
REVIEW
published: 03 July 2020

doi: 10.3389/fphy.2020.00233

Frontiers in Physics | www.frontiersin.org 1 July 2020 | Volume 8 | Article 233

Edited by:

Paul Denis Stevenson,

University of Surrey, United Kingdom

Reviewed by:

J. Luis Egido,

Autonomous University of

Madrid, Spain

Marco La Cognata,

Laboratori Nazionali del Sud

(INFN), Italy

*Correspondence:

Marc Verriere

verriere1@llnl.gov

Specialty section:

This article was submitted to

Nuclear Physics?,

a section of the journal

Frontiers in Physics

Received: 17 April 2020

Accepted: 28 May 2020

Published: 03 July 2020

Citation:

Verriere M and Regnier D (2020) The

Time-Dependent Generator

Coordinate Method in Nuclear

Physics. Front. Phys. 8:233.

doi: 10.3389/fphy.2020.00233

The Time-Dependent Generator
Coordinate Method in Nuclear
Physics
Marc Verriere 1,2* and David Regnier 3,4

1Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, United States, 2 Los

Alamos National Laboratory, Los Alamos, NM, United States, 3CEA, DAM, DIF, Arpajon, France, 4Université Paris-Saclay,

CEA, Laboratoire Matière en Conditions Extrêmes, Bruyères-le-Châtel, France

The emergence of collective behaviors and the existence of large amplitude motions are

both central features in the fields of nuclear structure and reactions. From a theoretical

point of view, describing such phenomena requires increasing the complexity of the

many-body wavefunction of the system to account for long-range correlations. One

of the challenges, when going in this direction, is to keep the approach tractable

within our current computational resources while gaining a maximum of predictive

power for the phenomenon under study. In the Generator Coordinate Method (GCM),

the many-body wave function is a linear superposition of (generally non-orthogonal)

many-body states (the generator states) labeled by a few collective coordinates. Such

a method has been widely used in structure studies to restore the symmetries broken

by single-reference approaches. In the domain of reactions, its time-dependent version

(TDGCM) has been developed and applied to predict the dynamics of heavy-ion collisions

or fission where the collective fluctuations play an essential role. In this review, we

present the recent developments and applications of the TDGCM in nuclear reactions.

We recall the formal derivations of the TDGCM and its most common approximate

treatment, the Gaussian Overlap Approximation. We also emphasize the Schrödinger

Collective-Intrinsic Model (SCIM) variant focused on the inclusion of quasiparticle

excitations into the description. Finally, we highlight several exploratory studies related

to a TDGCM built on time-dependent generator states.

Keywords: nuclear reactions, energy density functional, configuration mixing, TDGCM, time-dependent, fission

1. INTRODUCTION

Since the early days of nuclear physics, the variety of shapes that atomic nuclei can take is a core
notion of our interpretation of nuclear processes. The fission reaction provides a typical example
since it was quickly interpreted as the elongation of a charged liquid drop of nuclear matter, leading
to a scission point [1]. Descriptions in terms of vibrations and rotations of the nuclear shape also
lead to quantitative reproductions of the low energy spectra [2] of atomic nuclei. These successes
of the theory suggest that the shape of the nuclear density is somehow a relevant degree of freedom
(DoF) to describe several phenomena. In addition to the classical picture of the time evolution of a
well defined nuclear shape, taking into account its associated quantum fluctuation is of particular
importance. For instance, these fluctuations directly drive the width of the probability distribution
of particles transferred during low energy heavy-ion collisions, as well as the modal characteristics
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of the fragment distribution produced by fission. The
incorporation of these fluctuations into a quantum description
leads to a many-body wave function describing the system that
is a mixture of states with different shapes. With this intuition,
one may attempt a direct description of nuclei in terms of shape
DoFs. However, transforming the 3A positions and A spins of
the nucleons into a new system of coordinates involving a set
of deformations parameters is both cumbersome and problem-
dependent [3, 4]. Another possibility consists in keeping the
nucleons coordinates and build an ad-hoc quantum mixture of
many-body states with different relevant shapes. This is precisely
the starting point of the Generator Coordinate Method (GCM).

The GCM method was first developed in the seminal papers
of Hill and Wheeler in the context of nuclear fission in 1953 [5],
and later on generalized in [6]. The global philosophy is (i) to
generate a set of many-body states parameterized by a set of
shape variables (the generator states), (ii) to derive an equation
of motion for the many-body wave function of the system in
the restricted Hilbert space spanned by the generator states. The
first applications of this method focused in introducing shape
degrees of freedom, such as the multipole moments of the one-
body density. It turns out to be very versatile and has been applied
since with different families of generator states. The static GCM
has demonstrated over the years its ability to describe the low
excitation spectrum of nuclei [7, 8]. For this kind of application,
the generator states are, in general, parameterized by some
gauge variables associated with the breaking and restoration of
symmetry groups (Euler angles for rotational symmetry, gauge
angle for the particle-number symmetry) . Similar approaches
based on generator states labeled by a few multipole moments
of the one-body density also provided predictions of the giant
monopole, dipole, and quadrupole resonances [9–14].

Studies based on the time-dependent flavor of the GCM
are less abundant in the literature than the ones using its
stationary counterpart. Therefore, the goal of this review is to
recall the formal developments related to the Time-Dependent
Generator Coordinate Method (TDGCM) and highlight their
current applications in the field of nuclear physics. In section 2,
we present some general aspects of the time-dependent
generator coordinate method in its standard and full-fledged
implementation. In section 3, we focus on the Gaussian overlap
approximation framework that is commonly used in most of the
state of the art applications of the TDGCM. In particular, we
discuss the fact that such an approach has difficulties accounting
for the diabatic aspects of nuclear collective motions. We then
devote the two last sections to two possible extensions of the
TDGCM that aim to overcome this issue. The section 4 highlights
the Schrödinger Collective Intrinsic Model (SCIM), a framework
based on the symmetric moment approximation of the TDGCM.
Finally, section 5.1 reports alternative methods involving a
TDGCM-like ansatz built on time-dependent generator states.

2. GENERAL FORMALISM OF THE TDGCM

2.1. Generator States
Predicting the structure and dynamics of medium to heavy nuclei
starting from the nucleons degrees of freedom is a challenging

task. The difficulty arises from a large number of correlations
present in the many-body wave function of nuclear systems. A
feature that helps us tackle this problem is the existence of two
nearly separable time scales in nuclear processes. On the one
hand, we have the typical time for the motion of individual
nucleons inside the nucleus, which is roughly 10−22 s. On the
other hand, the time scales associated with the system’s collective
deformations are roughly ten times bigger than the former (1
zs = 10−21 s). Such separation in time scale motivated attempts
to describe the dynamics in terms of shape coordinates only. As
mentioned in the introduction, one possibility is to transform the
3A positions of the nucleons into a set of collective coordinates
plus some residual intrinsic DoFs. Such an approach could
then be combined with an adiabatic approximation similar to
the Born-Oppenheimer approximation in electronic systems to
reduce the dynamics to the collective DoFs only. The GCM
proceeds with an alternative approach that introduces collective
deformations DoFs without relying on a transformation of the set
of nucleons DoFs.

The first step of the method consists in building a family of
many-body states {

∣

∣φ(q)
〉

} parameterized by a vector of labels
q = q0 · · · qm−1. We can summarize the essence of such a
construction in the following few points:

• The labels qi are referred to as the generator coordinates
or collective coordinates. They are continuous real numbers
that can, for instance, characterize the shape of the nuclear
density. The vector q takes arbitrary values in am-dimensional
subspace E ⊂ ℜm.

• The states {
∣

∣φ(q)
〉

} are the generator states. They are many-
body states associated with the system of A nucleons under
study. In the standard TDGCM framework, these states are
time-independent.

• The function q →
∣

∣φ(q)
〉

should be continuous. In other
words, for any sequence of collective coordinates {qk} that
converges to q, the corresponding sequence

∣

∣φ(qk)
〉

must
converge to

∣

∣φ(q)
〉

. This property is required for a sound
mathematical construction of the GCM framework as detailed
in [15].

The choice of a family of generator states fulfilling these
properties is then arbitrary, which gives great versatility to the
GCM method1. The generator states should span a sub-Hilbert
space that contains each stage of the exact dynamics to describe a
physical process optimally. Therefore, building a pertinent family
of generator states requires a good a priori knowledge of the
dynamics of the system.

A standard procedure to handle nuclear deformations consists
in the definition of the generator states as the solutions
of a constrained Hartree-Fock-Bogoliubov equation. In this
approach, each collective coordinate is typically associated with
a multipole moment observable (i.e., the quadrupole moment of

1For some applications, it may be convenient to add one or several discrete

generator coordinates. We will then note the generator states as
∣

∣φk(q)
〉

where k

is a vector of discrete labels. A typical example of a discrete label could be the K

quantum number associated with the projection of the total spin onto a symmetry

axis of the nucleus. Another example is provided in section 4.
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the one-body density). The generator state
∣

∣φ(q)
〉

is then obtained
by minimizing the Routhian

R[φ(q)] = EHFB[φ(q)]−
∑

i

λi

(

〈

φ(q)
∣

∣Q̂i

∣

∣φ(q)
〉

− qi

)2
, (1)

where the Q̂i refer to the chosen multipole operators and λi
are their associated Lagrange multipliers. This method presents
the benefit of controlling the principal components of the shape
of the states through a small set of DoFs. The other DoFs are
determined automatically from the HFB variational principle. It
is often qualified as an adiabatic method because the generator
states will minimize their HFB energy under a small number
of constraints. One drawback of this method is that it does not
necessarily ensure the continuity of the function q →

∣

∣φ(q)
〉

.
This could severely affect some applications as mentioned in
sections 2.6, 3.3.

In the context of nuclear structure, the now-standard strategy
of symmetry breaking and restoration provides a different yet
natural way of building generator states. In this context, we
typically define the generator states as the result of applying a
parameterized group of symmetry operators on a reference (and
symmetry breaking) HFB state |φ〉. Typically, for the particle-
number symmetry, the relevant collective coordinate is the gauge
angle θ [16] and the generator states

∣

∣φ(θ)
〉

read

∣

∣φ(θ)
〉

= exp
(

iθ(Â− A)
)

|φ〉 . (2)

Note that the two strategies mentioned above to create the
generator states are often mixed when dealing with several
collective coordinates [8].

2.2. Griffin-Hill-Wheeler Ansatz
Once the family of generator states is chosen, the Griffin-Hill-
Wheeler (GHW) ansatz assumes that the many-body state of the
system reads at any time

∣

∣9(t)
〉

=
∫

q∈E
dq
∣

∣φ(q)
〉

f (q, t). (3)

The function f (q, t) gives the complex-valued weights of this
quantum mixture of states. It should belong to the space
of square-integrable functions that we note here L2(E). The
expectation value of any observable Ô for a GHW state has the
compact form

〈Ô〉(t) =
∫∫

dq dq′f ⋆(q, t)O(q, q′)f (q′, t). (4)

We used here the notation O(q, q′) for the kernel of the
observable defined by

O(q, q′) =
〈

φ(q)
∣

∣Ô
∣

∣φ(q′)
〉

. (5)

Significant kernels that we will discuss through this review are
the norm kernel and the energy (or Hamiltonian) kernel. They
are defined as

H(q, q′) =
〈

φ(q)
∣

∣Ĥ
∣

∣φ(q′)
〉

(Hamiltonian), (6)

N (q, q′) =
〈

φ(q)
∣

∣1̂

∣

∣φ(q′)
〉

(norm). (7)

We emphasize that the choice of collective coordinates q is
somehow arbitrary. From one choice of collective coordinate, we
may switch to a different one while keeping invariant the space of
GHW states. We can show this by defining a change of variable ϕ

a = ϕ(q). (8)

Then we may consider the GHW ansatz built on the transformed

generator states
∣

∣

∣
φ̃(a)

〉

=
∣

∣φ(ϕ−1(a))
〉

∣

∣

∣ψ̃(t)
〉

=
∫

a∈ϕ(E)
da
∣

∣

∣φ̃(a)
〉

f̃ (a, t). (9)

Any GHW state defined by Equation (3) can be cast into
Equation (9) with the weight function

f̃ (a, t) = f (ϕ−1(a), t)| det(Jϕ(a))|−1. (10)

Here Jϕ is the Jacobian matrix of the coordinate transformation.
Also, the formula for the expectation value observables is
invariant by this change of coordinate. Typically we have in
the a representation

〈Ô〉(t) =
∫∫

da da′ f̃ ⋆(a, t)O(a, a′)f̃ (a′, t), (11)

with

O(a, a′) =
〈

φ̃(a)
∣

∣

∣ Ô
∣

∣

∣φ̃(a′)
〉

. (12)

Although applying such a change of variable does not change
the physics of the ansatz, it does change intermediate quantities
involved in the GCM framework. In some cases, it may be
essential to change the variables to obtain valuable mathematical
properties of the kernel operators [15, 16].

As a final remark, we would like to highlight that the
integral of Equation (3) may not be well defined for some
weight functions and family of generator states. The [15] gives
a mathematically rigorous presentation of the GCM framework.
We retain from this work that a sufficient condition for the GHW
ansatz to be valid is that norm kernel defines a bounded linear
operator on L2(E).

2.3. Griffin-Hill-Wheeler Equation
The time-dependent Schrödinger equation in the entire many-
body Hilbert space,

(

Ĥ − ih̄
d

dt

)

∣

∣9(t)
〉

= 0, (13)

drives the exact time evolution of amany-body system
∣

∣9(t)
〉

. We
assume here that all the interactions between the nucleons are
encoded into the Hamiltonian Ĥ acting on the full many-body
space. From this starting point, the TDGCM equation of motion
can be obtained by assuming that at any time t:

1. the wave function of the system keeps the form of
Equation (3),
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2. the equality

〈8|
(

Ĥ − ih̄
d

dt

)

∣

∣9(t)
〉

= 0 (14)

is satisfied for every GHW state |8〉.

In other words, we impose that the residual (Ĥ − ih̄d/dt)
∣

∣9(t)
〉

is orthogonal to the space of GHW states. This last assumption
is equivalent to a Frenkel’s variational principle whose link to
other time-dependent variational principles is discussed in [17].
By injecting the GHW ansatz (3) into (14), we obtain

∫ ∫

dq dq′f ⋆8(q
′)
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (15)

Here f8 is the mixing function defining the GHW state |8〉.
Solving Equation (15) for any state |8〉 is equivalent to look for a
function f verifying the so-called Griffin-Hill-Wheeler equation
in its time-dependent form

∀q′
:

∫

dq
(

H(q′, q)− ih̄N (q′, q)
d

dt

)

f (q, t) = 0. (16)

The time-evolution of the norm and the energy reads

d

dt

〈

9(t)
∣

∣9(t)
〉

= i

h̄

〈

9(t)
∣

∣(Ĥ† − Ĥ)
∣

∣9(t)
〉

, (17)

d

dt
E(t) = i

h̄

〈

9(t)
∣

∣(Ĥ† − Ĥ)Ĥ
∣

∣9(t)
〉

. (18)

Thus, this equation of motion preserves the norm of the wave
function and the total energy of the system if the many-
body Hamiltonian is Hermitian. However, it is not always the
case. To simulate open systems, for instance in the context
of nuclear reactions, a common practice consists in adding
an imaginary absorption term to the Hamiltonian that acts
in the neighborhood of the finite simulation box. Finally,
the time-dependent GHW equation is a continuous system
of integrodifferential equations. Its non-local nature in the q

representation brings a serious hurdle to its numerical solving.

2.4. Mapping to the Collective Wave
Functions
The equation of motion (15) and an initial condition for
the system is sufficient to determine the dynamics in the
TDGCM framework. It is possible to numerically integrate in
time this equation with an implicit scheme such as Crank-
Nicolson [18]. However, the TDGCM framework offers another
natural approach that turns out to be both enlightening from
the mathematical perspective and more stable from a numerical
point of view. This method resorts on a mapping between the
GHW states and some functions of the collective coordinate q.
The rigorous mathematical construction of this mapping in a
general case is detailed in [15]. Here we will only build this
mapping in the case where the norm kernel N is of Hilbert-
Schmidt type [19]. It is the case as long as the domain E of the
collective coordinates is bounded, which is valid for a wide range
of applications.

To start with, we recall that any kernel O(q, q′) also defines a
linear operator acting on the space of functions L2(E)

(Of )(q) =
∫

q′∈E
dq′O(q, q′)f (q′), (19)

as long as this integral is mathematically defined. The Hilbert-
Schmidt property of the norm operator implies the existence of a
complete, discrete and orthonormal family of functions {ui(q)}i
of L2(E) that diagonalizes the linear operator associated with the
norm kernel

∀i > 0 : Nui = λiui. (20)

Since N is a Hermitian positive semidefinite operator, its
eigenvalues are real and positives. We adopt here the convention
where they are sorted by decreasing order and assume that only
the first r eigenvalues are not zero. From this diagonalization, we
can split the space of functions f into two orthogonal subspaces:
the one associated with the vanishing eigenvalues and the one
associated with the strictly positive eigenvalues. Formally, we
write down the two projectors

Q(q, q′) =
∑

i≤r

ui(q)u
⋆
i (q

′) (21)

P(q, q′) =
∑

i>r

ui(q)u
⋆
i (q

′) (22)

with

Q+ P = 1L2(E). (23)

The projected space PL2(E) is associated with the null
eigenvalues of the norm operator N . Any GHW state built from
a weight function belonging to this space gives the null many-
body state. Its orthogonal complement is the subspace Q(E) =
QL2(E). We call collective wave functions, the functions living in
this subspace.

We can define uniquely the positive hermitian square-root of
N (which is also Hermitian) with

N (q, q′) =
∫

a∈E
N 1/2(q, a)N 1/2(a, q′) da. (24)

We can, therefore, associate to any GHW state its collective wave
function g(q) ∈ Q(E) by the equation

g = N 1/2f . (25)

Conversely, the operator N 1/2 is invertible in Q(E). Therefore,
for any collective wave function g ∈ Q(E), one can build its
corresponding GHW state with the weight function

f = N−1/2g. (26)

Finally, this mapping between Q(E) and the GHW states is
isometric as we may show that for any pair of GHW states9 and
8 we have the property

〈9|8〉 =
〈

g9
∣

∣g8
〉

=
∫

q∈E
g⋆9 (q)g8(q) dq. (27)

Frontiers in Physics | www.frontiersin.org 4 July 2020 | Volume 8 | Article 233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Verriere and Regnier The TDGCM in Nuclear Physics

Going further, any many-body observable Ô can be mapped into
a collective operator Õ acting on the space Q(E). This operator is
defined by 2

Õ = N−1/2ON−1/2. (28)

The isometry of the mapping gives a simple mean to compute
matrix elements of observables.

〈

9
∣

∣Ô
∣

∣8
〉

=
〈

g9
∣

∣Õ
∣

∣g8
〉

(29)

Finally, we can reduce the TDGCM equation of motion
(Equation 16) in this language. It becomes a time-dependent
Schrödinger equation for the collective wave function

ih̄ġ = H̃g. (30)

This equation of motion presents several practical advantages
compared to Equation (16). The collective Hamiltonian H̃ is,
in general, still non-local, but the time derivative of g has an
explicit expression. It opens the possibility of using faster time
integration schemes at the cost of computing first the collective
Hamiltonian through Equation (28). Also, the collective wave
function is expected to have a smoother behavior compared to the
weight function f . This comes directly from Equation (26) where
we see that eigenvalues of the norm kernel approaching zero add
diverging components to f . The Equation (30) may be directly
solved by discretizing the collective wave function g(q). In many
cases, it is appropriate to solve it directly in the representation
given by the basis {ui(q)}i≤r . The collective Hamiltonian H̃, as
well as other collective observables, are indeed easier to compute
in this particular basis.

2.5. Difficulties Related to the Energy
Kernel
We discussed general features of the TDGCM approach valid
for any family of generator states. In nuclear physics, most
applications of the GCM rely on families of Bogoliubov vacua.
A crux of the GCM approach is then the determination of
the norm and Hamiltonian kernels between such many-body
states. The [20] provides a general and now-standard approach
to fully determine the norm kernel between Bogoliubov vacua
based on the calculation of a matrix Pfaffian. However, the
evaluation of the energy kernel in nuclear physics applications
suffers from several major difficulties. The origin of these
flaws stems from the fact that our practical applications
do not rely on a linear many-body Hamiltonian but some
effective Hamiltonians or energy density functionals. This topic
was extensively discussed in the context of static GCM for
nuclear structure [21–25]. We briefly list here the pitfalls
raised by the determinations of the energy kernel in practical
nuclear applications.

2Note that such a definition is possible for any observable Ô due to the property

QO = O.

2.5.1. Neglecting Some Exchange Terms
A common practice to avoid unbearable numerical costs is the
neglection or the approximation of parts of the many-body
Hamiltonian. For instance, it is widespread to use the Slater
approximation of the Coulomb exchange term or to neglect
the exchange part of the pairing force between nucleons [26].
Although convenient from a numerical point of view, it was
shown in [27] that such approximations may introduce poles
in the expression of the energy kernel. These poles lead to a
divergence when calculated between some Bogoliubov vacua.
The [28, 29] illustrate this behavior in a case of particle number
symmetry restoration.

2.5.2. Violation of Symmetries by Energy Density

Functionals
In many practical applications, the nucleon-nucleon interaction
is encoded in an energy density functional (EDF). Using
such a formalism in combination with a GCM mixture of
states requires a sound definition of a multireference energy
density functional [22]. Such a definition is often provided
and implemented in the form of the reduced energy kernel
h(q, q′) = H(q, q′)/N (q, q′) between two non-orthogonal
Bogoliubov vacua. For a two-body Hamiltonian case, the
reduced energy kernels may be expressed from the generalized
Wick theorem

h(q, q′) =
∑

ij

tijρ
qq′

ji + 1

2

∑

ijkl

v̄ijklρ
qq′

ki
ρ
qq′

lj
+ 1

4

∑

ijkl

v̄ijklκ
qq′∗
ij κ

qq′

kl
.

(31)
It involves the matrix elements of the one- and two-body parts of
the interaction t and v̄ as well as transition densities such as

ρ
qq′

ij =
〈

φ(q)
∣

∣â†
j âi
∣

∣φ(q′)
〉

〈

φ(q)
∣

∣φ(q′)
〉 . (32)

In the practical implementations of the multireference EDF
approach, such a kernel is defined by analogy as the same bilinear
form whose coefficients come from a fit procedure. The main
differences compared to the EDF case are:

1. the coefficients defining the EDF may depend on some
densities of the system,

2. the coefficients in the particle-particle channels may differ
from the ones in the particle-hole channels,

3. the matrix v̄may not be antisymmetric.

As detailed in [22, 30], the violation of these properties leads
in some cases to a divergence of the reduced energy kernel that
biases or prevents practical applications.

2.5.3. Density Dependent Terms of Energy Density

Functionals
In an EDF framework, the coefficients of Equation (31) depend
on the density of the system. The exact formulation of this
dependency is yet subject to an arbitrary choice, especially for
the non-diagonal part of the kernel. Several prescriptions have
been developed and tested during the last two decades [31,
32]. A prescription that fulfills many important conditions
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expected from a Hamiltonian is the transition density defined
by Equation (32) (see [33]). However, this prescription yields
to complex-valued densities. It is then incompatible with most
of the EDFs developed at the mean-field level with terms that
contain a non-integer power of the density. Finding a satisfying
pair of density prescription and EDF valid for GCM calculations
is still an open problem.

In conclusion, the current usage of the GCM formalism with
effective Hamiltonian or energy density functionals suffers from
several formal and practical flows when it comes to determining
the energy kernel. This situation has been a major obstacle to the
development of GCM applications in nuclear physics in the last
years. Several ongoing efforts attempt to overcome this difficulty
by building new energy functionals valid for multireference
calculations [34] or going toward ab initio treatments [35].

2.6. Fission Dynamics With the Exact
TDGCM
The exact solving of the time-dependent GHW equation in a
realistic case has rarely been carried out. To our knowledge, the
only published work tackling this task is presented in [36, 37] in
the context of fission. It shows the challenges raised by an exact
TDGCMcalculation, especially when dealing with large collective
coordinate domains.

In [36], the authors used the TDGCM to describe the
reaction 239Pu(n,f). This study relies on two common collective
coordinates for fission, namely q20 and q30, that are associated
with the expectation value of the quadrupole and the octupole
moments of the one-body density. The dynamics in this
collective space accounts for the evolution from a compound
to a fragmented system with, also, information on the mass
asymmetry between the two fragments produced. It is well
suited to determine the mass yields of the fragments. The set
of constrained HFB solutions (a total of 20,212) obtained for
a wide range of these collective coordinates forms the family
of generator states. Each generator state is practically obtained
with a finite-range Gogny interaction in its D1S parametrization.
A two-center axial harmonic oscillator basis with 12 shells has
been used where the parameters defining the basis have been
optimized for each value of the collective coordinates.

The norm kernel has been calculated for each couple of
generator states. The upper-left panel of Figure 1 presents its
values between the mean-field ground-state and the surrounding
points, whereas the lower-left panel of the figure shows its values
obtained for a more elongated configuration in the potential
energy surface (PES). We see that the overlaps are above ǫthresh =
1.0 × 10−4 only in a neighborhood of q0 in both cases. As noted
in [16], it is due to the large number of nucleons in the system.

This behavior is at the heart of the Gaussian Overlap
Approximation, discussed in more detail in section 3. The
reduced Hamiltonian h(q0, q), defined as the ratio between the
collective Hamiltonian and the norm kernel

h(q0, q) =
〈

φ(q0)
∣

∣Ĥ
∣

∣φ(q)
〉

〈

φ(q0)
∣

∣φ(q)
〉 , (33)

has also been calculated for all overlaps greater than ǫthresh. In this
work, only the kinetic and central terms of the interaction were
included. The right panels of Figure 1 presents the slices of the
reduced Hamiltonian for the same cases as in its left panels. The
relative variation of the reduced Hamiltonian (where the norm
kernel above the threshold) is almost constant, being only 2%
around the ground state and 1% for the elongated configuration.
In addition to the overlaps rapid decrease discussed above,
it numerically justifies the standard second-degree polynomial
approximation of this quantity (a further study with all the terms
of the interaction is, however, required). The bottom panels
highlight a discontinuous behavior around q20 ≈ 130 b. This
specific discontinuity is due to the existence of two competing
valleys in the three-dimensional PES obtained by adding the
hexadecapole moment q40 = 〈Q̂40〉 as a collective DoF [38]. Such
a discontinuity gives a similar label in the collective space to two
HFB states that are far in the full many-body space. The Figure 2
is an illustration of such a discontinuity in a two-dimensional
PES embedded in a three-dimensional collective space. It is not
possible to reduce the loop C to a point: the discontinuity is a
hole whose edges are highlighted by the red line of Figure 2.
Such a discontinuity may add spurious boundary effects in the
description of the reaction of interest. It is especially the case
when the discontinuity appears in an area of the collective space
that gives important contributions to the targeted observables.
Note that in approximate treatments such as the ones based on
the Gaussian Overlap Approximation, discontinuities are always
neglected, leading to a spurious connection between distant
regions of the full many-body space.

It is possible to determine the time evolution of the weight
function f (q, t) of the GHW ansatz (3). In cases where the
size of the discretized space of the collective coordinate
is still tractable, this task has been achieved through a
direct diagonalization of the collective Hamiltonian [37].
For this two-dimensional application, the straightforward
diagonalization involves a prohibitive numerical cost. It is
still possible to use a Crank-Nicolson method to integrate
in time the GHW equation (16). Figure 3 presents a
snapshot at time t = 0.55 zs of the quantity P(q, t)
defined as

P(q, t) ≡
〈

9(t)
∣

∣

(∣

∣φ(q)
〉 〈

φ(q)
∣

∣

) ∣

∣9(t)
〉

. (34)

This corresponds to the probability to measure the system
in the state

∣

∣φ(q)
〉

3. Even though the simulation was a
proof-of-concept, we see that the bottom of the asymmetric
valley is slightly more populated than the other parts of the
PES near scission. This leads mostly to asymmetric fission
fragments, which is in agreement with experimental data [39,
40]. The GCM wavefunction evolves in a slightly non-local
way in the collective space (in the range of the width of
the overlaps along q − q′), leading to non-zero probability

3 Note that due to the non-orthogonality of the generator states its sum over all the

points q is not equal to 1.
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FIGURE 1 | (Left) Overlaps N (q0, q) as a function of q and where q0 = (30, 3), in barn units, corresponds to the ground state (upper panel) or q0 = (127, 1), in barn

units, which corresponds to a point at higher elongation (lower panel). This was obtained for a 240Pu nucleus. The white parts correspond to values below a threshold

of 1.0× 10−4. The yellow crosses correspond to q0. (Right) Same as the corresponding left panels for the reduced energy kernel h(q0, q).

FIGURE 2 | Schematic representation of a discontinuity in two-dimensional calculations with constraints on q20 = 〈Q̂20〉 (x-axis) and q30 = 〈Q̂30〉 (y-axis). The z-axis

and the color scale are associated with the average values of the unconstrained hexadecapole moment 〈Q̂40〉.

“drops” appearing and disappearing along the time-evolution of
the system.

The most time-consuming part was the calculation of the
norm and Hamiltonian kernels that required the use of 512 cpus
for two weeks (∼ 170, 000 cpu.h). The calculation of the time-
evolution of the weight function f (q, t) for times up to 0.55zs was
done using 64 cpus for one week (∼ 10, 000 cpu.h). The short

length of time for which the weight function was determined is
not enough for the calculation of mass and charge probability
distributions. A more realistic calculation would require at least
200, 000 cpu.h, for the determination of the weight function up
to 10zs only.

The principal difficulty of such an application stems from
the big size of the discretized space of the collective coordinates
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FIGURE 3 | The gray surface represents the generator states’ HFB energy as a function of q20 and q30. On top of this, the color map gives the quantity

P(q, t = 0.550 zs) in the same conditions than those of Figure 1.

(substantially bigger, for example, than in the case of the
static GCM calculations for nuclear structure). This makes the
computation of the norm and Hamiltonian kernel intensive
but still embarrassingly parallel. Besides, in the case of fission,
techniques to determine the post-scission observables of the
fragments still need to be developed for the exact TDGCM. For
instance, some simplifying hypotheses on the way to treat open
domains of collective coordinates are commonly used under the
Gaussian Overlap Approximation [41] but are no longer valid in
the exact TDGCM framework.

3. GAUSSIAN OVERLAP APPROXIMATION
(GOA)

In its straightforward application, the TDGCM leads to a
non-local equation of motion that must be solved in a high-
dimensional space in most of the practical calculations. As
mentioned in Sec. 2, solving this equation involves a high
numerical cost that strongly hurdles its applications in nuclear
physics. Several approximate treatments of the TDGCM have
been developed with the aim to build a local equation of
motion for the collective wave function g(q, t) (cf. Equation 30).
The Gaussian overlap approximation (GOA) is one of these
approximations, which leverages the fact that the overlap and
Hamiltonian kernels can, in some cases, be parameterized
in terms of Gaussians of the variable q. In its static form,
the GOA has been largely used and applied for nuclear
structure. Especially, it provides a nice bridge between the Bohr
Hamiltonian equation that was first formulated in [42] and a
quantum treatment based on the 3A + A nucleons degrees of
freedom [43–47]. Extensive reviews of the static version of the

GOA can be found in [16, 48]. We focus here on its time-
dependent flavor.

3.1. TDGCM+GOA With Time Even
Generator States
3.1.1. Main Assumptions
In its most standard form, the GOA framework assumes the
following situation:

1. we have a family of normed generator states {
∣

∣φ(q)
〉

}
parameterized by a vector of real coordinates q ∈ ℜm;

2. all the states of the set are time-even, i.e., they are their own
symmetric by the time-reversal operation;

3. the function q →
∣

∣φ(q)
〉

is continuous and twice derivable;
4. the overlap between two arbitrary generator states can be

approximated by a Gaussian shape

N (q, q′) ≃ exp

[

−1

2
(q− q′)tG(q̄)(q− q′)

]

, (35)

with q̄ = (q+ q′)/2 and G(q̄) a real positive definite matrix;
5. the Hamiltonian kernel can be approximated by

H(q, q′) ≃ N (q, q′)h(q, q′), (36)

where h(q, q′), a polynomial of degree two in the collective
variables q and q′, is the reduced Hamiltonian.

In most applications of the TDGCM+GOA, the generator states
are built as constrained Hartree-Fock-Bogoliubov states of even-
even nuclei which ensures the time even property. The question
is then: what are the situations where the Gaussian shape
approximation is verified within a small error? Already from the
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time-reversal symmetry, we can infer that the overlaps are real
and symmetric in (q − q′). Therefore, the following relation is
satisfied in the vicinity of q

〈

φ(q+ s

2
)
∣

∣

∣φ(q−
s

2
)
〉

= exp
[

ln
(〈

q+ s

2

∣

∣

∣q−
s

2

〉)]

. (37)

A Taylor development of this expression up to order two
in s already yields locally a Gaussian shape without any
additional assumption

〈

φ(q+ s

2
)
∣

∣

∣φ(q−
s

2
)
〉

= exp

[

−1

2
stG(q)s+ o(s2)

]

(38)

with

Gij(q) =
〈

∂iφ(q)
∣

∣∂jφ(q)
〉

, (39)

∣

∣∂iφ(q)
〉

=
∂
∣

∣φ(a)
〉

∂ai

∣

∣

∣

∣

∣

q

. (40)

We used here some identities coming from the fact that generator
states are normalized. In situations where the coordinates
correspond to some collective deformations of the nucleus, it
turns out that the Gaussian shape holds for larger values of s.
This is justified from the central limit theorem in [48] for Slater
determinants or in [16] for Bogoliubov vacua. It especially holds
for heavy nuclei.

Finally, note that although we limit here our description to
the case of time-even generator states, it is possible to build
a GOA framework without assuming this symmetry. Such a
generalization can be found, for instance, in [48].

3.1.2. Equation of Motion
Starting from the GOA hypothesis, one can reduce the equation
of motion (30) to a local equation involving the first and second-
order derivatives of the collective wave function. In this section,
we give only themain ideas to derive this local equation. Formore
exhaustive demonstrations, we refer the reader to [16, 48, 49].

In its historical version, the GOA framework assumes that
the width of the Gaussian shape is constant. However, in most
of the practical cases, this assumption is too restrictive. To
overcome this issue, a series of papers published in the 70–
80’s generalized the GOA framework to account for a varying
Gaussian width [49–51]. The idea is to perform a change of
collective variables to recover the constant width case. The
mapping between the new collective coordinates α and the
original ones q reads

α(q) =
∫

a∈Cq
0

G
1
2 (a) da (41)

where C
q
0 is a path from the origin to q. With this new labeling of

the generator states, we get 4

〈

φ(α)
∣

∣φ(α′)
〉

≃ exp

[

−1

2
(α − α′)2

]

. (42)

4 Note that this assumes (i) that the integrals of G1/2(a) are independent of the

integration path (ii) that its evaluation properly approximates the average of G1/2

on the path at the central point of the path [51].

We can therefore perform all the derivations with the α

coordinates and make the inverse transformation on the final
expressions only.

Starting with this simple form of the overlap, we seek an
equation of motion involving a local collective Hamiltonian in
the collective coordinate representation. The Gaussian shape of
the norm kernel allows expressing its positive Hermitian square
root analytically as

N 1/2(α,α′) = C · exp
[

−(α − α′)2
]

, (43)

where the constant C only depends on the dimension of the
coordinate α. Additionally, there is a simple link, involving
Hermite polynomials, between the successive derivatives of
a Gaussian shape and its multiplication by polynomials. For
instance, we have for the two first derivatives in α

∂N 1/2

∂αk
= −2(αk − α′

k)N
1/2, (44)

∂2N 1/2

∂αk∂αl
= [−2δkl + 4(αk − α′

k)(αl − α′
l)]N

1/2. (45)

In the following, we build a local collective Hamiltonian. After
the change of variable (41), the Hamiltonian kernel between two
arbitrary GHW states reads

〈

9
∣

∣Ĥ
∣

∣8
〉

(46)

=
∫

αα′ξ
f ⋆9 (α)N

1/2(α, ξ )h(α,α′)N 1/2(ξ ,α′)f8(α
′) dα dα′ dξ .

By assuming that the reduced Hamiltonian is a second-degree
polynomial, we can write down for any point ξ

h(α,α′) = h(ξ , ξ )+ hα(α − ξ )+ hα′ (α′ − ξ )

+ 1

2

[

hαα(α − ξ )2 + 2hαα′ (α − ξ )(α′ − ξ )+ hα′α′ (α′ − ξ )2
]

,

(47)

where hα is a shorthand notation for the vector of the first
derivatives of the reduced Hamiltonian estimated at ξ

hα ≡
(

∂h(α,α′)

∂α1

∣

∣

∣

∣

α=α′=ξ

, . . . ,
∂h(α,α′)

∂αm

∣

∣

∣

∣

α=α′=ξ

)

. (48)

Similarly hαα , hαα′ , and hα′α′ are the tensors of second derivatives
with respect to the collective coordinates and evaluated at
point ξ . The idea is then to inject this local development into
equation (46). Using the relation (44), we express the reduced
kernel as a local operator containing derivatives acting on the
right-hand side N 1/2. Finally, after rearranging all the terms
and performing some integrations by parts, we obtain the
expected result

〈

9
∣

∣Ĥ
∣

∣8
〉

=
∫

αα′
g⋆9 (α)H̃(α)δ(α − α′)g8(α

′) dα dα′. (49)
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The identification of this expression with (29) shows that the
collective Hamiltonian is local. It reduces to a standard kinetic-
plus-potential Hamiltonian acting on the collective wave function

H̃(α) = − h̄2

2
∇αB(α)∇α + V(α). (50)

The potential and inertia matrices in this coordinate
representation are 5

V(α) = h(α,α)− 1

2
Tr(hαα′ )

B(α) = 1

2h̄2
(hαα′ − hαα).

(51)

Injecting this expression of the collective Hamiltonian into (30)
and solving the resulting equation gives the time-evolution of the
unknown function g(α). The ultimate step is to transform back
this equation of motion to another one acting on the original
set of coordinates q. Doing so, we get the same equation with a
transformed local collective Hamiltonian

H̃(q) = − h̄2

2
√

γ (q)
∇q

[

√

γ (q)B(q)
]

∇q + V(q). (52)

The new collective Hamiltonian involves ametric γ (q) defined by

γ (q) = det
(

G(q)
)

. (53)

The inertia tensor takes the more involved form

B(q) = 1

2h̄2
G−1(q)

[

hqq′ − hqq +
∑

n

Ŵn(q)hqn

]

G−1(q). (54)

The notation Ŵn(q) stands for the Christoffel symbol. It is a
matrix related to G(q) through the relation

Ŵn
kl(q) =

1

2

∑

i

G−1
ni

(

∂Gki

∂ql
+ ∂Gil

∂qk
− ∂Glk

∂qi

)

. (55)

Finally, the potential becomes in this set of coordinate

V(q) = h(q, q)− 1

2
Tr
(

G−1(q)hqq′
)

. (56)

The first term is the HFB energy of the generator state
∣

∣φ(q)
〉

.
The second term is a zero-point correction that contains second
derivatives of the reduced Hamiltonian. With some additional
work, it is possible to express this zero-point correction ǫZPE in
a slightly more practical form that involves the inertia tensor and
second derivatives of the energy h(q, q) only

ǫZPE(q) = − h̄2

2
Tr(BG)− 1

8
Tr

(

G−1 ∂
2h(q, q)

∂q2

)

+ 1

8
Tr

(

G−1
∑

n

Ŵn ∂h(q, q)

∂an

)

. (57)

5 Note that some higher-order correction terms in the potential are neglected here

[see [48] for more details].

The equation of evolution (30) along with the expression
of the collective Hamiltonian (52) and its components (53),
(56), and (54) define the dynamics of the system in the
TDGCM+GOA framework.

3.1.3. Inertia and Metric
The inertia tensor and the metric are quantities that depend
on the derivatives of the generator states and the reduced
Hamiltonian. One possibility could be to determine these
derivatives numerically, for instance, with a finite difference
method. In the standard situation where the generator states are
constrained HFB solutions, one can find an analytical expression
of the inertia and the metric. We recall here this result at any
point q

G = 1

2
[M(1)]−1M(2)[M(1)]−1. (58)

B = M(1)[M(2)]−1M̃
(1)
[M(2)]−1M(1). (59)

The moments M(K) and M̃
(K)

involve the QRPA matrix M

of the state
∣

∣φ(q)
〉

and are defined in Appendix 7.1. For the
complete derivation of these results, we refer the reader to [52]
and references therein. Note that this result neglects the term
involving the Christoffel symbol in the inertia. The argument
for this approximation relies on the slow variation of the metric
according to the collective coordinates. We are not aware of
the systematic verification of the validity of this assumption in
applications.

In all TDGCM+GOA practical applications, the so-called
perturbative cranking approximation is used to avoid a costly
inversion of the QRPA matrix required to compute the metric
and inertia. It consists in approximating the QRPA matrix by a
diagonal part only, in the quasiparticle basis that diagonalizes the
generalized density matrix of

∣

∣φ(q)
〉

. This gives a simple and well

known form for the momentsM(K)

M
(K)
ij = M̃

(K)
ij = Re

∑

µν

〈

µν
∣

∣Q̂i

∣

∣φ(q)
〉〈

φ(q)
∣

∣Q̂j

∣

∣µν
〉

(Eµ + Eν)K
, (60)

where |µν〉 is a two quasiparticles excitation built on top of
the generator state, and Eµ and Eν are the corresponding
quasiparticle energies.

The GCM+GOA framework unambiguously defines the
metric and inertia as functions of the successive derivatives
of the generator states and reduced Hamiltonian. However, it
is known that this inertia and its approximate perturbative
cranking estimation is too low to describe several situations
correctly. One example is the case of a translation motion [48].
Several studies compare the GOA inertia with inertia provided
by other theories yielding an equivalent collective equation of
motion, such as quantized ATDHFB [53–55]. In [56], the authors
extend the TDGCM+GOA framework by introducing conjugate
coordinates that bring time odd components into the generator
states. In particular, they show that the resulting collective
Hamiltonian takes the same form as Equation (52) but where
the ATDHFB inertia replaces the GOA inertia. This justifies the
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FIGURE 4 | Reflection coefficients as a function of the center of mass energy

(in MeV) of a 12C+12C head-on collision. The position of the resonances

estimated from a GCM+GOA framework are compared to a set of

experimental data. Figure taken from [57].

common practice of using the ATDHFB inertia when solving the
collective equation of motion.

3.2. Applications in Nuclear Reactions
3.2.1. Low Energy Ion Collisions
The force of TDGCM+GOA is its versatility in the choice
of collective coordinates and its ability to treat in the same
framework the nucleons DoFs as well as more collective DoFs.
It seems an appropriate way to tackle the dynamics of low
energy ion collisions where the principal degree of freedom is the
relative distance between the two reaction partners and where
the collision affects the internal organization of the nucleons.
It is possible to build a family of generator states along this
line, describing the two reaction partners and parameterizing
them by their relative distance. Several papers followed this idea
during the 1980s. In particular, Berger and Gogny [57] treated the
frontal collision of 12C+12Cwithin a GCM+GOA approach. This
kind of study focuses on the determination of the cross-section
resonances for some specific output channels of the reaction.
Figure 4 shows a typical result where the resulting positions
of the resonances are compared to available experimental data.
The predictions give a rough estimation of the position of the
0+ resonances, but they mostly fail to reproduce the presence
of other resonances and their energy spacing. Many lacunae
of the theory could explain such discrepancy, including the
rough treatment of angular momentum, the breaking of some
symmetries, or the mostly adiabatic characteristic of the GCM
built on constrained HFB solutions.

Other similar studies have been performed on the base of
the GCM (without the GOA) and have made the connection
to the resonating group method. Baye and Salmon looked
at the 16O+40Ca back angles scattering [58] along with the
work of Friedrich et al. [59]. Also, Goeke et al. studied the
16O+16O collision in the framework of the quantized adiabatic

time-dependent Hartree-Fock approach which yields a collective
equation of motion identical to the one of TDGCM+GOA [60].

After this series of applications, treating collisions with the
TDGCM+GOA framework was progressively abandoned to the
profit of other methods such as the time-dependent Hartree-Fock
plus pairing [61]. One difficulty that could explain this transition
is the numerical cost required to build the generator states at the
self-consistent mean-field level (note that this cost is nowadays
completely acceptable). Beyond this, deeper problems raised, for
instance, by the conservation of the total angular momentum
of the collision or the generation of a continuous manifold of
generator states appear with this method. Overall, the resulting
cross-sections give only rough and qualitative estimations of the
experimental data. The position of resonances, as well as the
absolute value of cross-sections, are both observables that are
very challenging to predict due to their extreme sensitivity to
the kinematics of the reaction as well as the internal structure of
the nuclei.

3.2.2. Fission Dynamics
The prediction of the fission fragments characteristics from a
dynamical description is a domain where the TDGCM+GOA
performs successfully. Fission involves heavy nuclei and begins
with large collective motions that are mostly adiabatic. These two
factors make the TDGCM+GOA framework built on constrained
HFB solutions a suitable candidate. Moreover, the important
width of the measured fission yields is the fingerprint of large
quantum fluctuations of the one-body density of the compound
system. Handling these fluctuations is precisely the purpose of
the GCM.

The quest to predict fission yields from a dynamical
TDGCM+GOA calculation began in the 1980s with the work
of Berger et al. exploring the rupture of the neck between
prefragments in terms of different collective coordinates [62,
63]. The first calculation of the mass distribution of fission
fragments was later on performed among the same group for
238U [41]. The authors have described the fissioning system’s
dynamics using the two collective coordinates: q20 and q30
associated with the quadrupole and octupole moments of the
compound nucleus. The [64] reports the same technique applied
to a few other actinides with a qualitative reproduction of
the experimental values. Younes and Gogny further proposed
an alternative set of collective variables in [65]. Still, an
impediment to this approach was its numerical cost, from the
determination of the generator states (up to 40, 000 states in
a 2-dimensional description) to the time integration of the
collective Schrödinger equation. The development of new tools
based on state-of-the-art numerical methods enables today’s
continuation of this work. For instance, the code FELIX [66,
67] solves the collective GOA dynamics efficiently based on a
spectral element method. Also, the use of Bayesian processes to
determine the best-suited parameters of a harmonic oscillator
basis induced a significant speedup of some Hartree-Fock-
Bogoliubov solvers.

In the last couple of years, we have seen a fast increase
in the number of fission studies relying on this technique.
All papers focused on the actinide region emphasize similar

Frontiers in Physics | www.frontiersin.org 11 July 2020 | Volume 8 | Article 233

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Verriere and Regnier The TDGCM in Nuclear Physics

results. In this region, the potential energy landscape presents
mostly one asymmetric fission valley. The exact topology
of this surface reflects the internal organization of the
nucleons that would correspond to the shell effects in a
microscopic-macroscopic picture. By starting from a collective
state localized in the low deformation first potential well,
the dynamics mostly populates the configurations of the
asymmetric channel. The left panel of Figure 5 shows the
resulting yields obtained on an experimentally well-known
nucleus, namely 240Pu.

The TDGCM+GOA captures within a few mass units the
position of the asymmetric peaks that are, in fact, mostly
determined by the position of the asymmetric valley in the
collective space. A similar quality of results has been obtained
with the same method for other actinides, such as 236U or
252Cf. Finally, this framework seems to be able to describe
the transitions between symmetric and asymmetric fissions that
are measured outside of the actinide region. The left panel of
Figure 6 shows the prediction versus experiment comparison of
such a transition in the neutron-rich Fermium isotopes [70].
In this chain of isotopes, the addition of a few neutrons to
254Fm changes the dominant fragmentation mode completely.
This can be interpreted as different shell effects occurring
because of the new neutrons, that change the potential energy
of the intermediate configurations leading to fission. This
perturbation favors the population of the symmetric mode
for 258Fm.

Several ingredients of the TDGCM+GOA framework for
fission are still not adequately controlled and bring significant
uncertainties on its predictions. Zdeb et al. [71] investigated
in detail the impact of the choice of the initial state of the
dynamics on the fission observables. They showed in particular
that the global features of the fission yields (mostly the position
and width of the peaks) are quite resilient to changes in the
energy or the parity of the initial state. Furthermore, Tao
et al. computed the fission yields from a relativistic mean-
field approach [69] and looked at the sensitivity of the results
to the pairing strength. The right panel of Figure 5 gives
a clue of their results, showing the variation of the charge
yields induced by a 10% variation of their nominal pairing
strength in the case of the multimodal fission of 226Th. For this
nucleus, we see that the pairing strength is an essential factor
that drives the ratio between the yields of the symmetric and
asymmetric modes. Finally, the same team explored the inclusion
of temperature into the generator states as a way to better
account for the diabatic aspects of the dynamics [72, 73]. The
Figure 6 (right panel) shows that warming up the generator states
changes slightly the topology of the potential energy surface.
Increasing the temperature generally tends to smear out the
shell effects and the structures in the potential energy surface.
In the case of 226Th, it favors the symmetric fission and reduces
the height of the asymmetric peaks of the mass yields by a
factor≃1.4.

Other components or approximations of the TDGCM+GOA,
such as the perturbative cranking approximation for the
collective inertia, may also bring their source of bias and
uncertainty on the prediction.

3.3. Main Limitations
Despite its success in determining the fission fragment
distribution, the TDGCM+GOA framework suffers from
several shortcomings.

First, on the same ground as the exact TDGCM, its derivation
relies on the knowledge of a many-body Hamiltonian. However,
in all practical applications, it is used with an energy density
functional (cf. section 2.5). Indeed, the GOA method does not
require an explicit calculation of the off-diagonal elements of
the energy kernel responsible for divergent behavior in GCM.
However, the GOA’s formal construction still depends on the
existence and sound mathematical definition of these matrix
elements to be a valid framework. In that sense, the GOA suffers
from the same flaws as the exact TDGCM concerning the use of
energy density functionals.

A second issue comes from the requirement that the function
q →

∣

∣φ(q)
〉

is continuous and twice differentiable. The latter is a
necessary condition to develop the formalism and, in particular,
to compute the GOA metric and inertia. However, the standard
construction of the family of generator states from constrained
HFB solutions does not guaranty this property [38]. Different
studies highlight discontinuities of this function in the treatment
of fission, similar to the one visible in Figure 1. In the common
(q20, q30) space of collective coordinates, a line of discontinuity
is present in the vicinity of scission configurations. This feature
limits the domain of validity of the collective dynamics and
ultimately prevents the determination of the fission fragments
characteristics after their complete separation.

Finally, we have seen that most of the current applications
of TDGCM+GOA rely on constrained HFB solutions for the
generator states. Certain diabatic aspects of the nuclear dynamics
are then difficult to grasp with the corresponding GHW many-
body wave function. This is the case of the dissipation as
well as the viscosity of the shape dynamics predicted with
Langevin methods [74, 75] or time-dependent Hartree-Fock-
Bogoliubov calculations. Past and ongoing studies to improve
the description of these effects include efforts to quantize the
Langevin equation [76, 77], to couple the Langevin dynamics
with the GCM [78] or to couple TDHFB trajectories with
TDGCM [79]. Other techniques, such as the SCIM and TDGCM
based on time-dependent generator states, are also promising
avenues that we discuss in this review.

4. SCHRÖDINGER
COLLECTIVE-INTRINSIC MODEL (SCIM)

Intrinsic degrees of freedom are often neglected in the
microscopic modeling of the dynamics of reactions. However,
including intrinsic degrees of freedom in a static GCM
framework has already been performed, for instance, in [80, 81].
These studies show that taking into account two-quasiparticle
excitations significantly improves the prediction of high spin
levels, such as the 6+ states in medium mass isotopes as well
as the prediction for β excitation bands and its transition
probabilities to other rotational bands in heavier systems. On
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FIGURE 5 | (Left) Fragment mass distribution for the low energy neutron induced fission 239Pu(n,f). Two TDGCM results obtained with the Gogny D1S and Skyrme

SkM∗ effective interactions are compared to two sets of experimental data. Reprinted figure with permission from [68]. Copyright 2016 by the American Physical

Society. (Right) Fragment charge distribution obtained for a low energy fission of 226Th. The TDGCM+GOA results based on the relativistic mean field PC-PK1 with

different pairing strengths are compared to experimental data (black line with points). Reprinted figure with permission from [69]. Copyright 2017 by the American

Physical Society.

FIGURE 6 | (Left) Primary fragment mass yields of Fermium isotopes obtained with the Gogny D1S effective interaction and compared with various experimental data

sets after neutron evaporation. The open symbols stand for experimental data associated with spontaneous fission, whereas full symbols are related to thermal

neutron-induced fission. Reprinted figure with permission from [70]. Copyright 2019 by the American Physical Society. (Right) Effect of temperature on the free energy

surface of 228Th in the plane of deformation (β20,β30). Reprinted figure with permission from [73]. Copyright 2019 by the American Physical Society.
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another topic, the TDHFB/SLDA methods [82, 83] and semi-
classical approaches to the description of fission [84, 85] clue
that dissipation (and therefore intrinsic degrees of freedom) are
necessary to describe the fission fragments properties correctly.
Therefore, a few collective degrees of freedom are not enough to
adequately model such a reaction. Several paths can be taken to
overcome this limitation without resorting to the determination
of an exact solution of the GHW Equation (16). A strategy in
development consists in using the TDGCM+GOA with finite-
temperature inertia tensors and collective potential. However,
the inclusion of statistical mechanics on top of the TDGCM
framework still lacks a solid formalization. The idea of the
Schrödinger Collective-Intrinsic Model (SCIM) [86–88] is to
derive a local Schrodinger-like equation from a generalization
of the GHW ansatz (3) that contains individual quasiparticle
degrees of freedom. The transformation to a local equation relies
on the symmetric moment expansion method [89, 90]. The full
SCIM formalism can be found in [86–88] in the stationary case.
However, we would like to present here a derivation of the time-
dependent SCIM equations consistent with the ones given for the
TDGCM and the TDGCM+GOA equations.

4.1. Main Assumptions
The SCIM involves four main assumptions. The first one is the
expression of the state

∣

∣9(t)
〉

that describes the evolution of
the many-body wavefunction associated with the reaction. This
expression is assumed to be a generalization of the GHW ansatz

∣

∣9(t)
〉

=
∑

k

∫

dq
∣

∣φk(q)
〉

fk(q, t). (61)

In [87], the authors consider a family of generator states
associated with one collective coordinate q defined as the
quadrupole moment of the system. The index k iterates over
the labels of the sheets of collective space which correspond, in
this case, to two quasiparticle excitations. Figure 7 shows the
evolution of the excitation energies of the non-adiabatic points
of the potential energy surface of 236U.

Note that the scope of expression (61) is broader than the
only explicit inclusion of intrinsic DoF in the formalism. For
example, it is used for K-mixing in the context of stationary
angular-momentum-projected GCM on a triaxial configuration
basis. In this case, the index k iterates over the values of K. The
second assumption is the analyticity of the weight function f of
the GCM ansatz (61) that allows the symmetrization of the GHW
equations. The third assumption is the vanishing of the weight
function and its derivatives at the boundaries of the integration
domain. An implicit corollary of this property is the continuity
of the functions q →

∣

∣φk(q)
〉

. It turns out that this assumption
is in practice not verified for a broad range of applications, for
example, in the actinide region, as emphasized in section 3.3.
These three assumptions lead to the symmetrized GHW equation

∑

k

∫

ds eisP/2
[

H[s]lk(q)− iN [s]lk(q)
d

dt

]

eisP/2fk(q, t) = 0,

(62)

where the following notations are introduced

H[s]lk(q) = Hlk(q+ s/2, q− s/2) (63)

N [s]lk(q) = Nlk(q+ s/2, q− s/2), (64)

and where the Hermitian operator

P = i
∂

∂q
(65)

corresponds to the conjugate moment associated with the
collective variables. The symmetrized GHW equation can be
written in a more compact operator format as

∫

ds eisP/2
[

H[s]− iN [s]
d

dt

]

eisP/2f(t) = 0, (66)

where f(t) denotes the function q 7→ fk(q, t). The fourth and
last assumption of the SCIM is the validity of the truncation
of the symmetric moment expansion (SME) of the norm and
Hamiltonian kernels of (66) up to order two. It was, for instance,
verified numerically in the context of the study [87]. The SME of
K = N ,H, in the case of one collective variable,

K =
∑

n

1

n!

{

K(n),P
}(n)

, (67)

is obtained through the properties of the so-called Symmetric

Ordered Product of Operators (SOPO)
{

K(n),P
}(n)

presented in

Appendix 8 where K(n) is the moment of order n of K[s] in the
variable s

K(n) ≡ in
∫

dssnK[s]. (68)

The properties of the SOPO used to obtain these expressions are
listed in Appendix 8.

The expression (67) can be generalized to the case of m
collective variables,

K =
∑

n

1

n!

{

K(n),P
}(n)

, (69)

where the index n iterates over all the m-tuples of positive
integers and where we have introduced the following notations

n! ≡ n0!n1! · · · nm−1! (70)

{K,P}(n) ≡
{

· · ·
{

{K,P0}(n0),P1

}(n1)
· · ·,Pm−1

}(nm−1)

(71)

K(n) ≡
∫

ds

[

∏

k

(isk)
nk

]

K[s]. (72)

Their second-order approximation in their SME development is
then given by

N ≈
∑

n̄≤2

1

n!

{

N (n),P
}(n)

(73)

H ≈
∑

n̄≤2

1

n!

{

H(n),P
}(n)

, (74)
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FIGURE 7 | (Color online) Excitation energies as a function of the quadrupole moment constraint q and associated with 2-qp excitations of HFB states. The system

under study is 236U around 〈Q̂20〉 = 70 b (A) and 〈Q̂20〉 = 325 b (B). The figures are taken from [86].

where n̄ is the sum of the elements of n. In the one-dimensional
case, the expressions reduce to.

N ≈
2
∑

n=0

1

n!

{

N (n),P
}(n)

, (75)

H ≈
2
∑

n=0

1

n!

{

H(n),P
}(n)

. (76)

4.2. Schrodinger Collective-Intrinsic
Equation
The Schrödinger-like expression of the SCIM equations is given
by

[

HCI − i
d

dt

]

g(t) = 0, (77)

where g(t) is defined according to

g(t) = N 1/2f(t) (78)

and normalized as

g†(t)g(t) =
∫

dqg⋆(q, t)g(q, t) = 1. (79)

The operatorN 1/2 is the only positive-definite hermitian square-
root ofN 1/2 andN−1/2 is the inverse of the latter. Finally, using
the hermicity ofN−1/2, the collective-intrinsic HamiltonianHCI

has the expression

HCI = N−1/2HN−1/2. (80)

An explicit form forHCI(q) is given by

HCI = 1

2
{B,P}(2) + {T ,P}(1) + V , (81)

where the expressions of U = B/2, T and V are given in [86–88].
By analogy with the TDGCM+GOA collective Hamiltonian (52),
the first term of (81) can be interpreted as a kinetic term and
B as the inertia tensor, related to the mass tensor M through
the relation

B = M−1. (82)

Similarly, the third term of (81) is comparable to the potential
term of the TDGCM+GOA. However, the last term

{T ,P}(1) = 1

2

[

T
∂

∂q
+ ∂

∂q
T

]

, (83)

contains first-order derivatives according to the collective
variable, at the opposite of the TDGCM+GOA. In the Langevin
equations, such a term corresponds to viscosity and arises in the
SCIM from the coupling between intrinsic and collective degrees
of freedom.

4.3. Choice of Quasiparticle Excitations
In [86–88], the generator states consist in

• constrained HFB states
∣

∣

∣
φk=0(q = 〈Q̂20〉)

〉

describing the

compound system at different elongations,
• intrinsic excitations of these HFB states

∣

∣φk>0(q)
〉

= X̂(q)k
∣

∣φ0(q)
〉

. (84)

Note that the specific expression of X̂(q)k is never used in
the derivations of the Schrodinger-like equation, and it is only
assumed that all the states in the collective space are time-reversal
to avoid complex-valued overlaps. In practice, the intrinsic
excitations taken into account in the existing developments of
SCIM are considering 2-qp excitations. The included HFB states
are breaking the rotational and particle number symmetries.
In order to avoid restoring these symmetries, the quasiparticle
excitations are chosen according to the following rules
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1. the operators X̂k are two quasiparticles operators,
2. all the states in the collective space have to be time-

reversal invariant,
3. the chosen excitations have to preserve “as much as possible”

the number of particles and K, the projection of the total
angular moment on the symmetry axis,

4. and they must be associated with an excitation energy below
10 MeV.

The time-reversal condition limits the possible excitation
operators to be

X̂(q)k = αkη̂
(q)†
k1
η̂
(q)†

k̄2
− η̂(q)†

k̄1
η̂
(q)†
k2

(85)

αk =
1√
2

(

1+ δk1 ,k2
(

1− 1√
2

))

, (86)

where η̂
(q)†
k1

is the creation operator of the quasiparticle k1
associated with the HFB state

∣

∣φ0(q)
〉

=
∏

l

η̂
(q)

l
|0〉 . (87)

Additionally, the selected quasiparticles in X̂(q)k are assumed to
have the same projection on the total angular moment on the
symmetry axis Kk1 = Kk2 so that the K of the total system is
unchanged. In case the HFB states are obtained with preserved
parity, the same condition on π is added.

Couplings between collective and intrinsic excitations play a
major role in many reactions. For instance, it is known to play
a crucial role in the distribution of excitation energy between
the nascent fragments produced by fission. The TDGCM+GOA
enables a microscopic description of nuclear reactions without
internal degrees of freedom, while Langevin-based methods
allow the semi-classical description of the reaction with the
inclusion of thermal effects. The SCIM leads to a local
Schrodinger-like equation, much simpler to solve than the exact,
non-local, Griffin-Hill-Wheeler equation while being based on
fewer assumptions than the TDGCM+GOA or Langevin. The
collective-intrinsic Hamiltonian includes a viscosity term that is
known to be relevant to the description of nuclear reaction from
Langevin’s calculations. However, the method still involves the
full calculation of the norm and Hamiltonian kernels, which is
extremely time-consuming. Furthermore, the formalism is rather
complex compared to other methods such as the TDGCM+GOA.
At present, this method did not lead to any application beyond
the works presented in [86–88], and still needs to be tested
thoroughly against experimental data.

5. QUANTUM MIXTURE OF
TIME-DEPENDENT STATES

In its standard form, the TDGCM relies on the ansatz (3)
that expands the many-body wave function on a family of
time-independent generator states. The dynamics of the system
is, therefore, entirely carried out by the time evolution of
the collective wave function g(q) driven by Equation 30.

Although successful in describing some nuclear phenomena
like collective vibrations, such an expansion suffers from two
significant drawbacks.

The first one resides in the large dimension of the
ensemble of generator states required to describe processes
like nuclear reactions correctly. Despite the efforts reported in
sections 3 and 4 to reduce the collective Hamiltonian to a
local approximation, this high dimension quickly becomes a
hindrance to the numerical applications of TDGCM. An origin
of this difficulty is the fact that all the many-body configurations
populated at any time of the reaction must be represented in
the set of generator states. In many situations, this expansion
is not optimal in the sense that most of the associated weights
are close to zero at a given time. To give an example, we may
consider the translation motion of a localized particle. While
the translated states at any positions are to be incorporated in
a TDGCM description of its motion, the collective wave function
at a given time only has a small spatial expansion. A natural idea
is then to express the wave function as a linear superposition of
a few time-dependent states that follow the expected particle’s
translation motion. It may even happen that one well-chosen
time-dependent basis state is enough to describe the dynamics of
the system very accurately. The time-dependent energy density
functional treatment of the giant resonances in nuclear physics
provides such an example [91, 92].

The second drawback of the TDGCM is the construction
of a family of generator states before the determination of the
system evolution. The equation of motion provides only the
probability of the system to populate parts of this predefined
space. For this approach to work, the physicist must rely on an
a priori knowledge of the relevant states for the dynamics. For
nuclear reactions, it typically means that one should correctly
guess what will be the reaction’s output channels and include an
ensemble of states representative of these channels in the working
space. Beyond the difficulty to generate states representative of
the systems far from the initial state, the typical risks of this
method are

• to miss important channels/states in the construction of the set
of generator states,

• to include states that will not be populated at all but will still
increase the numerical cost.

A solution to overcome these difficulties is the expansion of
the ansatz (3) on a set of time-dependent states, as shown
schematically in Figure 8. In this case, the many-body wave
function of the system reads

∣

∣9(t)
〉

=
∫

q∈E
f (q, t)

∣

∣φ(q, t)
〉

. (88)

This very general ansatz brings more flexibility as the
configuration basis can vary in time. However, this flexibility
comes with additional complexity in the equation of motion
for the collective wavefunction g(q, t) and the generator states
∣

∣φ(q, t)
〉

. Studies in both chemistry and nuclear physics are
exploring different strategies in the choice of generator states and
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FIGURE 8 | Schematic dynamics of a localized collective wave packet. With

the TDGCM strategy (static set of generator states), most of the working

space does not contribute, and part of the final state is not captured. In

contrast, a small, well-chosen set of time-dependent states is sufficient to

capture the system’s dynamics entirely.

the determination of the equation of motion of the system. We
review these recent efforts in this section.

5.1. The Multiconfiguration
Time-Dependent Hartree-Fock Approach
In 1990, Meyer et al. introduced the multiconfiguration time-
dependentHartree (MCTDH) approach to tackle the dynamics of
molecules [93]. Contrary to the fermionic many-body problem,
the system’s degrees of freedom are distinct from each other
and correspond typically to distances between some atoms of a
molecule. Their associated wave function is assumed to be at any
time a mixture of product states

∣

∣9(x1, · · · , xn, t)
〉

=
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

ci1···in ×
∣

∣

∣
ϕ
(1)
i1
(t)
〉

· · ·
∣

∣

∣
ϕ
(n)
in

(t)
〉

,

(89)

where at any time, the {|ϕ(k)ik
(t)} form a basis of the space

associated with the kth degree of freedom, and the ci1···in are the
mixing coefficients between all the product states. The equation
ofmotion of both the individual states and themixing coefficients
can then be obtained from applying the Dirac-Frenkel variational
principle. This method was since applied to different dynamical
processes in chemistry [94–96] and up to five degrees of freedom
in the treatment of the inelastic cross-section of H2O + H2 [97].
Note that in 2003, Wang et al. proposed an extension of this
method referred to as multilayers MCTDHF to tackle more
degrees of freedom (up to a few thousand) [98].

A natural extension of this work to the fermionic many-
body problem is the replacement of the product states by
Slater determinants in the trial wavefunction. This extension was

introduced in [99] and the new ansatz reads

∣

∣9(r1, · · · , rn, t)
〉

=
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

ci1···in
∣

∣φi1···in (t)
〉

, (90)

with the time-dependent Slater determinants

∣

∣φi1···in (t)
〉

= â†
i1
(t) · · · â†

in
(t) |0〉 . (91)

In this expression, â†
ik
(t) stands for the fermionic creation

operator of a particle in a single-particle state
∣

∣ϕik (r, t)
〉

. This
many-body wave function can then be injected into a time-
dependent variational principle whose parameters are both the
mixing coefficients ci1···in and the single-particle wave functions
∣

∣ϕik

〉

. Note that there is no one-to-one mapping between the
many-body state

∣

∣ψ(t)
〉

and the parameters of the right-hand
side. In practical applications, the set of single-particle wave
functions is assumed to be orthonormal at any time

〈

ϕi(t)
∣

∣ϕj(t)
〉

= δij. (92)

This criterion lets some freedom in the choice of the cik and
∣

∣ϕik

〉

for a given many-body wave function, leading to an additional
degree of freedom in their associated equation of motion. A
usual convention to fix this freedom consists in imposing the
additional constraint

〈

ϕi(t)
∣

∣

∂

∂t

∣

∣ϕj(t)
〉

= 0. (93)

This choice stabilizes the single-particle states against rotations
among the occupied states. If such rotation has to be described,
only the mixing coefficients will be affected while the single-
particle states will stay constant. This convention yields to
equations of motion that are often more suited for the numerical
time integration.

With this criterion, the Dirac-Frenkel variational principle
applied to a two-body Hamiltonian system leads to the equation
of motion for both the coefficients and the single-particle states

ih̄ ċi1···in (t) =
m1−1
∑

i1=0

· · ·
mn−1
∑

in=0

〈

φi1···in (t)
∣

∣Ĥ
∣

∣φi1···in (t)
〉

ci1···im (t) (94)

ih̄
∣

∣ϕ̇n(t)
〉

= P̂







t̂
∣

∣ϕn(t)
〉

+
∑

pqrs

(ρ−1)np ρ
(2)
qspr ĥrs

∣

∣ϕq(t)
〉







(95)

where t̂ is the one-body part of the Hamiltonian, ĥ is the mean-
field potential that implicitly depends on the one-body density,
ρ and ρ(2) are the one- and two-body density matrices and
P̂ is a projection operator on the orthogonal complement of
the occupied single-particle states. Such equation of motions
have then been numerically solved for chemical systems with six
valence electrons [99], to study the two photons ionization of
helium [100] or the dynamics of di-molecular molecules [101,
102]. In nuclear physics, the multiconfiguration Hartree-Fock
approach has been applied in its static version to determine
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the structure of light nuclei mostly in the s-d shell [103, 104].
Such an expansion of the many-body state enables a good
description of the low lying excitation spectrum with typically
the first 2+ excitation reproduced within a few 100 keV. For
the ground-state binding energy, this work still emphasizes a
significant overestimation of the theory by 8.3 MeV in average
in the s-d shell nuclei. This discrepancy would mostly come
from (i) double-counting coming from the usage of energy
functional that have been fitted at the mean-field level, (ii)
the truncation of the configuration space that still cuts too
early the population of single-particle states with the largest
spatial expansion. Even though it would be interesting to study
photoabsorption phenomena in light nuclei or diffusion between
light nuclei, this method has not yet been applied in its dynamics
version for nuclear physics. A generalization of the ansatz (90)
to a superposition of Bogoliubov vacua and its corresponding
equation of motion is yet to be formalized and tested.

5.2. Multiconfiguration With
Time-Dependent Non Orthogonal States
The trial state of Equation (90) at the core of the MCTDHF
method expands the wave function on a set of orthonormal Slater
determinants. The orthonormality between such generator states
simplifies the equation of motion as typically the norm kernel
defined in Equation (6) is the identity at any time. In contrast,
it may be more efficient in some situations to expand the many-
body wave function on a set of non-orthogonal generator states
(i.e., time-dependent Bogoliubov vacua with time-dependent
deformations). Such a strategy was explored, for instance, in
chemistry by mixing TDDFT trajectories with a shift in time to
include memory effect [105] into the dynamics. This approach
was proven to correctly include the description of dissipation in
the two electrons dynamics of a Hooke’s atom.

In nuclear physics, the idea of mixing time-dependent TDHF
trajectories was already proposed in 1983 in the pioneering work
of Reinhard et al. [106] to treat nuclear collisions. Starting back
from the ansatz (90), the authors proposed to take as the time-
dependent generator states a set of TDHF trajectories starting
from different initial conditions. A time-dependent variational
principle is then applied to obtain the equation of motion only
for the mixing function f (q, t) (or the collective wave function
g(q, t)). Such a principle is schematically pictured in Figure 9

(left panel).
The idea behind this scheme is that the TDHF trajectories will

carry most of the one-body dynamics of the system, whereas the
weight function will encompass part of the two-body collisional
dynamics, in such importance as to account for additional
dissipation and fluctuation. In this paper, a GOA approximation
was performed to determine the evolution of the collective
wave function in a one-dimensional nuclear collision model.
The results showed in particular that the widths of the internal
excitation energy of the collision partners after the collision were
increased by a factor of seven compared to a TDHF trajectory
alone. This additional fluctuation is directly coming from the
additional correlations tackled by the enriched ansatz for the
many-body wave function.

Even though promising, applications of this method to
realistic systems were not carried out. One possible explanation is
the numerical cost associated with TDHF trajectories. However,
the advances in numerical methods and the recent development
of supercomputers induced a surge of interest for such studies. In
particular, the inclusion of superfluidity in our time-dependent
mean-field codes [82, 108] opened the possibility to predict
collisions between open-shell nuclei. Along this line, Scamps et al.
attempted to predict the transfer of pairs of fermions in the
contact between two superfluids based on a statistical mixing
of TDHFB trajectories [109–111]. The idea is that the one-
body dynamics of the nuclear processes would be already well
accounted for by TDHFB like trajectories, while a statistical
ensemble of such trajectories would account for the additional
fluctuation induced by the residual two-body collisions terms of
the dynamics. Up to now, these methods were only tested on toy-
model cases and collisions between a few light systems such as
20O+20O. Experimental data on such collisions still lack, which
prevents a rigorous theory versus experiment comparison.

Nevertheless, the tests on exactly solvable models show that
these semiclassical approaches manage to recover some crucial
fluctuation related to the relative gauge angle between the
reaction partners. In particular, they can predict the probability
of one pair transfer with the proper order of magnitude in the
perturbative regime where the nuclear interaction during the
collision is weak compared to the pairing forces acting in each
subsystem. Still, they partially miss the quantum interference
between the TDHFB trajectories. Depending on the method’s
details, this may either lead to underestimating fluctuations of
one-body observables or, in the worse case, predicting unphysical
behavior such as particle transfer after the re-separation of the
two reaction partners.

Coming back to a full quantum treatment of the problem,
Regnier et al. recently attempted the full-fledged mixing of
TDHFB trajectories in [107]. In this context, the time-dependent
variational principle on the ansatz 90 leads to the equation of
motion of the collective wave function g(q, t)

ih̄ġ =
(

H̃− D̃ + ih̄Ṅ 1/2N−1/2
)

g. (96)

This equation involves the collective operators H̃ and D̃ defined
by the application of Equation (28) on the kernels

H(q, q′) =
〈

φ(q, t)
∣

∣ Ĥ
∣

∣φ(q′, t)
〉

, (97)

D(q, q′) =
〈

φ(q, t)
∣

∣ ih̄
∂

∂t

∣

∣φ(q′, t)
〉

. (98)

All the kernels and collective operators involved now depend
on time. Compared to the TDGCM on static generator states
(Equation 30), this equation contains two additional terms. The
first one contains the time derivative of the generator states,
whereas the second one is linked to the time derivative of the
norm kernel. These equations were numerically solved only
in a simple case modeling the contact between two superfluid
systems. The main results are summarized in the right panel
of Figure 9. The full black line represents the system’s exact
many-body dynamics, and it is compared with a prediction
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FIGURE 9 | (Left) Schematic picture of a GCM mixing of TDHF(B) trajectories. (Right) Evolution of several observables during the dynamics of a simple model of

collision between two superfluids. The total energy (a), the number of particles in the left subsystem (b), and its dispersion (c) as well as the probability to transfer one

pair of fermions during the collision (d) are plotted against the time of the collision for the exact many-body solution (black line), a statistical mixture of TDHFB

trajectories (blue circles) and a quantum mixture of the same TDHFB trajectories (red squares). Reprinted figure with permission from [107]. Copyright 2019 by the

American Physical Society.

obtained from a statistical mixture of TDHFB trajectories (the
PSC method, dashed blue line) as well as the quantum mixing
of the same TDHFB trajectories. While the statistical method
recovers the good order of magnitude for most predictions,
the inclusion of interference between the TDHFB trajectories
significantly improves these results. In particular, a factor of
two is highlighted between each method’s predictions of the
probability P2n to transfer a pair of fermions during the collision.

At a time where performing series of independent time-
dependent mean-field calculations in nuclear physics becomes
possible, such a method could be a suitable candidate to tackle
nuclear reactions with a complex interplay between one-body
and many-body degrees of freedom. The caveat to its direct
application on a realistic nuclear collision would still be the
difficulty that current implementations of the nuclear mean-field
dynamics formalisms rely on energy density functionals instead
of a linear Hamiltonian (cf. section 2.5).

6. CONCLUSION

This review presents four variants of the Time-Dependent
Generator Coordinates Method that is rooted in a configuration-
mixing principle. This class of methods is of particular
interest to microscopically describe heavy-fermion systems.

It allows the physicist to focus the description on the
correlations of interest through the choice of the collective
coordinates. Most of the time, the collective coordinates
are related to some of the first multipole moments of the
intrinsic one-body density or some groups of symmetry
operators. Such freedom makes the TDGCM extremely
versatile. Still, its practical applications in nuclear physics
are plagued by the usage of effective Hamiltonians or
energy density functionals that lead to misbehaviors of
the energy kernel, an essential ingredient shared by all the
TDGCM approaches.

The Time-Dependent Generator Coordinate Method is
the most direct implementation of the configuration-mixing
principle. In this case, the only approximations are the
expression of the nuclear Hamiltonian, and the restriction of
the total Fock space to the one spanned by the configuration
basis. The Griffin-Hill-Wheeler (GHW) Equation (3) is the
corresponding equation of motion. The main limitation of this
method arises from the non-locality of the GHW equation in
the collective coordinates representation, leading to intensive
parallel computation. By resorting to some approximations,
it is possible to rewrite the GHW equations into local
equations, reducing hereafter substantially the calculation
needs. The Gaussian Overlap Approximation (GOA) transforms
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the GHW equations to a local Schrodinger-like equation
essentially under the condition that the norm kernel is of
Gaussian character. The TDGCM+GOA is the most widely
used implementation of the TDGCM for the description of
nuclear reactions and especially for fission. The Schrodinger
Collective-Intrinsic Method is based on the truncation of
the GHW equation in the second-order to obtain a local
Schrodinger-like equation. In its current form, it still requires
to calculate the full norm and Hamiltonian kernels. Finally,
it is possible to generalize the standard TDGCM approach by
expanding the many-body wave function on a set of time-
dependent generator states. The recent progress of TDHFB
solvers opens new possibilities for practical applications along
this line.

Overall, most of these methods were first developed in the
1980s, at a time when they were quickly facing intractable
numerical costs. The computational power at our disposal
nowadays is an incentive to revisit the TDGCM approaches
and look for new opportunities in the description of nuclear
reactions. One of the most significant challenges in this path
is the determination of energy density functionals or effective
Hamiltonians, which are compatible with the GCM formalism
and yield quantitative predictions of nuclear observables.
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7. APPENDIX

7.1. Expression of the GOA Moments
The expression (58) involves some moments M(K) and M̃(K)

that we define here. We recall that we consider generator states
that are Bogoliubov vacua. Any generator state is then fully
characterized by its generalized density matrixR(q)

R =
[

ρ κ

−κ∗ 1− ρ∗
]

. (99)

Additionally, each collective coordinate qi is associated to a one-

body observable Q̂i that is used as a constraint. Expressed in the
basis of quasiparticles that diagonalizesR(q), this operator takes
the matrix form

Qi =
[

Q11
i Q12

i
Q21
i Q22

i

]

. (100)

One can define the standard QRPA matrix M in this same basis
as detailed in [16]. With these notations, the moments M(K)

involved in the determination of the GOA inertia and metric
tensors are

M
(K)
ij = 1

2
(Q12 ∗

i , Q12
i )M−K

(

Q12
j

Q12 ∗
j

)

. (101)

We also define the modified moments M̃(K) by,

M̃(K) =
[

1 0
0 −1

]

M(K)

[

1 0
0 −1

]

. (102)

8. BESTIARY OF SOPO PROPERTIES

The Symmetric Ordered Product of Operators (SOPO) are
defined, for any two operatorsA and B, as

{A,B}(n) = 1

2n

n
∑

k=0

(

n

k

)

BkABn−k. (103)

They can be equivalently defined recursively through their
relation with the anti-commutator

{A,B}(1) = 1

2
{A,B} (104)

{A,B}(n+1) = 1

2

{

{A,B}(n) ,B
}

. (105)

The SOPO are used to obtain the Symmetric Moment
Expansion (SME) of the symmetrized GHW Equation (66),
based on

eαB/2AeαB/2 =
∞
∑

p=0

αp

p!
{A,B}(p) , (106)

For any operators A, B, and C, the following relation
is satisfied

A {B,P}(n) C =
n
∑

k=0

{

B
A,C
(n,k)

,P
}(k)

, (107)

where the operators BA,C
(n,k)

are given by

B
A,C
(n,k)

= in−k

2n−k

n−k
∑

r=0

{

(−1)r
(

n

k+ r

)(

k+ r

r

)

A[r] B C[n−k−r]

}

,

(108)
and where A[r] the short-hand notation for the local operator
associated with the kernel

A[r](q) = ∂rA

∂qr
(q). (109)
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