
its volatility connectedness with others did not necessarily
depend heavily on its market size. Some authors have taken the
perspective of evolutionary dynamics; for example, ElBahrawy
et al. [25] took this approach to analyze the behavior of 1,469
cryptocurrencies and revealed some statistical properties for
cryptocurrency markets.

Motivated by the current works on connectedness among
the cryptocurrency markets, in this paper, we focus on
risk connectedness for the sake of portfolio diversification
and risk management. Risk connectedness and spillover have
been widely treated, for example, connectedness among stock
markets [26, 27], credit markets [28], financial institutions
[29], and sovereigns [30, 31] and connectedness between
stock and oil markets [32, 33], stock prices and exchange
rates [34], energy and carbon markets [35], and so forth.
Understanding the risk connectedness among cryptocurrency
markets provides valuable information regarding investment
and hedging decisions. Moreover, it also provides potential
information for systematic risk in the whole cryptocurrency
system, according to which the regulators can generate strategies
to control risk contagion. The current paper differs from
the existing literature in several ways. We use the daily
data of seven leading cryptocurrencies, Bitcoin, Ethereum,
Ripple, Litecoin, Stellar, Monero, and Dash, to compute their
risk levels and investigate the risk connectedness among
cryptocurrency markets by providing risk spillovers among these
leading cryptocurrencies, accounting for more than 75% of the
cryptocurrency market value. The most notable contribution of
our work is heterogeneity analysis of the risk connectedness
of cryptocurrencies. Two heterogeneities are considered in
this paper. The first heterogeneity is the asymmetric risk
spillovers at times of upward risk tendency and downward risk
tendency in the cryptocurrency markets. The connectedness
asymmetry under different risk tendencies is mainly determined
by investor expectation. The second heterogeneity is captured
by the differences in risk spillovers among the cryptocurrencies
at different timescales, namely, in the short term (0–4 days),
medium term (4–30 days), and long term (30–300 days). The
heterogeneity of risk spillovers at different timescales mainly
originates from the persistence of investor attention. Our findings
are highly informative for market participants, who can adjust
their hedging strategies according to different market tendencies
or time horizons.
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The paper is organized as follows. Section 2 details the risk
measurements for the selected cryptocurrencies. Section 3 shows
the static risk connectedness among the cryptocurrency markets.
The heterogeneity of risk spillovers under upward risk tendency
and downward risk tendency is analyzed. Section 4 explores
the risk connectedness at different timescales, which shows the
heterogeneity of risk spillovers among the cryptocurrencies in the
short term, medium term, and long term. Section 5 concludes
with some policy implications.

2. RISK MEASUREMENT FOR THE
CRYPTOCURRENCIES

It is well-known that the cryptocurrency returns are extremely
volatile, with clustering phenomena. Bollerslev [36] used
GARCH models to capture these characteristics well. GARCH
models have been widely popular as tools for measuring market
risk by the VaR method due to their relative simplicity and
various extensions. Unfortunately, their limitations, especially
the unrealistic parametric assumptions, such as normality or
i.i.d returns, which does not fit the case of cryptocurrencies,
are also evident. To overcome these problems, in this paper,
we apply the semi-parametric Conditional Autoregressive Value
at Risk (CAViaR) method developed by Engle and Manganelli
[37] to estimate VaR models for cryptocurrencies, avoiding any
extreme assumption invoked by the existing methodologies.
Unlike GARCH and GAS, which model the whole distribution,
CAViaR directly models the quantile of the return distribution,
extending the standard quantile regression approach introduced
by Koenker and Basset [38]. The CAViaR model uses an
autoregressive formulation straight to the quantile.

2.1. CAViaR Model
In short, the CAViaR method is particular in estimating VaRs
directly through an autoregressive specification for quantiles
rather than the usual approach of inverting a conditional
distribution of returns in a purely parametric framework [39].
This autoregressive dynamics for the quantile over time, as well as
some unknown parameters, is then determined by the regression
quantile framework [38]. Besides, the autoregressive nature of
CAViaR directly captures some stylized facts in the distribution
tails, like autocorrelation in daily returns arising from market
microstructure biases and partial price adjustment [40], volatility
clustering [36], and time-varying skewness and kurtosis [41].

In this paper, following Engle and Manganelli [37], we
consider a cryptocurrency return vector {yt}Tt=1. Let θ be the
probability associative to VaR, xt a observable variable vector,
and βθ a unknown parameter vector. Let ft(β) ≡ f (xt−1,βθ ) be
the θ-quantile of the cryptocurrency return distribution at time t,
formed at time t − 1. Then a general CAViaR model is specified
as follows:

ft(β) = γ0 +
q∑

i=1

γift−i(β)+
p∑

i=1

αil(xt−i,ϕ), (1)

where β ′ = (α′, γ ′,ϕ′) and l is the function of a finite value
depending on lagged values of observable variables. Engle and

Manganelli [37] introduced an autoregressive term γift−i(β),
i = 1, 2, · · · , q, allowing a smooth transition quantile. In
addition, they introduced the term l(xt−i,ϕ) in order to permit
a relationship between the θ-quantile ft(β) and the observable
variables. On the basis of general CAViaR formulation, Engle and
Manganelli [37] developed four alternative specifications for the
function l:

Adaptative : ft(β) = ft−1(β)+ β((1

+ exp(G(yt−1 − ft−1(β))))
−1 − θ), (2)

Symmetric Absolute Value : ft(β) = β1 + β2ft−1(β)+ β3|yt−1|, (3)

Asymmetric Slope : ft(β) = β1 + β2ft−1(β)+ β3(yt−1)
+

+ β4(yt−1)
−, (4)

Indirect GARCH(1, 1) : ft(β) = (β1 + β2f
2
t−1(β)+ β3y

3
t−1)

1/2.

(5)

In the first specification, G is a positively finite value satisfying
that the last term converges to β1(I(yt−1 ≤ ft−1(β1) − θ)) as
G → ∞, where I(·) is an indicator function. As explained by
Engle and Manganelli [37], the Adaptative specification allows
that whenever one exceeds one’s VaR, one should directly increase
it. Otherwise, one should decrease it very slightly. The second
and fourth specifications both respond symmetrically to past
returns with mean reverting, as the coefficient of the lagged
VaR is unconstrained to equal to one. The third model is also
mean reverting but with less restrictions in the sense that it
permits asymmetric response to both positive and negative past
returns. The asymmetric CAViaR specification has become the
most popular one for practitioners due to its consideration of
the skewness and kurtosis properties of financial series [29, 39,
42]. In this paper, asymmetric CAViaR is also employed for
measurement of the risk of cryptocurrency returns, which is
verified through test statistics (see also [43] for a cryptocurrency
risk measurement study).

2.2. Data and Sample Analysis
We collected daily price data on seven cryptocurrencies, Bitcoin,
Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, so as to
obtain sufficient price data for the 10 largest cryptocurrencies by
market capitalization listed on the website https://coinmarketcap.
com. Indeed, they cover almost a two-and-a-half-year period,
allowing us to make the most of our empirical results and
analysis. The sample interval ranges from August 7, 2015,
to February 15, 2020 (1,654 daily observations) for this
paper. Each selected cryptocurrency possesses a market value
exceeding 5 billion USD. The total market value of these seven
cryptocurrencies represents 79.5% of the entire cryptocurrency
market. The empirical study is built on daily return, calculated by
the difference in the log of price.

Figure 1 shows the risk level tendencies of the seven
cryptocurrencies. On the whole, the cryptocurrencies show
similar risk tendencies. In particular, volatility clusterings happen
during the period from the beginning of 2017 to the end
of 2018, since the cryptocurrencies received substantial price
appreciations during this period. We can also identify some mild
peculiarities of Dash andMonero. With regard to Dash, volatility
clustering was common in the whole sample period, whereas
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FIGURE 1 | Risk level tendencies of the selected cryptocurrencies.

for Monero, it reached its peak earlier, in the middle of August
2016, than others, whose peaks arose during the period from the
beginning of 2017 to the end of 2018. Besides, they both have
wider volatility ranges.

The summary statistics for the risks of cryptocurrencies,
including risks under upward and downward tendencies, are
given in Table 1. In Panel A, the highest mean of risk is for
Stellar, followed by Ethereum and Monero together. Ripple

and Stellar have the highest standard deviation, followed by
Ethereum. Interestingly, as the most popular cryptocurrency
in the market, Bitcoin shows the lowest mean risk and a
relatively low standard deviation, only higher than Monero. In
fact, these are not surprising observations. In 2017, each of the
other six cryptocurrencies under study increased in value by at
least 5,000%, while Bitcoin increased by 1,300%. Excess levels
of kurtosis arise in all cryptocurrencies, especially Ripple. All
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TABLE 1 | Summary statistics for cryptocurrency risks.

Variable Mean Max Min Std. Dev Skewness Kurtosis Jarque-Bera

Panel A

Bitcoin 0.059 0.232 0.020 0.031 1.413 5.053 840.549∗∗∗
Ethereum 0.088 0.628 0.040 0.041 4.115 37.626 87242.330∗∗∗
Litecoin 0.070 0.235 0.019 0.034 1.019 4.248 393.467∗∗∗
Ripple 0.075 0.741 0.032 0.048 4.782 45.539 130932.800∗∗∗
Monero 0.088 0.200 0.048 0.025 1.083 4.283 436.434∗∗∗
Dash 0.076 0.264 0.029 0.033 1.587 6.299 1443.842∗∗∗
Stellar 0.091 0.437 0.038 0.048 2.630 12.615 8274.153∗∗∗
Panel B Upward

Bitcoin 0.082 0.194 0.031 0.041 1.203 3.732 12.656 ∗ ∗
Ethereum 0.098 0.186 0.050 0.032 0.824 3.196 5.507∗
Litecoin 0.085 0.209 0.047 0.027 2.351 10.852 167.525∗∗∗
Ripple 0.104 0.306 0.040 0.048 1.967 8.543 92.391∗∗∗
Monero 0.078 0.133 0.051 0.020 1.086 3.663 10.309 ∗ ∗
Dash 0.107 0.218 0.049 0.041 0.831 3.084 5.543∗
Stellar 0.080 0.177 0.047 0.025 1.824 6.866 56.507∗∗∗
Panel C Downward

Bitcoin 0.059 0.175 0.022 0.027 1.217 4.610 86.619∗∗∗
Ethereum 0.080 0.354 0.042 0.030 3.861 31.794 9035.059∗∗∗
Litecoin 0.074 0.201 0.021 0.030 1.206 5.071 102.727∗∗∗
Ripple 0.066 0.349 0.034 0.032 4.093 29.890 8032.833∗∗∗
Monero 0.082 0.143 0.051 0.021 0.903 3.224 33.690∗∗∗
Dash 0.069 0.188 0.031 0.025 1.498 6.302 202.136∗∗∗
Stellar 0.087 0.348 0.041 0.044 3.018 14.743 1772.576∗∗∗

*Denotes the significance at a 10% level. **Denotes the significance at a 1% level. ***Denotes the significance at a 0.1% level.

cryptocurrencies show positive skewness. When risks increased
(Panel B), Dash has the highest mean risk level and the second-
highest standard deviation. Meanwhile, Ripple has the highest
standard deviation and the second-highest mean risk. High levels
of kurtosis and positive skewness arise in all cryptocurrencies.
Litecoin occupies the highest levels in terms of both kurtosis
and skewness. Moving to the statistics of decreased risks (Panel
C), Stellar has the highest mean risk and standard deviation.

Excess levels of kurtosis and positive skewness arise in all
cryptocurrencies, where Ethereum and Ripple are dominant in
both these two statistics.

The risk correlation matrices for the selected seven
cryptocurrencies are shown in Table 2. Overall, weak to
moderately positive correlations happen among the risk levels

of the selected cryptocurrencies. In particular, the highest

correlation coefficient is for the pair Bitcoin and Litecoin, given
as 0.68, whereas the pair Ethereum and Stellar permits the
lowest correlation coefficient given as 0.07. Focusing on the risk
correlations at times of upward and downward tendencies, the

correlations under an upward tendency are generally stronger
than those under a downward tendency. Under an upward
risk tendency, the pair Bitcoin and Ethereum has the highest
correlation coefficient, 0.87, followed by the pair Ethereum and
Dash, 0.79, whereas the lowest correlations are for the pairs

Bitcoin and Stellar and Ethereum and Stellar, with coefficients

0.25 and 0.26, respectively. The pairs Bitcoin and Monero and
Ethereum and Monero are uncorrelated under an upward risk
tendency. Under a downward risk tendency, Bitcoin and Litecoin
are the most positively correlated, with a coefficient of 0.70,
followed by the pair Bitcoin and Dash, for which it is 0.67, while
Ethereum and Stellar are uncorrelated. Overall, the correlation
between Bitcoin and Litecoin is unsurprisingly much stronger
than for the other pairs in the results of all three tests.

3. STATIC RISK CONNECTEDNESS IN THE
CRYPTOCURRENCY MARKETS

We follow [1] for themethodological framework for constructing
connectedness measures. In this paper, static risk connectedness
networks under upward and downward tendencies, as well as
static and dynamic risk connectedness at different timescales,
are built.

3.1. Static Risk Connectedness
Measurement
Suppose a stationary covariance seven-variable VAR(p) given as

Rt =
p∑

i=1

8iRt−i + εt , (6)
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TABLE 2 | Correlations among the cryptocurrencies.

Bitcoin Ethereum Litecoin Ripple Monero Dash Stellar

Panel A

Bitcoin 1.00

Ethereum 0.40*** 1.00

Litecoin 0.68*** 0.23*** 1.00

Ripple 0.38*** 0.20*** 0.54*** 1.00

Monero 0.27*** 0.18*** 0.27*** 0.25*** 1.00

Dash 0.63*** 0.33*** 0.53*** 0.46*** 0.28*** 1.00

Stellar 0.30*** 0.07*** 0.56*** 0.54*** 0.38*** 0.28*** 1.00

Panel B Upward

Bitcoin 1.00

Ethereum 0.87*** 1.00

Litecoin 0.75*** 0.76*** 1.00

Ripple 0.48*** 0.58*** 0.52*** 1.00

Monero 0.22 0.22 0.37** 0.44*** 1.00

Dash 0.70*** 0.79*** 0.69*** 0.53*** 0.30* 1.00

Stellar 0.25* 0.26* 0.40*** 0.55*** 0.77*** 0.28* 1.00

Panel C Downward

Bitcoin 1.00

Ethereum 0.53*** 1.00

Litecoin 0.70*** 0.39*** 1.00

Ripple 0.44*** 0.32*** 0.60*** 1.00

Monero 0.51*** 0.38*** 0.55*** 0.41*** 1.00

Dash 0.67*** 0.43*** 0.64*** 0.48*** 0.44*** 1.00

Stellar 0.29*** 0.08 0.50*** 0.53*** 0.47*** 0.28*** 1.00

*Denotes the significance at a 10% level. **Denotes the significance at a 1% level. ***Denotes the significance at a 0.1% level.

where Rt is the 7 × 1 cryptocurrency risk vector, 8t are 7 × 7
autoregressive coefficient matrices, and εt is the error term vector
assumed to be serially uncorrelated. If the VAR model above is
a stationary covariance, then one can write a moving-average
representation as

Rt =
∞∑

j=0

Ajεt−j, (7)

where the 7×7 coefficient matrixAj obeys a recursion of the form

Aj = 81Aj−1 + 82Aj−2 + · · · + 8pAj−p, (8)

where A0 is the n × n identity matrix and Aj = 0 for j < 0. One
can measure pairwise connectedness, directional connectedness,
and total connectedness on the basis of a generalized forecast-
error variance decomposition (FEVD) approach by using the
moving-average framework. The advantage of FEVD is that
it eliminates any disturbance induced in the results by the
variable ordering.

Denote the H-step-ahead generalized forecast-error variance
decomposition [14] by

θij(H) =
σ−1
jj

∑H−1
h=0 (e

′
iAh6ej)

2

∑H−1
h=0 (e

′
iAh6A′

h
ei)

, (9)

where θij(H) is the variance contribution of variable j to variable i,

σjj is the standard deviation of the error term in the j’th equation,
and 6 is the variance matrix of the error vector ε. ei is a selection
vector with a value of 1 for the i’th element. Otherwise, take

it as 0. The spillover index yields an n × n matrix θ(H) =
[θij(H)], where each entry gives the contribution of variable j to
the forecast-error variance of variable i. Own-variable and cross-
variable contributions are involved in the main diagonal and off-

diagonal elements, respectively, of the θ(H) matrix. Each entry in
the θ(H) matrix is normalized by the row sum

θ̃ij(H) =
θij(H)

∑N
j=1 θij(H)

, (10)

to ensure that the row sum is equal to 1. There are several

spillovers, such as total spillovers, directional spillovers, net
spillovers, and net pairwise spillovers [14, 24, 44, 45]. In this

paper, we construct the net pairwise spillovers to investigate

the information spillovers among the whole cryptocurrency
market system.

With respect to the net pairwise connectedness, according to

the definition of FEVD, in general, θ̃ij 6= θ̃ji. Consequently, the

difference between θ̃ij and θ̃ji, θ̃ij − θ̃ji, can be used to measure
the net pairwise connectedness as well as the net spillover effect
from variable j to variable i. A directional connectedness network
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TABLE 3 | Net pairwise risk spillover among the cryptocurrencies.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Ethereum −0.047

Ripple −0.035 −0.001

Litecoin 0.768 −0.034 1.187

Stellar 1.316 0.462 1.679 0.887

Monero 2.520 4.665 1.925 1.959 1.189

Dash 0.870 1.746 0.729 0.478 −0.490 −1.095

This table presents the net pairwise risk spillovers among the selected cryptocurrencies

over the period from August 7, 2015, to February 15, 2020. Net pairwise risk spillover

transmitted by one cryptocurrency to another, where positive (negative) values suggests

that the cryptocurrency in question is a net receiver (transmitter) of spillovers to another

cryptocurrency.

can then be built on the basis of net pairwise connectedness.
Each market is regarded as a node in the network. The condition
in which a directional edge from i to j exists in the network is
θ̃ij − θ̃ji > 0.

3.2. Static Risk Connectedness Over the
Full Sample
Table 3 presents the matrix depicting net pairwise risk spillovers
among the cryptocurrency markets, that is, net spillovers
between two cryptocurrencies, where positive (negative) values
mean that the cryptocurrencies in question are net receivers
(transmitters) of spillover effects. Accordingly, we claim that
the risk spillover is highly correlative with the capitalization
of the cryptocurrency market. Mostly, risk spills over from
cryptocurrencies with small capitalizations to those with large
capitalizations. In particular, Bitcoin transmits little risk to
Ethereum and Ripple, where the spillover indexes are given as
0.047 and 0.035%, respectively, whereas it receives more risk
from Stellar, Monero, and Dash, where the spillover indexes
are 1.316, 2.520, and 0.870%, respectively. Similar results are
seen with regard to Ethereum, which mainly receives risks
from other cryptocurrencies with small capitalizations (spillover
indexes from three cryptocurrencies, Stellar, Monero, and Dash,
to Ethereum are 0.462, 4.665, and 1.746%, respectively, but those
from Ethereum to Ripple and Litecoin are only 0.001 and 0.034%,
respectively). A similar analysis holds for Ripple and Litecoin.

Although the empirical results we get do not agree with
the return spillover directions in the existing literature, we
believe that there is some relation between the risk spillover and
return spillover in the cryptocurrency markets. Cryptocurrencies
with large capitalization dominate the market efficiency and
price fluctuation, leading the market development tendency.
The rapid growth of cryptocurrencies into new classes of
financial assets creates a major challenge for traditional financial
markets and even impacts the whole financial market. In general,
cryptocurrency investors focus on those cryptocurrencies with
large capitalizations. They may take these cryptocurrencies
as references when making investment strategies in the
cryptocurrency markets. This results in return spillovers
from cryptocurrencies with large capitalization to those with

small capitalization. The return spillovers will cause violent
fluctuations in cryptocurrency prices with small capitalization
and then vary their return risks. The investors who intend
to invest in cryptocurrencies with small capitalization still
rely on the price tendencies of cryptocurrencies with large
capitalization. Thus, investor attention influences the return risks
of cryptocurrency markets with large capitalization, and the
return risks spill over from markets with small capitalization
to those with large capitalization. Indeed, this also reflects the
dominant roles of cryptocurrencies with large capitalization in
the whole cryptocurrency market.

3.3. Static Risk Connectedness in Upward
and Downward Tendencies
Risk spillovers among the cryptocurrency markets under
downward risk tendency are more remarkable than spillovers
under upward risk tendency. Spillover indexes under downward
risk tendency are mostly higher than those under upward risk
tendency. In particular, the spillover index between Bitcoin and
Ripple is shown to be −0.920% under downward risk tendency,
whereas it is −0.513% under upward risk tendency. Besides,
Bitcoin transmits the risks to Stellar andDash, where the spillover
indexes under downward tendency are 2.607 and 2.231%,
respectively, whereas they are given correspondingly as 1.824
and 0.689% under upward tendency. Similar results are seen in
Ripple and Litecoin. In fact, the asymmetrical spillover under
different risk tendencies is due to the difference in the regulatory
mechanism in cryptocurrency markets. Under an upward risk
tendency, the cryptocurrencies not only reduce their own risks
but also withstand spillovers from others more effectively. The
investors generate investment strategies more prudently when
the market risks are increasing. More concentrated attention on
their target cryptocurrency markets results in weak spillovers
among the cryptocurrencies in periods of upward risk tendency.
On the contrary, markets with decreasing risks attract a large
number of investors, whose confidences enhance significantly.
This is again due to the regulatory mechanism of the markets
themselves. The investors still pay attention to cryptocurrencies
with large capitalization like Bitcoin and Ethereum, considering
their dominant roles when they are generating their investment
strategies. The investor attention expedites communications
among the markets and impacts the risk connectedness. In
summary, the cryptocurrencies spill more risks to others at times
of downward risk tendency than when there is upward risk
tendency. In addition, this asymmetric effect is prominent in
cryptocurrencies with large capitalization.

Attention should be paid to the different spillover directions
between Monero and other cryptocurrencies under upward
and downward risk tendencies. One can see from Table 4 that
among the twenty-one pairwise spillovers, six pairwise spillovers
change their spillover directions in different risk tendencies,
and four of them involve Monero. According to the signs of
net pairwise spillovers, Monero mainly accepts spillovers from
cryptocurrencies with large capitalization under upward risk
tendency, whereas it transmits risk to these cryptocurrencies
under downward risk tendency. This result agrees well with what
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TABLE 4 | Net pairwise risk spillover under upward and downward risk

tendencies.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Panel A Upward

Ethereum 2.174

Ripple −0.513 −2.443

Litecoin −0.320 −3.491 0.030

Stellar 1.824 0.385 4.145 2.684

Monero −1.218 −3.246 −0.415 0.094 0.603

Dash 0.689 −2.894 0.516 0.313 −2.011 1.662

Panel B Downward

Ethereum −0.325

Ripple −0.920 −0.505

Litecoin −0.183 0.087 0.370

Stellar 2.607 3.130 3.691 3.431

Monero 2.219 2.937 2.356 2.412 −1.996

Dash 2.231 2.889 3.017 2.841 −0.335 0.756

This table presents the net pairwise risk spillovers among the selected cryptocurrencies

under upward and downward risk tendencies over the period from August 7, 2015, to

February 15, 2020. The Panel A presents spillovers during upward risk tendency, while

Panel B presents spillovers during downward risk tendency.

is shown in Figure 1. In Figure 1, one can see that the risk
tendency of Monero differs from those of other cryptocurrencies
before the steep rise in prices of cryptocurrency markets at
the beginning of 2017. Monero reached its risk peak while the
other cryptocurrencies stayed in their risk troughs. However,
this phenomenon disappeared after 2017. This interesting result
is due to the trading volumes of cryptocurrencies. The trading
volume of Monero was different from those of the others before
2017. For instance, from August 2016 to October 2016, the
trading volume of Monero fluctuated strongly, whereas the
others were weakly fluctuating. After 2017, the trading volume of
Monero comoved with other cryptocurrencies but with a higher
amplitude of fluctuation. We can capture that the differences
in trading volumes between Monero and other cryptocurrencies
mostly happened under downward risk tendency. The increase
in cryptocurrency trading volumes drove Monero to transmit its
risk to other cryptocurrencies. Thus, Monero spilled over risk, as
a transmitter in the market, under a downward risk tendency. So
we have to acknowledge the specific role played byMonero in the
whole cryptocurrency market.

4. TIME-FREQUENCY CONNECTEDNESS
OF CRYPTOCURRENCY RISKS

In fact, the analysis in section 3 implies that risk connectedness
among the cryptocurrency markets might show heterogeneities
at different timescales, which will be verified in this section. In
this section, we explore the net pairwise spillovers among the
selected cryptocurrencies at different timescales, namely in the
short term (<4 days), medium term (more than 4 days but <30
days), and long term (more than 30 days but <300 days). The

methodology for time-frequency connectedness measurement
refers to [46].

4.1. Time-Frequency Connectedness
Measurements
In this paper, the spectral representation framework of
generalized forecast error variance decomposition (GFEVD) is
applied to the frequency decomposition. Define the generalized
causation spectrum over frequency ω ∈ (−π ,π) by

(f (ω))k,j =
6−1

j,j |(R(e−iω)6)k,j|2

(R(e−iω)6R′(eiω))k,k
, (11)

where R(e−iω) =
∑

h e
−iωhRh, h = 1, 2, · · · ,H, is the

Fourier transform of R, with i =
√
−1. As noted by [46],

the forecast horizon H makes no difference, since the GFEVD
here is unconditional. To obtain the generalized variance
decompositions on frequency band d, d ∈ (a, b), a, b ∈ (−π ,π),
we weight (f (ω))k,j by the frequency shares of the jth volatility
variance. Thus, the weighting function can be defined as

Ŵk(ω) =
2(R(e−iω)6R′(eiω))k,k∫ π

−π
(R(e−iλ)6R′(eiλ))k,kdλ

. (12)

The generalized variance decompositions on frequency band d
are denoted by

(2d)k,j =
1

2

∫ ∞

d
Ŵk(ω)(f (ω))k,jdω. (13)

With the spectral representation of the generalized variance
decompositions, we can easily calculate the scaled generalized
variance decompositions as

(2̃d)k,j =
(2d)k,j∑
j(2∞)k,j

, (2∞)k,j =
1

2

∫ π

−π

Ŵk(ω)(f (ω))k,jdω.

(14)
Then, the net pairwise spillovers in different frequencies are
given as

Sk,j = ((2̃d)k,j − (2̃d)j,k) · 100. (15)

4.2. Static Risk Connectedness at Different
Timescales
Table 5 shows the static net pairwise risk spillovers among
the cryptocurrency markets at short-, medium-, and long-
term frequencies. It is evident that spillovers happen at
medium- and long-term frequencies. Spillovers between any
two cryptocurrencies are almost zero in the short term.
They show signs of recovery until 4 days later. This is due
to the investor attitude on the cryptocurrency markets and
information exchange among them. The risk spillovers among
the cryptocurrency markets result from the return spillovers
and information exchange among them. As analyzed in section
3, cryptocurrencies with large capitalization play key roles
in the overall market. Investment strategies are generated
according to the price fluctuations of cryptocurrencies with large
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TABLE 5 | Static net pairwise risk spillovers at different timescales.

Bitcoin Ethereum Ripple Litecoin Stellar Monero

Panel A Short term

Ethereum 6.50e-03

Ripple −3.2e-02 −3.9e-02

Litecoin 5.39e-02 2.11e-02 6.5e-02

Stellar 2.53e-03 1.64e-04 5.2e-02 6.93e-05

Monero 3.98e-03 3.56e-03 −8.5e-05 1.12e-03 6.40e-05

Dash −4.9e-03 −4.8e-02 2.08e-02 −5.9e-02 1.99e-03 5.20e-03

Panel B Medium term

Ethereum 0.019

Ripple −0.053 −0.075

Litecoin 0.231 0.101 0.245

Stellar 0.049 0.002 0.263 −0.001

Monero 0.033 0.031 −0.006 0.008 0.002

Dash −0.163 −0.093 0.065 −0.249 0.003 0.024

Panel C Long term

Ethereum 0.059

Ripple −0.015 −0.002

Litecoin 0.092 0.024 0.078

Stellar 0.027 0.002 0.009 −0.032

Monero 0.028 0.019 −0.006 0.015 0.003

Dash −0.032 0.047 0.008 −0.074 0.007 0.008

This table presents the static net pairwise risk spillovers among the selected cryptocurrencies at different timescales. Panel A presents the spillovers at short-term frequency (0–4 days).

Panel B presents the spillovers at medium-term frequency (4–30 days). Panel C presents the spillovers at long-term frequency (30–300 days).

capitalization. Thus, investments in cryptocurrencies with small
capitalization rely on the price fluctuations of cryptocurrencies
with large capitalization, and so the information exchange among
the cryptocurrency markets leads to risk spillovers among them.
Moreover, the spillovers are not immediate but are delayed,
which results from the investor attitudes and asymmetry of
information. Although the investment decisions rely on the
prices of cryptocurrencies with large capitalization, as emerging
financial assets, cryptocurrencies are easily influenced by major
events such that they show strong uncertainty. Thus, the
investors first off look at the markets. On the other hand,
information in the cryptocurrency markets shows asymmetry
between investors and speculators, which also results in a delay
in risk spillovers among the cryptocurrency markets.

Furthermore, comparing the net pairwise spillovers among
the selected cryptocurrencies in the medium and long term
in Table 5, one can catch that risk spillovers at medium-
term frequency are mostly stronger than those at long-term
frequency, while the spillover directions remain almost the
same. In particular, only five pairwise spillover indexes at long-
term frequency are larger than their corresponding indexes at
medium-term frequency. Meanwhile, there is only one pairwise
spillover index that changes its sign (Ethereum and Dash). The
results imply that risk spillovers among the cryptocurrencies
followed an upturned “U” with respect to time frequency.
One may question the origin for such a phenomenon, and
our reply is that it is due to dynamic investor attention on
the markets. When news involving a cryptocurrency market

issue or a major event enters circulation, most investors just
monitor the markets without making investments, which results
in slight risk spillovers among the cryptocurrencies. With
sensationalization from speculators or market properties, such
as trading volumes and prices varying distinctly, the investors
pay their maximum attention to the markets. Considering the
dominant roles of cryptocurrencies with large capitalization in
the whole market, risk spillovers among the cryptocurrency
markets also attain their peaks. As the market gradually
acclimatizes itself to the changing information or shocks on
prices caused by major events, the market efficiency of an
individual cryptocurrency may increase, which reduces the risk
spillovers to others. However, the increasing market efficiency of
an individual cryptocurrency cannot result in a change of status
in the whole market for the individual cryptocurrency. Thus,
at different timescales, the risk spillover directions remain the
same. Summing up, risk spillovers among the cryptocurrencies
are the most remarkable in the medium term, rather than
in the short term or long term. Moreover, these spillovers
show persistence.

4.3. Dynamic Risk Connectedness at
Different Timescales
Table 6 presents the statistics for dynamic risk connectedness
among the cryptocurrency markets at medium- and long-
term frequencies. The risk spillover means and ranges among
the cryptocurrencies are remarkably discrepant at different
timescales. In addition, several spillover directions change.
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TABLE 6 | Statistics for dynamic risk connectedness at medium- and long-term frequencies.

Medium term Long term

Mean Std. Dev Range Mean Std. Dev Range

Bit-Eth 0.077 0.411 8.870 0.181 0.429 5.356

Lit-Ste −0.039 0.454 7.808 −0.055 0.615 7.555

Lit-Mon 0.001 0.526 7.895 −0.112 0.688 5.949

Ste-Mon 0.018 0.646 12.844 −0.151 0.831 6.362

Ste-Das 0.021 0.519 9.260 0.139 0.477 5.847

Bit-Rip 0.002 0.481 7.231 0.118 0.289 4.638

Bit-Lit 0.172 0.522 4.214 0.007 0.457 3.760

Bit-Ste −0.039 0.501 12.483 −0.084 0.550 6.641

Bit-Mon 0.053 0.435 10.138 −0.022 0.586 6.327

Bit-Das −0.204 0.969 8.524 0.148 0.503 4.614

Eth-Rip −0.031 0.549 7.876 0.076 0.275 5.408

Eth-Lit −0.025 0.431 6.695 −0.164 0.528 5.784

Eth-Ste −0.167 0.829 10.486 −0.120 0.585 5.485

Eth-Mon −0.009 0.432 10.516 −0.148 0.548 6.390

Eth-Das −0.069 0.616 7.388 0.121 0.431 5.463

Rip-Lit 0.101 0.495 4.419 −0.171 0.383 5.389

Rip-Ste 0.165 0.768 7.275 −0.233 0.439 5.463

Rip-Mon −0.082 0.497 9.120 −0.205 0.410 4.854

Rip-Das −0.068 0.583 7.471 −0.065 0.304 5.540

Lit-Das −0.039 0.625 5.785 0.197 0.436 3.982

Mon-Das 0.131 0.588 9.120 0.285 0.749 7.241

Sum. No.of |ML| > |MM| 16 No. of |SDL| > |SDM| 8

No.of changed sign 9 No. of |RL| > |RM| 0

This table presents the statistics for dynamic net pairwise risk spillovers among the selected cryptocurrencies at medium- and long-term frequencies. ML, SDL, and RL stand for the

mean, standard deviation, and range, respectively at the long-term frequency.

For lack of space, we present the statistics rather than figures depicting the risk spillovers among the cryptocurrencies. Readers can ask for the figure from the authors.

The mean spillover at long-term frequency is larger than
that at medium-term frequency, whereas the spillover range
at medium-term frequency is wider than that at long-term
frequency. In Table 6, there are sixteen pairwise spillovers
whose spillover indexes at long-term frequency are larger than
at medium-term frequency. Since the mean depends heavily
on the length of the sample interval, we catch the dynamic
characteristics of risk spillovers among the cryptocurrencies
through spillover range and standard deviation. The spillover
range at long-term frequency is remarkably lower than
that at medium-term frequency. Similar to the analysis in
subsection 4.2, this results from the collection of risk spillovers
among the cryptocurrencies at medium-term frequency. The
delays of price transmissions among the cryptocurrencies
result in the collection of risk spillovers at medium-term
frequency. Meanwhile, attentional heterogeneity in different
market participants leads to wide-ranging fluctuation in risk
spillover levels among the cryptocurrencies. In particular,
speculators and arbitragers may get more returns due to
the convenience and timeliness with which they get market
information. Thus, these market participants may magnify
the risk spillovers among the markets. On the other hand,
speculators and arbitragers pursue medium-term profits
in general, while investors prefer long-term programs.

This also suggests the amplification of risk spillovers at
medium-term frequency.

Referring to subsection 4.2, we divide the net pairwise
spillovers into two groups. In group one, the risk spillovers at
long-term frequency are stronger than those at medium-term
frequency, while group two holds the inverse case. One can see
from Table 6 that the risk spillover between two cryptocurrencies
whose spillover at long-term frequency is stronger than that at
medium-term frequency shows a strong fluctuation at long-term
frequency. However, the risk spillover fluctuation at long-term
frequency between two cryptocurrencies whose spillover at long-
term frequency is weaker than that at medium-term frequency
is remarkably weaker than that at medium-term frequency.
This is due to the persistence of risk spillovers among the
cryptocurrencies. In terms of Bitcoin and Ethereum, the investors
will pay continuous attention to these two cryptocurrencies
when they are generating investment decisions, on account
of their high similarity. This leads to a longer persistence of
risk spillover between Bitcoin and Ethereum, which results
in the risk spillover fluctuation at long-term frequency being
stronger than that at medium-term frequency. In terms of
those cryptocurrencies with weak similarity, the dominant roles
of cryptocurrencies with large capitalization result in stronger
risk spillover fluctuations in the medium term. Summing up,
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we declare the heterogeneity in dynamic characteristics of risk
spillovers among the cryptocurrencies at different timescales.

5. CONCLUSIONS AND POLICY
IMPLICATIONS

In this paper, we study risk connectedness among the
cryptocurrency markets through net pairwise risk spillover
measurement. We select seven leading cryptocurrencies, Bitcoin,
Ethereum, Ripple, Litecoin, Stellar, Monero, and Dash, whose
capitalizations are among the top 20 in the cryptocurrency
market. The data sample interval ranges from August 7, 2015,
to February 15, 2020. The methodology measuring the risk
spillover used in this paper is the DY index. We first explore the
net pairwise risk spillovers among the selected cryptocurrencies
over the whole sample. We then discuss the asymmetric
spillovers at times of upward and downward risk tendency.
Finally, we identify risk spillover heterogeneity at different
timescales through the decomposed DY index on the basis of
time frequency. The conclusion of this paper is summarized
as follows.

First, the risk spillover directions are highly correlative with
the capitalizations of cryptocurrencies. The risks spill over from
the cryptocurrencies with small capitalization to those with large
capitalization. For instance, the spillover indexes from Bitcoin
to Ethereum and Ripple are 0.047 and 0.035%, respectively,
while Bitcoin accepts risks from Stellar, Monero, and Dash, with
spillover indexes of 1.316, 2.520, and 0.870%, respectively. Similar
results also hold for Ethereum, which accepts risks from Stellar,
Monero, and Dash, measured by the spillover indexes as 0.462,
4.665, and 1.746%, respectively.

Second, the risk spillovers among the cryptocurrencies
under a downward risk tendency are stronger than those
under an upward risk tendency. A difference in spillover
direction under upward and downward risk tendencies exists
in the Monero market. In particular, the risk spillover index
between Bitcoin and Ripple is −0.513% under upward risk
tendency while it is −0.920% under downward risk tendency.
Similarly, the risk spillover indexes from Bitcoin to Stellar and
Dash are 1.824 and 0.689%, respectively, under upward risk
tendency, while they are 2.607 and 2.231% under downward
risk tendency. Monero accepts risk transmissions from the other
cryptocurrencies with large capitalization under risk upward
tendency, while it transmits the risks to those cryptocurrencies
in downward risk tendency. The risk spillovers in other pairs
of cryptocurrencies mostly maintain the same directions under
upward and downward risk tendencies.

Third, the mean and range of risk spillover at different
timescales show heterogeneity. The static risk spillovers mainly
happen at medium- and long-term frequencies. The risk
spillovers at medium-term frequency are mostly stronger than
those at long-term frequency, while the spillover directions
mostly remain the same. Focusing on the dynamic characteristics
of risk spillovers among the cryptocurrencies, the means
of risk spillover at long-term frequency are relatively larger
than those at medium-term frequency, while the ranges of

risk spillovers at medium-term frequency are distinctly larger
than those at long-term frequency. In addition, the risk
spillover fluctuations at long-term frequency are stronger than
those at medium-term frequency if the corresponding risk
spillover levels maintain the same comparison at long-term
and short-term frequencies. However, for cryptocurrencies
whose risk spillover levels at long-term frequency are lower
than at medium-term frequency, the risk spillover fluctuations
at long-term frequency are distinctly weaker than those at
medium-term frequency.

The empirical results have some policy implications for
regulators. Regulators should establish amonitoring and warning
system for risk. The risk spillovers among the cryptocurrencies
show heterogeneity under different risk tendencies, whereas
the spillover directions almost remain the same. Thus, a
risk monitoring and warning system would be able to
identify market behavior well and transmit valuable market
information. In addition, some regulatory policies should aim
at risk spillovers within 4–30 days. The large risk spillover
fluctuations and ranges among the cryptocurrencies in the
medium term pose new challenges for market supervision. Thus,
the regulators should generate policies, such as determining
a trading threshold, to control the risk spillovers among
the cryptocurrencies, improving the market efficiency in the
medium term. For the investors, the delayed effect of risk
spillovers among the cryptocurrencies should be paid attention
to when generating investment strategies. Major events may
shock the cryptocurrency markets strongly. Study of the delayed
effects of the shocks helps investors generate investment
strategies unifying their own situations. The analysis of the
heterogeneity in risk spillovers among the cryptocurrencies
at different timescales can provide information with which
investors to identify the effects of event shocks. Furthermore, our
empirical results also provide some suggestions for government
supervision of the design of a new cryptocurrency. On the
one hand, we should monitor the risks of cryptocurrencies
with large capitalization and construct a warning system.
On the other hand, two restrictions on trading volumes
of cryptocurrencies should be considered. Firstly, we should
use different restrictions on trading volumes under different
conditions. Under downward risk tendency, we can set lower
thresholds for trading volume to prevent the large-dollar
investors from entering the markets, leading to a risk increase for
new cryptocurrencies, whereas under an upward risk tendency,
investors should be attracted into the markets by setting higher
thresholds for trading volume and stimulated to trade more
frequently, driving the market mechanism to reduce the risks.
Secondly, we should restrict trading volumes of medium-term
investors. In this way, the uncertainty of spillover among the
cryptocurrency markets can be reduced, and market stability can
be well-protected.
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