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Counting how many people or particles pass through a specific space within a specific

time is an interesting question in applied physics and social science. Here a logistic

model is developed to estimate the total number of moving crowds or flowing particles.

This model sheds light on a collective contribution of crowd or particle growth rate and

transient probability within a specific space. This model may offer a basic concept to

understand transport dynamics of moving crowds and flowing particles.
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How many people or particles have passed there? This question is simple but significant in many
physical, biological, and social situations [1–3]. Counting the total number of moving crowds
or flowing particles is often a difficult task because of complexity in mobility and transport
dynamics. Conceptually, this question is similar to a population dynamics that is controlled by
birth and death rates or immigration and emigration [3]. In mathematical biology, the simplest
population growthmodel is theMalthusian exponential model where the total population increases
exponentially with time [4]. The logistic model is widely established in many fields for modeling
and forecasting populations [5]. The logistic growth dynamics describes that the total population
grows exponentially at early times and saturates to an upper limit at late times, producing a
typical S-shaped curve. The upper limit represents a capacity limit in the system. In a confined
space, there may be a capacity limit and thus the logistic model would be appropriate in crowd or
particle counting.

In this article, the logistic model is developed to understand moving crowds or flowing particles
for the total number estimation. This model sheds light on a collective contribution of crowd or
particle mobility and growth rate to the total number. This model is applicable for both of static
and mobile crowds and particles, probably offering a new framework for understanding transport
dynamics of static or mobile crowds and particles.

First, consider a physical situation for flowing particles (conceptually, identical for moving
crowds), where a fixed number of flowing particles occupy a limited number of positions in a
space, as illustrated in Figure 1. As flowing particles move through a space together like flowing
crowds [6–9], the total number of particles initially increases with time, reach a peak for a while,
and eventually diminishes with time. In this situation, the number of particles can be modeled by a
combination of particle growth and decay dynamics. This physical situation can be modeled with
the factors of the first (or final) particle contribution a, the rate of growth (or decay) b, and the
maximum capacity in the place c (physically, c is set by a multiple of the occupation space α and
the population density β as c = αβ).

Next, to quantify the hydrodynamic aspects of flowing particles [10, 11], the average transient
time d is considered as follows. The transient time is the spent duration for particles to stay by
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FIGURE 1 | Illustration of a situation: when particles are flowing in a region of interest (ROI, gray) and their physical factors are given (a ∼ f ), an important question is

how many particles (n or N) have passed through the ROI during a period.

occupying the limited positions and is responsible for the particle
mobility. Assuming the entire time e for growth and decay, the
transient probability f is calculated as f = d/e. By taking the
transient probability, the particle mobility can be quantified.

The transient probability is useful to characterize the nature
of static or mobile particles. For instance, let’s think about the
following two situations. In the first case, most particles may stay
to pass through for a while (e.g., for 30 min) during the entire
time (e.g., for 2 h), suggesting the transient probability to be
f = 30

120 = 0.25 on average. In the second case, most particlesmay
stay for a while (e.g., for 110 min) during the entire time (e.g., for
2 h), indicating f =

110
120 = 0.92. The first case corresponds to

mobile particles (f ≪ 1.0), while the second case to static particles
(f ≈ 1.0).

To describe static or mobile particles with the logistic model,
the logistic growth dynamics is applied prior to a peak as [2, 4, 5]:

n(t) =
ac

a+ (c− a)e−bt
, (1)

and after passing a peak, the logistic decay dynamics is applied as:

n(t) =
ac

a+ (c− a)e−b(e−t)
. (2)

Here n(t) is the number of particles at a moment and is
determined by the first (or final) number of particles a, the
growth (or decay) rate b, the maximum capacity c, the average
transient time d, the entire time e, the transient probability f =

d/e, and the peak time g =
1
2 e. By integrating n(t) with respect to

t and dividing it by the average transient time, the total number

N can be estimated as:

N =

∫
n(t) dt

d
. (3)

As demonstrated in Figure 2, the logistic model is appropriate
to evaluate how the particle number changes with time by
the physical factors in the logistic model. In Figure 2A, for
the physically feasible conditions, a = 1.0, b = 0.2, c =

100, d = 30, and e = 120 are assumed (here, time is
normalized). Controlling the factors, the particle number for
static or mobile particles is counted during particle growth
(Equation 1) and decay dynamics (Equation 2). For simplicity,
the growth dynamics is assumed to be symmetric with the decay
dynamics. In Figure 2B, the contribution of the growth rate b
is tested by fixing the other conditions in Figure 2A except for
the variable b [a = 1.0, c = 100, d = 30, and e = 120].
Interestingly, the total number significantly increases with the
growth rate b. In Figure 2C, the contribution of the transient
probability f is tested by fixing the other conditions in Figure 2A

except for the variable f [a = 1.0, b = 0.2, c = 100, and
e = 120]. Interestingly, the total number is inversely proportional
to the transient probability f (this is evident from N ∝ d−1

and d = ef in Equation 3). The collective contribution of
the growth rate and the transient probability is illustrated in
Figure 2D [by fixing a = 1.0, c = 100, and e = 120],
showing that the total number is significantly affected by the
transient probability for most b values (b & 0.2); that is, the
particle mobility is crucial to determine the total number of
flowing particles.

The logistic model is appropriate to characterize the nature
of static or mobile particles. The total number of particles is
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FIGURE 2 | The logistic model: (A) the particle number n(t) changes with time [a = 1.0, b = 0.2, c = 100, d = 30, and e = 120], (B) by the contribution of the growth

rate b [by fixing a = 1.0, c = 100, d = 30, and e = 120], (C) by the contribution of the transient probability f [by fixing a = 1.0, b = 0.2, c = 100, and e = 120], and

(D) by the collective contribution of the growth rate b and the transient probability f [by fixing a = 1.0, c = 100, and e = 120]. Here, the total number increases by 3.7

times when the transient probability decreases to f = 0.25 (mobile particles, marked A) from f = 0.95 (static particles, marked B) for the same growth rate b = 1.0.

illustrated in Figure 2D as a function of the transient probability
and the growth rate [by fixing a = 1.0, c = 100, and e =

120]. Most interestingly, the total number is significantly affected
by the transient probability, rather than the growth rate. In
particular, the total number significantly increases by 3.7 times
when the transient probability decreases to f = 0.25 (N = 3.7c
as marked A) from f = 0.95 (N = 0.97c as marked B) for
the same growth rate b = 1.0. This result clearly shows why
mobile particles are more than static particles. It is noteworthy
that the logistic model is applicable for both static and mobile
particles by simply adjusting the physical factors. To generalize
the result, the total number of particles becomes more than the
maximum capacity for mobile particles (N ≫ c) and becomes
less than or equal to the maximum capacity for static particles
(N 6 c).

To demonstrate the validity of the logistic model, a simulation
of falling balls through a triangle grid of pegs was tested with
help of the Physics Education Technology (PhET) interactive
simulations (https://phet.colorado.edu) [12, 13]. In Figure 3 (see

Movie S1), the number of red balls in the triangle grid increases
with time at t < g and decreases with time at t > g. The
measured ball number is compared with the logistic model with
a = 1.0, b = 0.135, c = 38, d = 42.2, and e = 165
(N/c = 2.6), providing a good agreement between simulation
and model.

The logistic growth or decay dynamics is applicable to describe
the number of moving crowds or flowing particles in a region
of interest, based on which the total number of particles passing

through the region can be estimated with a posteriori fit for the

data, as demonstrated in Figure 3. Finding the parameters of the
logistic dynamics is crucial for the model to work. For a priori
or real-time estimation of the parameters, the early data can be

analyzed and used to predict the late data. From Equation (1),

the logistic differential equation is given as dn(t)
dt

= bn(t)(1 −

n(t)
c ) where the growth rate b and the carrying capacity c can

be estimated from a priori or real-time data (the first number

a can be set to be 1.0). To determine the total number N in
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FIGURE 3 | Simulation of falling balls through a triangle grid of pegs for the Plinko Probability by the PhET interactive simulations (Movie S1). The number of red balls

in the triangle grid increases with time at t < g and decreases with time at t > g, showing a good agreement with the logistic model with a = 1.0, b = 0.135, c = 38,

d = 42.2, and e = 165 (N/c = 2.6).

Equation (3), the average transient time d can be obtained from
a priori or real-time information and the entire time e (about
twice the peak time g =

1
2 e) can be given or determined in

real situations.
Counting the total number of particles, both a priori and

a posteriori, can be applied for human crowds and planning
crowd safety in places of public assembly [14–16]. In principle,
human crowds are likely to stay or move in a place like flowing
particles [11]. Conceptually, flowing particles are identical with
moving crowds. Direct countingmethods would be available with
many modern technologies such as artificial intelligence, drone,
and visual analysis [14, 15] to count the total number in many
situations. However, direct counting would be expensive and
time consuming. The approximate counting of the total number
with the logistic model may be useful and applicable to estimate
the particle transport through porous media in applied physics,

the total number of clients visiting a store in economics [15], the
crowd size of a protest in sociology [16], and the growth dynamics
of bacteria in a specific colony in biology [17]. Further studies
are required to verify the applicability of the logistic model in a
variety of systems.

In conclusion, this study shows a theoretical frame of the
logistic growth or decay dynamics that would be appropriate to
estimate the total number of moving crowds or flowing particles.
As demonstrated here, the model is available for both static and
mobile crowds and particles. The numerical demonstration of
the logistic model clearly shows how the instantaneous particle
number changes with time according to the particle mobility and
the growth dynamics. Practically, in physical, social, or ecological
situations, the logistic model is applicable by identifying the
transient probability and the growth rate to count or estimate the
total number.
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